| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkPatchUtils.h" | 8 #include "SkPatchUtils.h" |
| 9 | 9 |
| 10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
| (...skipping 10 matching lines...) Expand all Loading... |
| 21 * to compute the next one. | 21 * to compute the next one. |
| 22 * | 22 * |
| 23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can | 23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can |
| 24 * apply again forward differences and get linear function to which we can apply
again forward | 24 * apply again forward differences and get linear function to which we can apply
again forward |
| 25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th | 25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th |
| 26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant | 26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant |
| 27 * difference values. | 27 * difference values. |
| 28 */ | 28 */ |
| 29 | 29 |
| 30 class FwDCubicEvaluator { | 30 class FwDCubicEvaluator { |
| 31 | 31 |
| 32 public: | 32 public: |
| 33 | 33 |
| 34 /** | 34 /** |
| 35 * Receives the 4 control points of the cubic bezier. | 35 * Receives the 4 control points of the cubic bezier. |
| 36 */ | 36 */ |
| 37 | 37 |
| 38 explicit FwDCubicEvaluator(const SkPoint points[4]) | 38 explicit FwDCubicEvaluator(const SkPoint points[4]) |
| 39 : fCoefs(points) { | 39 : fCoefs(points) { |
| 40 memcpy(fPoints, points, 4 * sizeof(SkPoint)); | 40 memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
| 41 | 41 |
| 42 this->restart(1); | 42 this->restart(1); |
| 43 } | 43 } |
| 44 | 44 |
| 45 /** | 45 /** |
| 46 * Restarts the forward differences evaluator to the first value of t = 0. | 46 * Restarts the forward differences evaluator to the first value of t = 0. |
| 47 */ | 47 */ |
| 48 void restart(int divisions) { | 48 void restart(int divisions) { |
| 49 fDivisions = divisions; | 49 fDivisions = divisions; |
| 50 fCurrent = 0; | 50 fCurrent = 0; |
| 51 fMax = fDivisions + 1; | 51 fMax = fDivisions + 1; |
| 52 Sk2s h = Sk2s(1.f / fDivisions); | 52 Sk2s h = Sk2s(1.f / fDivisions); |
| 53 Sk2s h2 = h * h; | 53 Sk2s h2 = h * h; |
| 54 Sk2s h3 = h2 * h; | 54 Sk2s h3 = h2 * h; |
| 55 Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; | 55 Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; |
| 56 fFwDiff[3] = to_point(fwDiff3); | 56 fFwDiff[3] = to_point(fwDiff3); |
| 57 fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); | 57 fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); |
| 58 fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); | 58 fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); |
| 59 fFwDiff[0] = to_point(fCoefs.fD); | 59 fFwDiff[0] = to_point(fCoefs.fD); |
| 60 } | 60 } |
| 61 | 61 |
| 62 /** | 62 /** |
| 63 * Check if the evaluator is still within the range of 0<=t<=1 | 63 * Check if the evaluator is still within the range of 0<=t<=1 |
| 64 */ | 64 */ |
| 65 bool done() const { | 65 bool done() const { |
| 66 return fCurrent > fMax; | 66 return fCurrent > fMax; |
| 67 } | 67 } |
| 68 | 68 |
| 69 /** | 69 /** |
| 70 * Call next to obtain the SkPoint sampled and move to the next one. | 70 * Call next to obtain the SkPoint sampled and move to the next one. |
| 71 */ | 71 */ |
| 72 SkPoint next() { | 72 SkPoint next() { |
| 73 SkPoint point = fFwDiff[0]; | 73 SkPoint point = fFwDiff[0]; |
