| OLD | NEW |
| 1 /* | 1 // Copyright 2016 The Chromium Authors. All rights reserved. |
| 2 * Copyright (C) 2008 Apple Inc. All Rights Reserved. | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 * | 3 // found in the LICENSE file. |
| 4 * Redistribution and use in source and binary forms, with or without | |
| 5 * modification, are permitted provided that the following conditions | |
| 6 * are met: | |
| 7 * 1. Redistributions of source code must retain the above copyright | |
| 8 * notice, this list of conditions and the following disclaimer. | |
| 9 * 2. Redistributions in binary form must reproduce the above copyright | |
| 10 * notice, this list of conditions and the following disclaimer in the | |
| 11 * documentation and/or other materials provided with the distribution. | |
| 12 * | |
| 13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
| 14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
| 16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
| 17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| 18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| 19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
| 21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 24 */ | |
| 25 | 4 |
| 26 #ifndef UnitBezier_h | 5 #ifndef UnitBezier_h |
| 27 #define UnitBezier_h | 6 #define UnitBezier_h |
| 28 | 7 |
| 29 #include "platform/PlatformExport.h" | 8 #include "ui/gfx/geometry/cubic_bezier.h" |
| 30 #include "wtf/Allocator.h" | 9 #include "wtf/Allocator.h" |
| 31 #include "wtf/Assertions.h" | |
| 32 | |
| 33 #include <algorithm> | |
| 34 #include <cmath> | |
| 35 | 10 |
| 36 namespace blink { | 11 namespace blink { |
| 37 | 12 |
| 38 struct PLATFORM_EXPORT UnitBezier { | 13 // TODO(loyso): Erase blink::UnitBezier and use gfx::CubicBezier directly. |
| 14 struct UnitBezier { |
| 39 USING_FAST_MALLOC(UnitBezier); | 15 USING_FAST_MALLOC(UnitBezier); |
| 40 public: | 16 public: |
| 41 UnitBezier(double p1x, double p1y, double p2x, double p2y); | 17 UnitBezier(double p1x, double p1y, double p2x, double p2y) |
| 42 | 18 : m_cubicBezier(p1x, p1y, p2x, p2y) |
| 43 static const double kBezierEpsilon; | 19 { |
| 20 } |
| 44 | 21 |
| 45 double sampleCurveX(double t) const | 22 double sampleCurveX(double t) const |
| 46 { | 23 { |
| 47 // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. | 24 return m_cubicBezier.SampleCurveX(t); |
| 48 return ((ax * t + bx) * t + cx) * t; | |
| 49 } | 25 } |
| 50 | 26 |
| 51 double sampleCurveY(double t) const | 27 double sampleCurveY(double t) const |
| 52 { | 28 { |
| 53 return ((ay * t + by) * t + cy) * t; | 29 return m_cubicBezier.SampleCurveY(t); |
| 54 } | |
| 55 | |
| 56 double sampleCurveDerivativeX(double t) const | |
| 57 { | |
| 58 return (3.0 * ax * t + 2.0 * bx) * t + cx; | |
| 59 } | |
| 60 | |
| 61 double sampleCurveDerivativeY(double t) const | |
| 62 { | |
| 63 return (3.0 * ay * t + 2.0 * by) * t + cy; | |
| 64 } | |
| 65 | |
| 66 // Given an x value, find a parametric value it came from. | |
| 67 double solveCurveX(double x, double epsilon) const | |
| 68 { | |
| 69 ASSERT(x >= 0.0); | |
| 70 ASSERT(x <= 1.0); | |
| 71 | |
| 72 double t0; | |
| 73 double t1; | |
| 74 double t2; | |
| 75 double x2; | |
| 76 double d2; | |
