Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(392)

Side by Side Diff: ui/gfx/geometry/cubic_bezier.cc

Issue 1846733003: UI GFX Geometry: Make UnitBezier a wrapper for gfx::CubicBezier (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Rename it. Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2014 The Chromium Authors. All rights reserved. 1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "ui/gfx/geometry/cubic_bezier.h" 5 #include "ui/gfx/geometry/cubic_bezier.h"
6 6
7 #include <algorithm>
8 #include <cmath>
9
10 #include "base/logging.h"
11
12 namespace gfx { 7 namespace gfx {
13 8
14 namespace { 9 static const double kBezierEpsilon = 1e-7;
15 10
16 static const double kBezierEpsilon = 1e-7; 11 double CubicBezier::GetDefaultEpsilon() {
17 static const int MAX_STEPS = 30; 12 return kBezierEpsilon;
18
19 static double eval_bezier(double p1, double p2, double t) {
20 const double p1_times_3 = 3.0 * p1;
21 const double p2_times_3 = 3.0 * p2;
22 const double h3 = p1_times_3;
23 const double h1 = p1_times_3 - p2_times_3 + 1.0;
24 const double h2 = p2_times_3 - 6.0 * p1;
25 return t * (t * (t * h1 + h2) + h3);
26 } 13 }
27 14
28 static double eval_bezier_derivative(double p1, double p2, double t) { 15 CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) {
29 const double h1 = 9.0 * p1 - 9.0 * p2 + 3.0; 16 InitCoefficients(p1x, p1y, p2x, p2y);
30 const double h2 = 6.0 * p2 - 12.0 * p1; 17 InitGradients(p1x, p1y, p2x, p2y);
31 const double h3 = 3.0 * p1; 18 InitRange(p1y, p2y);
32 return t * (t * h1 + h2) + h3;
33 } 19 }
34 20
35 // Finds t such that eval_bezier(x1, x2, t) = x. 21 void CubicBezier::InitCoefficients(double p1x,
36 // There is a unique solution if x1 and x2 lie within (0, 1). 22 double p1y,
37 static double bezier_interp(double x1, 23 double p2x,
38 double x2, 24 double p2y) {
39 double x) { 25 // Calculate the polynomial coefficients, implicit first and last control
40 DCHECK_GE(1.0, x1); 26 // points are (0,0) and (1,1).
41 DCHECK_LE(0.0, x1); 27 cx = 3.0 * p1x;
42 DCHECK_GE(1.0, x2); 28 bx = 3.0 * (p2x - p1x) - cx;
43 DCHECK_LE(0.0, x2); 29 ax = 1.0 - cx - bx;
44 30
45 x1 = std::min(std::max(x1, 0.0), 1.0); 31 cy = 3.0 * p1y;
46 x2 = std::min(std::max(x2, 0.0), 1.0); 32 by = 3.0 * (p2y - p1y) - cy;
47 x = std::min(std::max(x, 0.0), 1.0); 33 ay = 1.0 - cy - by;
48
49 // We're just going to do bisection for now (for simplicity), but we could
50 // easily do some newton steps if this turns out to be a bottleneck.
51 double t = 0.0;
52 double step = 1.0;
53 for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
54 const double error = eval_bezier(x1, x2, t) - x;
55 if (std::abs(error) < kBezierEpsilon)
56 break;
57 t += error > 0.0 ? -step : step;
58 }
59
60 // We should have terminated the above loop because we got close to x, not
61 // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
62 DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
63
64 return t;
65 } 34 }
66 35
67 } // namespace 36 void CubicBezier::InitGradients(double p1x,
37 double p1y,
38 double p2x,
39 double p2y) {
40 // End-point gradients are used to calculate timing function results
41 // outside the range [0, 1].
42 //
43 // There are three possibilities for the gradient at each end:
44 // (1) the closest control point is not horizontally coincident with regard to
45 // (0, 0) or (1, 1). In this case the line between the end point and
46 // the control point is tangent to the bezier at the end point.
47 // (2) the closest control point is coincident with the end point. In
48 // this case the line between the end point and the far control
49 // point is tangent to the bezier at the end point.
50 // (3) the closest control point is horizontally coincident with the end
51 // point, but vertically distinct. In this case the gradient at the
52 // end point is Infinite. However, this causes issues when
53 // interpolating. As a result, we break down to a simple case of
54 // 0 gradient under these conditions.
