OLD | NEW |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "ui/gfx/geometry/cubic_bezier.h" | 5 #include "ui/gfx/geometry/cubic_bezier.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 #include <cmath> | 8 #include <cmath> |
9 | 9 |
10 #include "base/logging.h" | 10 #include "base/logging.h" |
11 | 11 |
12 namespace gfx { | 12 namespace gfx { |
13 | 13 |
14 namespace { | 14 static const double kBezierEpsilon = 1e-7; |
15 | 15 |
16 static const double kBezierEpsilon = 1e-7; | 16 CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) { |
17 static const int MAX_STEPS = 30; | 17 InitCoefficients(p1x, p1y, p2x, p2y); |
18 | 18 InitGradients(p1x, p1y, p2x, p2y); |
19 static double eval_bezier(double p1, double p2, double t) { | 19 InitRange(p1y, p2y); |
20 const double p1_times_3 = 3.0 * p1; | |
21 const double p2_times_3 = 3.0 * p2; | |
22 const double h3 = p1_times_3; | |
23 const double h1 = p1_times_3 - p2_times_3 + 1.0; | |
24 const double h2 = p2_times_3 - 6.0 * p1; | |
25 return t * (t * (t * h1 + h2) + h3); | |
26 } | 20 } |
27 | 21 |
28 static double eval_bezier_derivative(double p1, double p2, double t) { | 22 void CubicBezier::InitCoefficients(double p1x, |
29 const double h1 = 9.0 * p1 - 9.0 * p2 + 3.0; | 23 double p1y, |
30 const double h2 = 6.0 * p2 - 12.0 * p1; | 24 double p2x, |
31 const double h3 = 3.0 * p1; | 25 double p2y) { |
32 return t * (t * h1 + h2) + h3; | 26 // Calculate the polynomial coefficients, implicit first and last control |
| 27 // points are (0,0) and (1,1). |
| 28 cx_ = 3.0 * p1x; |
| 29 bx_ = 3.0 * (p2x - p1x) - cx_; |
| 30 ax_ = 1.0 - cx_ - bx_; |
| 31 |
| 32 cy_ = 3.0 * p1y; |
| 33 by_ = 3.0 * (p2y - p1y) - cy_; |
| 34 ay_ = 1.0 - cy_ - by_; |
33 } | 35 } |
34 | 36 |
35 // Finds t such that eval_bezier(x1, x2, t) = x. | 37 void CubicBezier::InitGradients(double p1x, |
36 // There is a unique solution if x1 and x2 lie within (0, 1). | 38 double p1y, |
37 static double bezier_interp(double x1, | 39 double p2x, |
38 double x2, | 40 double p2y) { |
39 double x) { | 41 // End-point gradients are used to calculate timing function results |
40 DCHECK_GE(1.0, x1); | 42 // outside the range [0, 1]. |
41 DCHECK_LE(0.0, x1); | 43 // |
42 DCHECK_GE(1.0, x2); | 44 // There are three possibilities for the gradient at each end: |
43 DCHECK_LE(0.0, x2); | 45 // (1) the closest control point is not horizontally coincident with regard to |
| 46 // (0, 0) or (1, 1). In this case the line between the end point and |
| 47 // the control point is tangent to the bezier at the end point. |
| 48 // (2) the closest control point is coincident with the end point. In |
| 49 // this case the line between the end point and the far control |
| 50 // point is tangent to the bezier at the end point. |
| 51 // (3) the closest control point is horizontally coincident with the end |
| 52 // point, but vertically distinct. In this case the gradient at the |
| 53 // end point is Infinite. However, this causes issues when |
| 54 // interpolating. As a result, we break down to a simple case of |
| 55 // 0 gradient under these conditions. |
44 | 56 |
45 x1 = std::min(std::max(x1, 0.0), 1.0); | 57 if (p1x > 0) |
46 x2 = std::min(std::max(x2, 0.0), 1.0); | 58 start_gradient_ = p1y / p1x; |
47 x = std::min(std::max(x, 0.0), 1.0); | 59 else if (!p1y && p2x > 0) |
