OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2013 Google Inc. All rights reserved. | |
3 * | |
4 * Redistribution and use in source and binary forms, with or without | |
5 * modification, are permitted provided that the following conditions | |
6 * are met: | |
7 * 1. Redistributions of source code must retain the above copyright | |
8 * notice, this list of conditions and the following disclaimer. | |
9 * 2. Redistributions in binary form must reproduce the above copyright | |
10 * notice, this list of conditions and the following disclaimer in the | |
11 * documentation and/or other materials provided with the distribution. | |
12 * | |
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND AN
Y | |
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR AN
Y | |
17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND O
N | |
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
23 */ | |
24 | |
25 #include "platform/animation/UnitBezier.h" | |
26 | |
27 #include "base/memory/scoped_ptr.h" | |
28 #include "testing/gtest/include/gtest/gtest.h" | |
29 | |
30 namespace blink { | |
31 | |
32 TEST(UnitBezierTest, BasicUse) | |
33 { | |
34 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
35 EXPECT_EQ(0.875, bezier.solve(0.5)); | |
36 } | |
37 | |
38 TEST(UnitBezierTest, Overshoot) | |
39 { | |
40 UnitBezier bezier(0.5, 2.0, 0.5, 2.0); | |
41 EXPECT_EQ(1.625, bezier.solve(0.5)); | |
42 } | |
43 | |
44 TEST(UnitBezierTest, Undershoot) | |
45 { | |
46 UnitBezier bezier(0.5, -1.0, 0.5, -1.0); | |
47 EXPECT_EQ(-0.625, bezier.solve(0.5)); | |
48 } | |
49 | |
50 TEST(UnitBezierTest, InputAtEdgeOfRange) | |
51 { | |
52 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
53 EXPECT_EQ(0.0, bezier.solve(0.0)); | |
54 EXPECT_EQ(1.0, bezier.solve(1.0)); | |
55 } | |
56 | |
57 TEST(UnitBezierTest, InputOutOfRange) | |
58 { | |
59 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
60 EXPECT_EQ(-2.0, bezier.solve(-1.0)); | |
61 EXPECT_EQ(1.0, bezier.solve(2.0)); | |
62 } | |
63 | |
64 TEST(UnitBezierTest, InputOutOfRangeLargeEpsilon) | |
65 { | |
66 UnitBezier bezier(0.5, 1.0, 0.5, 1.0); | |
67 EXPECT_EQ(-2.0, bezier.solveWithEpsilon(-1.0, 1.0)); | |
68 EXPECT_EQ(1.0, bezier.solveWithEpsilon(2.0, 1.0)); | |
69 } | |
70 | |
71 TEST(UnitBezierTest, InputOutOfRangeCoincidentEndpoints) | |
72 { | |
73 UnitBezier bezier(0.0, 0.0, 1.0, 1.0); | |
74 EXPECT_EQ(-1.0, bezier.solve(-1.0)); | |
75 EXPECT_EQ(2.0, bezier.solve(2.0)); | |
76 } | |
77 | |
78 TEST(UnitBezierTest, InputOutOfRangeVerticalGradient) | |
79 { | |
80 UnitBezier bezier(0.0, 1.0, 1.0, 0.0); | |
81 EXPECT_EQ(0.0, bezier.solve(-1.0)); | |
82 EXPECT_EQ(1.0, bezier.solve(2.0)); | |
83 } | |
84 | |
85 TEST(UnitBezierTest, InputOutOfRangeDistinctEndpoints) | |
86 { | |
87 UnitBezier bezier(0.1, 0.2, 0.8, 0.8); | |
88 EXPECT_EQ(-2.0, bezier.solve(-1.0)); | |
89 EXPECT_EQ(2.0, bezier.solve(2.0)); | |
90 } | |
91 | |
92 TEST(UnitBezierTest, Range) | |
93 { | |
94 double epsilon = 0.00015; | |
95 double min, max; | |
96 | |
97 // Derivative is a constant. | |
98 scoped_ptr<UnitBezier> bezier( | |
99 new UnitBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0))); | |
100 bezier->range(&min, &max); | |
101 EXPECT_EQ(0, min); | |
102 EXPECT_EQ(1, max); | |
103 | |
104 // Derivative is linear. | |
105 bezier.reset(new UnitBezier(0.25, -0.5, 0.75, (-1.0 / 6.0))); | |
106 bezier->range(&min, &max); | |
