| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (C) 2013 Google Inc. All rights reserved. | |
| 3 * | |
| 4 * Redistribution and use in source and binary forms, with or without | |
| 5 * modification, are permitted provided that the following conditions | |
| 6 * are met: | |
| 7 * 1. Redistributions of source code must retain the above copyright | |
| 8 * notice, this list of conditions and the following disclaimer. | |
| 9 * 2. Redistributions in binary form must reproduce the above copyright | |
| 10 * notice, this list of conditions and the following disclaimer in the | |
| 11 * documentation and/or other materials provided with the distribution. | |
| 12 * | |
| 13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND AN
Y | |
| 14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| 15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| 16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR AN
Y | |
| 17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| 18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| 19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND O
N | |
| 20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 23 */ | |
| 24 | |
| 25 #include "platform/animation/UnitBezier.h" | |
| 26 | |
| 27 #include "base/memory/scoped_ptr.h" | |
| 28 #include "testing/gtest/include/gtest/gtest.h" | |
| 29 | |
| 30 namespace blink { | |
| 31 | |
| 32 TEST(UnitBezierTest, BasicUse) | |
| 33 { | |
| 34 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
| 35 EXPECT_EQ(0.875, bezier.solve(0.5)); | |
| 36 } | |
| 37 | |
| 38 TEST(UnitBezierTest, Overshoot) | |
| 39 { | |
| 40 UnitBezier bezier(0.5, 2.0, 0.5, 2.0); | |
| 41 EXPECT_EQ(1.625, bezier.solve(0.5)); | |
| 42 } | |
| 43 | |
| 44 TEST(UnitBezierTest, Undershoot) | |
| 45 { | |
| 46 UnitBezier bezier(0.5, -1.0, 0.5, -1.0); | |
| 47 EXPECT_EQ(-0.625, bezier.solve(0.5)); | |
| 48 } | |
| 49 | |
| 50 TEST(UnitBezierTest, InputAtEdgeOfRange) | |
| 51 { | |
| 52 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
| 53 EXPECT_EQ(0.0, bezier.solve(0.0)); | |
| 54 EXPECT_EQ(1.0, bezier.solve(1.0)); | |
| 55 } | |
| 56 | |
| 57 TEST(UnitBezierTest, InputOutOfRange) | |
| 58 { | |
| 59 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
| 60 EXPECT_EQ(-2.0, bezier.solve(-1.0)); | |
| 61 EXPECT_EQ(1.0, bezier.solve(2.0)); | |
| 62 } | |
| 63 | |
| 64 TEST(UnitBezierTest, InputOutOfRangeLargeEpsilon) | |
| 65 { | |
| 66 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
| 67 EXPECT_EQ(-2.0, bezier.solveWithEpsilon(-1.0, 1.0)); | |
| 68 EXPECT_EQ(1.0, bezier.solveWithEpsilon(2.0, 1.0)); | |
| 69 } | |
| 70 | |
| 71 TEST(UnitBezierTest, InputOutOfRangeCoincidentEndpoints) | |
| 72 { | |
| 73 UnitBezier bezier(0.0, 0.0, 1.0, 1.0); | |
| 74 EXPECT_EQ(-1.0, bezier.solve(-1.0)); | |
| 75 EXPECT_EQ(2.0, bezier.solve(2.0)); | |
| 76 } | |
| 77 | |
| 78 TEST(UnitBezierTest, InputOutOfRangeVerticalGradient) | |
| 79 { | |
| 80 UnitBezier bezier(0.0, 1.0, 1.0, 0.0); | |
| 81 EXPECT_EQ(0.0, bezier.solve(-1.0)); | |
| 82 EXPECT_EQ(1.0, bezier.solve(2.0)); | |
| 83 } | |
| 84 | |
| 85 TEST(UnitBezierTest, InputOutOfRangeDistinctEndpoints) | |
| 86 { | |
| 87 UnitBezier bezier(0.1, 0.2, 0.8, 0.8); | |
| 88 EXPECT_EQ(-2.0, bezier.solve(-1.0)); | |
| 89 EXPECT_EQ(2.0, bezier.solve(2.0)); | |
| 90 } | |
| 91 | |
| 92 TEST(UnitBezierTest, Range) | |
| 93 { | |
| 94 double epsilon = 0.00015; | |
| 95 double min, max; | |
| 96 | |
| 97 // Derivative is a constant. | |
| 98 scoped_ptr<UnitBezier> bezier( | |
| 99 new UnitBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0))); | |
| 100 bezier->range(&min, &max); | |
| 101 EXPECT_EQ(0, min); | |
| 102 EXPECT_EQ(1, max); | |
| 103 | |