48 | 60 start_gradient_ = p2y / p2x; |
49 // We're just going to do bisection for now (for simplicity), but we could | |
50 // easily do some newton steps if this turns out to be a bottleneck. | |
51 double t = 0.0; | |
52 double step = 1.0; | |
53 for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { | |
54 const double error = eval_bezier(x1, x2, t) - x; | |
55 if (std::abs(error) < kBezierEpsilon) | |
56 break; | |
57 t += error > 0.0 ? -step : step; | |
58 } | |
59 | |
60 // We should have terminated the above loop because we got close to x, not | |
61 // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. | |
62 DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x)); | |
63 | |
64 return t; | |
65 } | |
66 | |
67 } // namespace | |
68 | |
69 CubicBezier::CubicBezier(double x1, double y1, double x2, double y2) | |
70 : x1_(x1), | |
71 y1_(y1), | |
72 x2_(x2), | |
73 y2_(y2) { | |
74 InitGradients(); | |
75 } | |
76 | |
77 CubicBezier::~CubicBezier() { | |
78 } | |
79 | |
80 void CubicBezier::InitGradients() { | |
81 if (x1_ > 0) | |
82 start_gradient_ = y1_ / x1_; | |
83 else if (!y1_ && x2_ > 0) | |
84 start_gradient_ = y2_ / x2_; | |
85 else | 61 else |
86 start_gradient_ = 0; | 62 start_gradient_ = 0; |
87 | 63 |
88 if (x2_ < 1) | 64 if (p2x < 1) |
89 end_gradient_ = (y2_ - 1) / (x2_ - 1); | 65 end_gradient_ = (p2y - 1) / (p2x - 1); |
90 else if (x2_ == 1 && x1_ < 1) | 66 else if (p2x == 1 && p1x < 1) |
91 end_gradient_ = (y1_ - 1) / (x1_ - 1); | 67 end_gradient_ = (p1y - 1) / (p1x - 1); |
92 else | 68 else |
93 end_gradient_ = 0; | 69 end_gradient_ = 0; |
94 } | 70 } |
95 | 71 |
96 double CubicBezier::Solve(double x) const { | 72 void CubicBezier::InitRange(double p1y, double p2y) { |
97 if (x < 0) | 73 range_min_ = 0; |
98 return start_gradient_ * x; | 74 range_max_ = 1; |
99 if (x > 1) | 75 if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1) |
100 return 1.0 + end_gradient_ * (x - 1.0); | |
101 | |
102 return eval_bezier(y1_, y2_, bezier_interp(x1_, x2_, x)); | |
103 } | |
104 | |
105 double CubicBezier::Slope(double x) const { | |
106 double t = bezier_interp(x1_, x2_, x); | |
107 double dx_dt = eval_bezier_derivative(x1_, x2_, t); | |
108 double dy_dt = eval_bezier_derivative(y1_, y2_, t); | |
109 return dy_dt / dx_dt; | |
110 } | |
111 | |
112 void CubicBezier::Range(double* min, double* max) const { | |
113 *min = 0; | |
114 *max = 1; | |
115 if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1) | |
116 return; | 76 return; |
117 | 77 |
118 // Represent the function's derivative in the form at^2 + bt + c. | 78 const double epsilon = kBezierEpsilon; |
| 79 |
| 80 // Represent the function's derivative in the form at^2 + bt + c |
| 81 // as in sampleCurveDerivativeY. |
119 // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros | 82 // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros |
120 // but does not actually give the slope of the curve.) | 83 // but does not actually give the slope of the curve.) |
121 double a = 3 * (y1_ - y2_) + 1; | 84 const double a = 3.0 * ay_; |
122 double b = 2 * (y2_ - 2 * y1_); | 85 const double b = 2.0 * by_; |
123 double c = y1_; | 86 const double c = cy_; |
124 | 87 |
125 // Check if the derivative is constant. | 88 // Check if the derivative is constant. |