| 77 int i; | |
| 78 | |
| 79 // First try a few iterations of Newton's method -- normally very fast. | |
| 80 for (t2 = x, i = 0; i < 8; i++) { | |
| 81 x2 = sampleCurveX(t2) - x; | |
| 82 if (fabs (x2) < epsilon) | |
| 83 return t2; | |
| 84 d2 = sampleCurveDerivativeX(t2); | |
| 85 if (fabs(d2) < 1e-6) | |
| 86 break; | |
| 87 t2 = t2 - x2 / d2; | |
| 88 } | |
| 89 | |
| 90 // Fall back to the bisection method for reliability. | |
| 91 t0 = 0.0; | |
| 92 t1 = 1.0; | |
| 93 t2 = x; | |
| 94 | |
| 95 while (t0 < t1) { | |
| 96 x2 = sampleCurveX(t2); | |
| 97 if (fabs(x2 - x) < epsilon) | |
| 98 return t2; | |
| 99 if (x > x2) | |
| 100 t0 = t2; | |
| 101 else | |
| 102 t1 = t2; | |
| 103 t2 = (t1 - t0) * .5 + t0; | |
| 104 } | |
| 105 | |
| 106 // Failure. | |
| 107 return t2; | |
| 108 } | 30 } |
| 109 | 31 |
| 110 // Evaluates y at the given x. | 32 // Evaluates y at the given x. |
| 111 double solve(double x) const | 33 double solve(double x) const |
| 112 { | 34 { |
| 113 return solveWithEpsilon(x, kBezierEpsilon); | 35 return m_cubicBezier.Solve(x); |
| 114 } | 36 } |
| 115 | 37 |
| 116 // Evaluates y at the given x. The epsilon parameter provides a hint as to t
he required | 38 // Evaluates y at the given x. The epsilon parameter provides a hint as to t
he required |
| 117 // accuracy and is not guaranteed. | 39 // accuracy and is not guaranteed. |
| 118 double solveWithEpsilon(double x, double epsilon) const | 40 double solveWithEpsilon(double x, double epsilon) const |
| 119 { | 41 { |
| 120 if (x < 0.0) | 42 return m_cubicBezier.SolveWithEpsilon(x, epsilon); |
| 121 return 0.0 + m_startGradient * x; | |
| 122 if (x > 1.0) | |
| 123 return 1.0 + m_endGradient * (x - 1.0); | |
| 124 return sampleCurveY(solveCurveX(x, epsilon)); | |
| 125 } | |
| 126 | |
| 127 // Returns an approximation of dy/dx at the given x. | |
| 128 double slope(double x) const | |
| 129 { | |
| 130 return slopeWithEpsilon(x, kBezierEpsilon); | |
| 131 } | |
| 132 | |
| 133 double slopeWithEpsilon(double x, double epsilon) const | |
| 134 { | |
| 135 double t = solveCurveX(x, epsilon); | |
| 136 double dx = sampleCurveDerivativeX(t); | |
| 137 double dy = sampleCurveDerivativeY(t); | |
| 138 return dy / dx; | |
| 139 } | |
| 140 | |
| 141 // Sets |min| and |max| to the bezier's minimum and maximium y values in the | |
| 142 // interval [0, 1]. | |
| 143 void range(double* min, double* max) const | |
| 144 { | |
| 145 *min = m_rangeMin; | |
| 146 *max = m_rangeMax; | |
| 147 } | 43 } |
| 148 | 44 |
| 149 private: | 45 private: |
| 150 void initCoefficients(double p1x, double p1y, double p2x, double p2y); | 46 gfx::CubicBezier m_cubicBezier; |
| 151 void initGradients(double p1x, double p1y, double p2x, double p2y); | |
| 152 void initRange(double p1y, double p2y); | |
| 153 | |
| 154 double ax; | |
| 155 double bx; | |
| 156 double cx; | |
| 157 | |
| 158 double ay; | |
| 159 double by; | |
| 160 double cy; | |
| 161 | |
| 162 double m_startGradient; | |
| 163 double m_endGradient; | |
| 164 | |
| 165 double m_rangeMin; | |
| 166 double m_rangeMax; | |
| 167 }; | 47 }; |
| 168 | 48 |
| 169 } // namespace blink | 49 } // namespace blink |
| 170 | 50 |
| 171 #endif // UnitBezier_h | 51 #endif // UnitBezier_h |
| OLD | NEW |