| 74 fFwDiff[0] += fFwDiff[1]; | 74 fFwDiff[0] += fFwDiff[1]; |
| 75 fFwDiff[1] += fFwDiff[2]; | 75 fFwDiff[1] += fFwDiff[2]; |
| 76 fFwDiff[2] += fFwDiff[3]; | 76 fFwDiff[2] += fFwDiff[3]; |
| 77 fCurrent++; | 77 fCurrent++; |
| 78 return point; | 78 return point; |
| 79 } | 79 } |
| 80 | 80 |
| 81 const SkPoint* getCtrlPoints() const { | 81 const SkPoint* getCtrlPoints() const { |
| 82 return fPoints; | 82 return fPoints; |
| 83 } | 83 } |
| 84 | 84 |
| 85 private: | 85 private: |
| 86 SkCubicCoeff fCoefs; | 86 SkCubicCoeff fCoefs; |
| 87 int fMax, fCurrent, fDivisions; | 87 int fMax, fCurrent, fDivisions; |
| 88 SkPoint fFwDiff[4], fPoints[4]; | 88 SkPoint fFwDiff[4], fPoints[4]; |
| 89 }; | 89 }; |
| 90 | 90 |
| 91 //////////////////////////////////////////////////////////////////////////////// | 91 //////////////////////////////////////////////////////////////////////////////// |
| 92 | 92 |
| 93 // size in pixels of each partition per axis, adjust this knob | 93 // size in pixels of each partition per axis, adjust this knob |
| 94 static const int kPartitionSize = 10; | 94 static const int kPartitionSize = 10; |
| (...skipping 13 matching lines...) Expand all Loading... |
| 108 } | 108 } |
| 109 | 109 |
| 110 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkS
calar c01, | 110 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkS
calar c01, |
| 111 SkScalar c11) { | 111 SkScalar c11) { |
| 112 SkScalar a = c00 * (1.f - tx) + c10 * tx; | 112 SkScalar a = c00 * (1.f - tx) + c10 * tx; |
| 113 SkScalar b = c01 * (1.f - tx) + c11 * tx; | 113 SkScalar b = c01 * (1.f - tx) + c11 * tx; |
| 114 return a * (1.f - ty) + b * ty; | 114 return a * (1.f - ty) + b * ty; |
| 115 } | 115 } |
| 116 | 116 |
| 117 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix*
matrix) { | 117 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix*
matrix) { |
| 118 | 118 |
| 119 // Approximate length of each cubic. | 119 // Approximate length of each cubic. |
| 120 SkPoint pts[kNumPtsCubic]; | 120 SkPoint pts[kNumPtsCubic]; |
| 121 SkPatchUtils::getTopCubic(cubics, pts); | 121 SkPatchUtils::getTopCubic(cubics, pts); |
| 122 matrix->mapPoints(pts, kNumPtsCubic); | 122 matrix->mapPoints(pts, kNumPtsCubic); |
| 123 SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); | 123 SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); |
| 124 | 124 |
| 125 SkPatchUtils::getBottomCubic(cubics, pts); | 125 SkPatchUtils::getBottomCubic(cubics, pts); |
| 126 matrix->mapPoints(pts, kNumPtsCubic); | 126 matrix->mapPoints(pts, kNumPtsCubic); |
| 127 SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); | 127 SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); |
| 128 | 128 |
| 129 SkPatchUtils::getLeftCubic(cubics, pts); | 129 SkPatchUtils::getLeftCubic(cubics, pts); |
| 130 matrix->mapPoints(pts, kNumPtsCubic); | 130 matrix->mapPoints(pts, kNumPtsCubic); |
| 131 SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); | 131 SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); |
| 132 | 132 |
| 133 SkPatchUtils::getRightCubic(cubics, pts); | 133 SkPatchUtils::getRightCubic(cubics, pts); |
| 134 matrix->mapPoints(pts, kNumPtsCubic); | 134 matrix->mapPoints(pts, kNumPtsCubic); |
| 135 SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); | 135 SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); |