126 if (std::abs(a) < kBezierEpsilon && | 89 if (std::abs(a) < epsilon && std::abs(b) < epsilon) |
127 std::abs(b) < kBezierEpsilon) | |
128 return; | 90 return; |
129 | 91 |
130 // Zeros of the function's derivative. | 92 // Zeros of the function's derivative. |
131 double t_1 = 0; | 93 double t1 = 0; |
132 double t_2 = 0; | 94 double t2 = 0; |
133 | 95 |
134 if (std::abs(a) < kBezierEpsilon) { | 96 if (std::abs(a) < epsilon) { |
135 // The function's derivative is linear. | 97 // The function's derivative is linear. |
136 t_1 = -c / b; | 98 t1 = -c / b; |
137 } else { | 99 } else { |
138 // The function's derivative is a quadratic. We find the zeros of this | 100 // The function's derivative is a quadratic. We find the zeros of this |
139 // quadratic using the quadratic formula. | 101 // quadratic using the quadratic formula. |
140 double discriminant = b * b - 4 * a * c; | 102 double discriminant = b * b - 4 * a * c; |
141 if (discriminant < 0) | 103 if (discriminant < 0) |
142 return; | 104 return; |
143 double discriminant_sqrt = sqrt(discriminant); | 105 double discriminant_sqrt = sqrt(discriminant); |
144 t_1 = (-b + discriminant_sqrt) / (2 * a); | 106 t1 = (-b + discriminant_sqrt) / (2 * a); |
145 t_2 = (-b - discriminant_sqrt) / (2 * a); | 107 t2 = (-b - discriminant_sqrt) / (2 * a); |
146 } | 108 } |
147 | 109 |
148 double sol_1 = 0; | 110 double sol1 = 0; |
149 double sol_2 = 0; | 111 double sol2 = 0; |
150 | 112 |
151 if (0 < t_1 && t_1 < 1) | 113 if (0 < t1 && t1 < 1) |
152 sol_1 = eval_bezier(y1_, y2_, t_1); | 114 sol1 = SampleCurveY(t1); |
153 | 115 |
154 if (0 < t_2 && t_2 < 1) | 116 if (0 < t2 && t2 < 1) |
155 sol_2 = eval_bezier(y1_, y2_, t_2); | 117 sol2 = SampleCurveY(t2); |
156 | 118 |
157 *min = std::min(std::min(*min, sol_1), sol_2); | 119 range_min_ = std::min(std::min(range_min_, sol1), sol2); |
158 *max = std::max(std::max(*max, sol_1), sol_2); | 120 range_max_ = std::max(std::max(range_max_, sol1), sol2); |
| 121 } |
| 122 |
| 123 double CubicBezier::SolveCurveX(double x, double epsilon) const { |
| 124 DCHECK_GE(x, 0.0); |
| 125 DCHECK_LE(x, 1.0); |
| 126 |
| 127 double t0; |
| 128 double t1; |
| 129 double t2; |
| 130 double x2; |
| 131 double d2; |
| 132 int i; |
| 133 |
| 134 // First try a few iterations of Newton's method -- normally very fast. |
| 135 for (t2 = x, i = 0; i < 8; i++) { |
| 136 x2 = SampleCurveX(t2) - x; |
| 137 if (fabs(x2) < epsilon) |
| 138 return t2; |
| 139 d2 = SampleCurveDerivativeX(t2); |
| 140 if (fabs(d2) < 1e-6) |
| 141 break; |
| 142 t2 = t2 - x2 / d2; |
| 143 } |
| 144 |
| 145 // Fall back to the bisection method for reliability. |
| 146 t0 = 0.0; |
| 147 t1 = 1.0; |
| 148 t2 = x; |
| 149 |
| 150 while (t0 < t1) { |
| 151 x2 = SampleCurveX(t2); |
| 152 if (fabs(x2 - x) < epsilon) |
| 153 return t2; |
| 154 if (x > x2) |
| 155 t0 = t2; |
| 156 else |
| 157 t1 = t2; |
| 158 t2 = (t1 - t0) * .5 + t0; |
| 159 } |
| 160 |
| 161 // Failure. |
| 162 return t2; |
| 163 } |
| 164 |
| 165 double CubicBezier::Solve(double x) const { |
| 166 return SolveWithEpsilon(x, kBezierEpsilon); |
| 167 } |
| 168 |
| 169 double CubicBezier::Slope(double x) const { |
| 170 return SlopeWithEpsilon(x, kBezierEpsilon); |
159 } | 171 } |
160 | 172 |
161 } // namespace gfx | 173 } // namespace gfx |
OLD | NEW |