| 104 // Derivative is linear. | |
| 105 bezier.reset(new UnitBezier(0.25, -0.5, 0.75, (-1.0 / 6.0))); | |
| 106 bezier->range(&min, &max); | |
| 107 EXPECT_NEAR(min, -0.225, epsilon); | |
| 108 EXPECT_EQ(1, max); | |
| 109 | |
| 110 // Derivative has no real roots. | |
| 111 bezier.reset(new UnitBezier(0.25, 0.25, 0.75, 0.5)); | |
| 112 bezier->range(&min, &max); | |
| 113 EXPECT_EQ(0, min); | |
| 114 EXPECT_EQ(1, max); | |
| 115 | |
| 116 // Derivative has exactly one real root. | |
| 117 bezier.reset(new UnitBezier(0.0, 1.0, 1.0, 0.0)); | |
| 118 bezier->range(&min, &max); | |
| 119 EXPECT_EQ(0, min); | |
| 120 EXPECT_EQ(1, max); | |
| 121 | |
| 122 // Derivative has one root < 0 and one root > 1. | |
| 123 bezier.reset(new UnitBezier(0.25, 0.1, 0.75, 0.9)); | |
| 124 bezier->range(&min, &max); | |
| 125 EXPECT_EQ(0, min); | |
| 126 EXPECT_EQ(1, max); | |
| 127 | |
| 128 // Derivative has two roots in [0,1]. | |
| 129 bezier.reset(new UnitBezier(0.25, 2.5, 0.75, 0.5)); | |
| 130 bezier->range(&min, &max); | |
| 131 EXPECT_EQ(0, min); | |
| 132 EXPECT_NEAR(max, 1.28818, epsilon); | |
| 133 bezier.reset(new UnitBezier(0.25, 0.5, 0.75, -1.5)); | |
| 134 bezier->range(&min, &max); | |
| 135 EXPECT_NEAR(min, -0.28818, epsilon); | |
| 136 EXPECT_EQ(1, max); | |
| 137 | |
| 138 // Derivative has one root < 0 and one root in [0,1]. | |
| 139 bezier.reset(new UnitBezier(0.25, 0.1, 0.75, 1.5)); | |
| 140 bezier->range(&min, &max); | |
| 141 EXPECT_EQ(0, min); | |
| 142 EXPECT_NEAR(max, 1.10755, epsilon); | |
| 143 | |
| 144 // Derivative has one root in [0,1] and one root > 1. | |
| 145 bezier.reset(new UnitBezier(0.25, -0.5, 0.75, 0.9)); | |
| 146 bezier->range(&min, &max); | |
| 147 EXPECT_NEAR(min, -0.10755, epsilon); | |
| 148 EXPECT_EQ(1, max); | |
| 149 | |
| 150 // Derivative has two roots < 0. | |
| 151 bezier.reset(new UnitBezier(0.25, 0.3, 0.75, 0.633)); | |
| 152 bezier->range(&min, &max); | |
| 153 EXPECT_EQ(0, min); | |
| 154 EXPECT_EQ(1, max); | |
| 155 | |
| 156 // Derivative has two roots > 1. | |
| 157 bezier.reset(new UnitBezier(0.25, 0.367, 0.75, 0.7)); | |
| 158 bezier->range(&min, &max); | |
| 159 EXPECT_EQ(0.f, min); | |
| 160 EXPECT_EQ(1.f, max); | |
| 161 } | |
| 162 | |
| 163 TEST(UnitBezierTest, Slope) | |
| 164 { | |
| 165 UnitBezier bezier(0.25, 0.0, 0.75, 1.0); | |
| 166 | |
| 167 double epsilon = 0.00015; | |
| 168 | |
| 169 EXPECT_NEAR(bezier.slope(0), 0, epsilon); | |
| 170 EXPECT_NEAR(bezier.slope(0.05), 0.42170, epsilon); | |
| 171 EXPECT_NEAR(bezier.slope(0.1), 0.69778, epsilon); | |
| 172 EXPECT_NEAR(bezier.slope(0.15), 0.89121, epsilon); | |
| 173 EXPECT_NEAR(bezier.slope(0.2), 1.03184, epsilon); | |
| 174 EXPECT_NEAR(bezier.slope(0.25), 1.13576, epsilon); | |
| 175 EXPECT_NEAR(bezier.slope(0.3), 1.21239, epsilon); | |
| 176 EXPECT_NEAR(bezier.slope(0.35), 1.26751, epsilon); | |
| 177 EXPECT_NEAR(bezier.slope(0.4), 1.30474, epsilon); | |
| 178 EXPECT_NEAR(bezier.slope(0.45), 1.32628, epsilon); | |
| 179 EXPECT_NEAR(bezier.slope(0.5), 1.33333, epsilon); | |
| 180 EXPECT_NEAR(bezier.slope(0.55), 1.32628, epsilon); | |
| 181 EXPECT_NEAR(bezier.slope(0.6), 1.30474, epsilon); | |
| 182 EXPECT_NEAR(bezier.slope(0.65), 1.26751, epsilon); | |
| 183 EXPECT_NEAR(bezier.slope(0.7), 1.21239, epsilon); | |
| 184 EXPECT_NEAR(bezier.slope(0.75), 1.13576, epsilon); | |
| 185 EXPECT_NEAR(bezier.slope(0.8), 1.03184, epsilon); | |
| 186 EXPECT_NEAR(bezier.slope(0.85), 0.89121, epsilon); | |
| 187 EXPECT_NEAR(bezier.slope(0.9), 0.69778, epsilon); | |
| 188 EXPECT_NEAR(bezier.slope(0.95), 0.42170, epsilon); | |
| 189 EXPECT_NEAR(bezier.slope(1), 0, epsilon); | |
| 190 } | |
| 191 | |
| 192 } // namespace blink | |
| OLD | NEW |