| 136 | 136 |
| 137 // Level of detail per axis, based on the larger side between top and bottom
or left and right | 137 // Level of detail per axis, based on the larger side between top and bottom
or left and right |
| 138 int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitio
nSize); | 138 int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitio
nSize); |
| 139 int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitio
nSize); | 139 int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitio
nSize); |
| 140 | 140 |
| 141 return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY)); | 141 return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY)); |
| 142 } | 142 } |
| 143 | 143 |
| 144 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) { | 144 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| 145 points[0] = cubics[kTopP0_CubicCtrlPts]; | 145 points[0] = cubics[kTopP0_CubicCtrlPts]; |
| 146 points[1] = cubics[kTopP1_CubicCtrlPts]; | 146 points[1] = cubics[kTopP1_CubicCtrlPts]; |
| 147 points[2] = cubics[kTopP2_CubicCtrlPts]; | 147 points[2] = cubics[kTopP2_CubicCtrlPts]; |
| 148 points[3] = cubics[kTopP3_CubicCtrlPts]; | 148 points[3] = cubics[kTopP3_CubicCtrlPts]; |
| 149 } | 149 } |
| 150 | 150 |
| (...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 203 | 203 |
| 204 // if colors is not null then create array for colors | 204 // if colors is not null then create array for colors |
| 205 SkPMColor colorsPM[kNumCorners]; | 205 SkPMColor colorsPM[kNumCorners]; |
| 206 if (colors) { | 206 if (colors) { |
| 207 // premultiply colors to avoid color bleeding. | 207 // premultiply colors to avoid color bleeding. |
| 208 for (int i = 0; i < kNumCorners; i++) { | 208 for (int i = 0; i < kNumCorners; i++) { |
| 209 colorsPM[i] = SkPreMultiplyColor(colors[i]); | 209 colorsPM[i] = SkPreMultiplyColor(colors[i]); |
| 210 } | 210 } |
| 211 data->fColors = new uint32_t[data->fVertexCount]; | 211 data->fColors = new uint32_t[data->fVertexCount]; |
| 212 } | 212 } |
| 213 | 213 |
| 214 // if texture coordinates are not null then create array for them | 214 // if texture coordinates are not null then create array for them |
| 215 if (texCoords) { | 215 if (texCoords) { |
| 216 data->fTexCoords = new SkPoint[data->fVertexCount]; | 216 data->fTexCoords = new SkPoint[data->fVertexCount]; |
| 217 } | 217 } |
| 218 | 218 |
| 219 SkPoint pts[kNumPtsCubic]; | 219 SkPoint pts[kNumPtsCubic]; |
| 220 SkPatchUtils::getBottomCubic(cubics, pts); | 220 SkPatchUtils::getBottomCubic(cubics, pts); |
| 221 FwDCubicEvaluator fBottom(pts); | 221 FwDCubicEvaluator fBottom(pts); |
| 222 SkPatchUtils::getTopCubic(cubics, pts); | 222 SkPatchUtils::getTopCubic(cubics, pts); |
| 223 FwDCubicEvaluator fTop(pts); | 223 FwDCubicEvaluator fTop(pts); |
| 224 SkPatchUtils::getLeftCubic(cubics, pts); | 224 SkPatchUtils::getLeftCubic(cubics, pts); |
| 225 FwDCubicEvaluator fLeft(pts); | 225 FwDCubicEvaluator fLeft(pts); |
| 226 SkPatchUtils::getRightCubic(cubics, pts); | 226 SkPatchUtils::getRightCubic(cubics, pts); |
| 227 FwDCubicEvaluator fRight(pts); | 227 FwDCubicEvaluator fRight(pts); |
| 228 | 228 |
| 229 fBottom.restart(lodX); | 229 fBottom.restart(lodX); |
| 230 fTop.restart(lodX); | 230 fTop.restart(lodX); |
| 231 | 231 |
| 232 SkScalar u = 0.0f; | 232 SkScalar u = 0.0f; |
| 233 int stride = lodY + 1; | 233 int stride = lodY + 1; |