107 EXPECT_NEAR(min, -0.225, epsilon); | |
108 EXPECT_EQ(1, max); | |
109 | |
110 // Derivative has no real roots. | |
111 bezier.reset(new UnitBezier(0.25, 0.25, 0.75, 0.5)); | |
112 bezier->range(&min, &max); | |
113 EXPECT_EQ(0, min); | |
114 EXPECT_EQ(1, max); | |
115 | |
116 // Derivative has exactly one real root. | |
117 bezier.reset(new UnitBezier(0.0, 1.0, 1.0, 0.0)); | |
118 bezier->range(&min, &max); | |
119 EXPECT_EQ(0, min); | |
120 EXPECT_EQ(1, max); | |
121 | |
122 // Derivative has one root < 0 and one root > 1. | |
123 bezier.reset(new UnitBezier(0.25, 0.1, 0.75, 0.9)); | |
124 bezier->range(&min, &max); | |
125 EXPECT_EQ(0, min); | |
126 EXPECT_EQ(1, max); | |
127 | |
128 // Derivative has two roots in [0,1]. | |
129 bezier.reset(new UnitBezier(0.25, 2.5, 0.75, 0.5)); | |
130 bezier->range(&min, &max); | |
131 EXPECT_EQ(0, min); | |
132 EXPECT_NEAR(max, 1.28818, epsilon); | |
133 bezier.reset(new UnitBezier(0.25, 0.5, 0.75, -1.5)); | |
134 bezier->range(&min, &max); | |
135 EXPECT_NEAR(min, -0.28818, epsilon); | |
136 EXPECT_EQ(1, max); | |
137 | |
138 // Derivative has one root < 0 and one root in [0,1]. | |
139 bezier.reset(new UnitBezier(0.25, 0.1, 0.75, 1.5)); | |
140 bezier->range(&min, &max); | |
141 EXPECT_EQ(0, min); | |
142 EXPECT_NEAR(max, 1.10755, epsilon); | |
143 | |
144 // Derivative has one root in [0,1] and one root > 1. | |
145 bezier.reset(new UnitBezier(0.25, -0.5, 0.75, 0.9)); | |
146 bezier->range(&min, &max); | |
147 EXPECT_NEAR(min, -0.10755, epsilon); | |
148 EXPECT_EQ(1, max); | |
149 | |
150 // Derivative has two roots < 0. | |
151 bezier.reset(new UnitBezier(0.25, 0.3, 0.75, 0.633)); | |
152 bezier->range(&min, &max); | |
153 EXPECT_EQ(0, min); | |
154 EXPECT_EQ(1, max); | |
155 | |
156 // Derivative has two roots > 1. | |
157 bezier.reset(new UnitBezier(0.25, 0.367, 0.75, 0.7)); | |
158 bezier->range(&min, &max); | |
159 EXPECT_EQ(0.f, min); | |
160 EXPECT_EQ(1.f, max); | |
161 } | |
162 | |
163 TEST(UnitBezierTest, Slope) | |
164 { | |
165 UnitBezier bezier(0.25, 0.0, 0.75, 1.0); | |
166 | |
167 double epsilon = 0.00015; | |
168 | |
169 EXPECT_NEAR(bezier.slope(0), 0, epsilon); | |
170 EXPECT_NEAR(bezier.slope(0.05), 0.42170, epsilon); | |
171 EXPECT_NEAR(bezier.slope(0.1), 0.69778, epsilon); | |
172 EXPECT_NEAR(bezier.slope(0.15), 0.89121, epsilon); | |
173 EXPECT_NEAR(bezier.slope(0.2), 1.03184, epsilon); | |
174 EXPECT_NEAR(bezier.slope(0.25), 1.13576, epsilon); | |
175 EXPECT_NEAR(bezier.slope(0.3), 1.21239, epsilon); | |
176 EXPECT_NEAR(bezier.slope(0.35), 1.26751, epsilon); | |
177 EXPECT_NEAR(bezier.slope(0.4), 1.30474, epsilon); | |
178 EXPECT_NEAR(bezier.slope(0.45), 1.32628, epsilon); | |
179 EXPECT_NEAR(bezier.slope(0.5), 1.33333, epsilon); | |
180 EXPECT_NEAR(bezier.slope(0.55), 1.32628, epsilon); | |
181 EXPECT_NEAR(bezier.slope(0.6), 1.30474, epsilon); | |
182 EXPECT_NEAR(bezier.slope(0.65), 1.26751, epsilon); | |
183 EXPECT_NEAR(bezier.slope(0.7), 1.21239, epsilon); | |
184 EXPECT_NEAR(bezier.slope(0.75), 1.13576, epsilon); | |
185 EXPECT_NEAR(bezier.slope(0.8), 1.03184, epsilon); | |
186 EXPECT_NEAR(bezier.slope(0.85), 0.89121, epsilon); | |
187 EXPECT_NEAR(bezier.slope(0.9), 0.69778, epsilon); | |
188 EXPECT_NEAR(bezier.slope(0.95), 0.42170, epsilon); | |
189 EXPECT_NEAR(bezier.slope(1), 0, epsilon); | |
190 } | |
191 | |
192 } // namespace blink | |
OLD | NEW |