68 55
69 CubicBezier::CubicBezier(double x1, double y1, double x2, double y2) 56 if (p1x > 0)
70 : x1_(x1), 57 start_gradient_ = p1y / p1x;
71 y1_(y1), 58 else if (!p1y && p2x > 0)
72 x2_(x2), 59 start_gradient_ = p2y / p2x;
73 y2_(y2) {
74 InitGradients();
75 }
76
77 CubicBezier::~CubicBezier() {
78 }
79
80 void CubicBezier::InitGradients() {
81 if (x1_ > 0)
82 start_gradient_ = y1_ / x1_;
83 else if (!y1_ && x2_ > 0)
84 start_gradient_ = y2_ / x2_;
85 else 60 else
86 start_gradient_ = 0; 61 start_gradient_ = 0;
87 62
88 if (x2_ < 1) 63 if (p2x < 1)
89 end_gradient_ = (y2_ - 1) / (x2_ - 1); 64 end_gradient_ = (p2y - 1) / (p2x - 1);
90 else if (x2_ == 1 && x1_ < 1) 65 else if (p2x == 1 && p1x < 1)
91 end_gradient_ = (y1_ - 1) / (x1_ - 1); 66 end_gradient_ = (p1y - 1) / (p1x - 1);
92 else 67 else
93 end_gradient_ = 0; 68 end_gradient_ = 0;
94 } 69 }
95 70
96 double CubicBezier::Solve(double x) const { 71 void CubicBezier::InitRange(double p1y, double p2y) {
97 if (x < 0) 72 range_min_ = 0;
98 return start_gradient_ * x; 73 range_max_ = 1;
99 if (x > 1) 74 if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1)
100 return 1.0 + end_gradient_ * (x - 1.0);
101
102 return eval_bezier(y1_, y2_, bezier_interp(x1_, x2_, x));
103 }
104
105 double CubicBezier::Slope(double x) const {
106 double t = bezier_interp(x1_, x2_, x);
107 double dx_dt = eval_bezier_derivative(x1_, x2_, t);
108 double dy_dt = eval_bezier_derivative(y1_, y2_, t);
109 return dy_dt / dx_dt;
110 }
111
112 void CubicBezier::Range(double* min, double* max) const {
113 *min = 0;
114 *max = 1;
115 if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1)
116 return; 75 return;
117 76
118 // Represent the function's derivative in the form at^2 + bt + c. 77 // Represent the function's derivative in the form at^2 + bt + c
78 // as in sampleCurveDerivativeY.
119 // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros 79 // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
120 // but does not actually give the slope of the curve.) 80 // but does not actually give the slope of the curve.)
121 double a = 3 * (y1_ - y2_) + 1; 81 const double a = 3.0 * ay;
122 double b = 2 * (y2_ - 2 * y1_); 82 const double b = 2.0 * by;
123 double c = y1_; 83 const double c = cy;
124 84
125 // Check if the derivative is constant. 85 // Check if the derivative is constant.
126 if (std::abs(a) < kBezierEpsilon && 86 if (std::abs(a) < kBezierEpsilon && std::abs(b) < kBezierEpsilon)
127 std::abs(b) < kBezierEpsilon)
128 return; 87 return;
129 88
130 // Zeros of the function's derivative. 89 // Zeros of the function's derivative.
131 double t_1 = 0; 90 double t1 = 0;
132 double t_2 = 0; 91 double t2 = 0;
133 92
134 if (std::abs(a) < kBezierEpsilon) { 93 if (std::abs(a) < kBezierEpsilon) {
135 // The function's derivative is linear. 94 // The function's derivative is linear.
136 t_1 = -c / b; 95 t1 = -c / b;
137 } else { 96 } else {
138 // The function's derivative is a quadratic. We find the zeros of this 97 // The function's derivative is a quadratic. We find the zeros of this
139 // quadratic using the quadratic formula. 98 // quadratic using the quadratic formula.
140 double discriminant = b * b - 4 * a * c; 99 double discriminant = b * b - 4 * a * c;
141 if (discriminant < 0) 100 if (discriminant < 0)
142 return; 101 return;
143 double discriminant_sqrt = sqrt(discriminant); 102 double discriminant_sqrt = sqrt(discriminant);
144 t_1 = (-b + discriminant_sqrt) / (2 * a); 103 t1 = (-b + discriminant_sqrt) / (2 * a);
145 t_2 = (-b - discriminant_sqrt) / (2 * a); 104 t2 = (-b - discriminant_sqrt) / (2 * a);
146 } 105 }
147 106
148 double sol_1 = 0; 107 double sol1 = 0;
149 double sol_2 = 0; 108 double sol2 = 0;
150 109
151 if (0 < t_1 && t_1 < 1) 110 if (0 < t1 && t1 < 1)
152 sol_1 = eval_bezier(y1_, y2_, t_1); 111 sol1 = SampleCurveY(t1);
153 112
154 if (0 < t_2 && t_2 < 1) 113 if (0 < t2 && t2 < 1)
155 sol_2 = eval_bezier(y1_, y2_, t_2); 114 sol2 = SampleCurveY(t2);
156 115
157 *min = std::min(std::min(*min, sol_1), sol_2); 116 range_min_ = std::min(std::min(range_min_, sol1), sol2);
158 *max = std::max(std::max(*max, sol_1), sol_2); 117 range_max_ = std::max(std::max(range_max_, sol1), sol2);
159 } 118 }
160 119
161 } // namespace gfx 120 } // namespace gfx
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698