| 234 for (int x = 0; x <= lodX; x++) { | 234 for (int x = 0; x <= lodX; x++) { |
| 235 SkPoint bottom = fBottom.next(), top = fTop.next(); | 235 SkPoint bottom = fBottom.next(), top = fTop.next(); |
| 236 fLeft.restart(lodY); | 236 fLeft.restart(lodY); |
| 237 fRight.restart(lodY); | 237 fRight.restart(lodY); |
| 238 SkScalar v = 0.f; | 238 SkScalar v = 0.f; |
| 239 for (int y = 0; y <= lodY; y++) { | 239 for (int y = 0; y <= lodY; y++) { |
| 240 int dataIndex = x * (lodY + 1) + y; | 240 int dataIndex = x * (lodY + 1) + y; |
| 241 | 241 |
| 242 SkPoint left = fLeft.next(), right = fRight.next(); | 242 SkPoint left = fLeft.next(), right = fRight.next(); |
| 243 | 243 |
| 244 SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), | 244 SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
| 245 (1.0f - v) * top.y() + v * bottom.y()); | 245 (1.0f - v) * top.y() + v * bottom.y()); |
| 246 SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), | 246 SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
| 247 (1.0f - u) * left.y() + u * right.y()); | 247 (1.0f - u) * left.y() + u * right.y()); |
| 248 SkPoint s2 = SkPoint::Make( | 248 SkPoint s2 = SkPoint::Make( |
| 249 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].x() | 249 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].x() |
| 250 + u * fTop.getCtrlPoints()[
3].x()) | 250 + u * fTop.getCtrlPoints()[
3].x()) |
| 251 + v * ((1.0f - u) * fBottom.getCtrlPoints
()[0].x() | 251 + v * ((1.0f - u) * fBottom.getCtrlPoints
()[0].x() |
| 252 + u * fBottom.getCtrlPoints()[3].x
()), | 252 + u * fBottom.getCtrlPoints()[3].x
()), |
| 253 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].y() | 253 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo
ints()[0].y() |
| 254 + u * fTop.getCtrlPoints()[
3].y()) | 254 + u * fTop.getCtrlPoints()[
3].y()) |
| 255 + v * ((1.0f - u) * fBottom.getCtrlPoints
()[0].y() | 255 + v * ((1.0f - u) * fBottom.getCtrlPoints
()[0].y() |
| 256 + u * fBottom.getCtrlPoints()[3].y
())); | 256 + u * fBottom.getCtrlPoints()[3].y
())); |
| 257 data->fPoints[dataIndex] = s0 + s1 - s2; | 257 data->fPoints[dataIndex] = s0 + s1 - s2; |
| 258 | 258 |
| 259 if (colors) { | 259 if (colors) { |
| 260 uint8_t a = uint8_t(bilerp(u, v, | 260 uint8_t a = uint8_t(bilerp(u, v, |
| 261 SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner
])), | 261 SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner
])), |
| 262 SkScalar(SkColorGetA(colorsPM[kTopRight_Corne
r])), | 262 SkScalar(SkColorGetA(colorsPM[kTopRight_Corne
r])), |
| 263 SkScalar(SkColorGetA(colorsPM[kBottomLeft_Cor
ner])), | 263 SkScalar(SkColorGetA(colorsPM[kBottomLeft_Cor
ner])), |
| 264 SkScalar(SkColorGetA(colorsPM[kBottomRight_Co
rner])))); | 264 SkScalar(SkColorGetA(colorsPM[kBottomRight_Co
rner])))); |
| 265 uint8_t r = uint8_t(bilerp(u, v, | 265 uint8_t r = uint8_t(bilerp(u, v, |
| 266 SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner
])), | 266 SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner
])), |
| 267 SkScalar(SkColorGetR(colorsPM[kTopRight_Corne
r])), | 267 SkScalar(SkColorGetR(colorsPM[kTopRight_Corne
r])), |
| 268 SkScalar(SkColorGetR(colorsPM[kBottomLeft_Cor
ner])), | 268 SkScalar(SkColorGetR(colorsPM[kBottomLeft_Cor
ner])), |
| 269 SkScalar(SkColorGetR(colorsPM[kBottomRight_Co
rner])))); | 269 SkScalar(SkColorGetR(colorsPM[kBottomRight_Co
rner])))); |
| 270 uint8_t g = uint8_t(bilerp(u, v, | 270 uint8_t g = uint8_t(bilerp(u, v, |
| 271 SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner
])), | 271 SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner
])), |
| 272 SkScalar(SkColorGetG(colorsPM[kTopRight_Corne
r])), | 272 SkScalar(SkColorGetG(colorsPM[kTopRight_Corne
r])), |
| 273 SkScalar(SkColorGetG(colorsPM[kBottomLeft_Cor
ner])), | 273 SkScalar(SkColorGetG(colorsPM[kBottomLeft_Cor
ner])), |
| 274 SkScalar(SkColorGetG(colorsPM[kBottomRight_Co
rner])))); | 274 SkScalar(SkColorGetG(colorsPM[kBottomRight_Co
rner])))); |
| 275 uint8_t b = uint8_t(bilerp(u, v, | 275 uint8_t b = uint8_t(bilerp(u, v, |
| 276 SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner
])), | 276 SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner
])), |
| 277 SkScalar(SkColorGetB(colorsPM[kTopRight_Corne
r])), | 277 SkScalar(SkColorGetB(colorsPM[kTopRight_Corne
r])), |
| 278 SkScalar(SkColorGetB(colorsPM[kBottomLeft_Cor
ner])), | 278 SkScalar(SkColorGetB(colorsPM[kBottomLeft_Cor
ner])), |
| 279 SkScalar(SkColorGetB(colorsPM[kBottomRight_Co
rner])))); | 279 SkScalar(SkColorGetB(colorsPM[kBottomRight_Co
rner])))); |
| 280 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); | 280 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
| 281 } | 281 } |
| 282 | 282 |
| 283 if (texCoords) { | 283 if (texCoords) { |
| 284 data->fTexCoords[dataIndex] = SkPoint::Make( | 284 data->fTexCoords[dataIndex] = SkPoint::Make( |
| 285 bilerp(u, v, texCoords[kTopLeft_Corn
er].x(), | 285 bilerp(u, v, texCoords[kTopLeft_Corn
er].x(), |
| 286 texCoords[kTopRight_Corner].x
(), | 286 texCoords[kTopRight_Corner].x
(), |
| 287 texCoords[kBottomLeft_Corner]
.x(), | 287 texCoords[kBottomLeft_Corner]
.x(), |
| 288 texCoords[kBottomRight_Corner
].x()), | 288 texCoords[kBottomRight_Corner
].x()), |
| 289 bilerp(u, v, texCoords[kTopLeft_Corn
er].y(), | 289 bilerp(u, v, texCoords[kTopLeft_Corn
er].y(), |
| 290 texCoords[kTopRight_Corner].y
(), | 290 texCoords[kTopRight_Corner].y
(), |
| 291 texCoords[kBottomLeft_Corner]
.y(), | 291 texCoords[kBottomLeft_Corner]
.y(), |
| 292 texCoords[kBottomRight_Corner
].y())); | 292 texCoords[kBottomRight_Corner
].y())); |
| 293 | 293 |
| 294 } | 294 } |
| 295 | 295 |
| 296 if(x < lodX && y < lodY) { | 296 if(x < lodX && y < lodY) { |
| 297 int i = 6 * (x * lodY + y); | 297 int i = 6 * (x * lodY + y); |
| 298 data->fIndices[i] = x * stride + y; | 298 data->fIndices[i] = x * stride + y; |
| 299 data->fIndices[i + 1] = x * stride + 1 + y; | 299 data->fIndices[i + 1] = x * stride + 1 + y; |
| 300 data->fIndices[i + 2] = (x + 1) * stride + 1 + y; | 300 data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
| 301 data->fIndices[i + 3] = data->fIndices[i]; | 301 data->fIndices[i + 3] = data->fIndices[i]; |
| 302 data->fIndices[i + 4] = data->fIndices[i + 2]; | 302 data->fIndices[i + 4] = data->fIndices[i + 2]; |
| 303 data->fIndices[i + 5] = (x + 1) * stride + y; | 303 data->fIndices[i + 5] = (x + 1) * stride + y; |
| 304 } | 304 } |
| 305 v = SkScalarClampMax(v + 1.f / lodY, 1); | 305 v = SkScalarClampMax(v + 1.f / lodY, 1); |
| 306 } | 306 } |
| 307 u = SkScalarClampMax(u + 1.f / lodX, 1); | 307 u = SkScalarClampMax(u + 1.f / lodX, 1); |
| 308 } | 308 } |
| 309 return true; | 309 return true; |
| 310 | 310 |
| 311 } | 311 } |
| OLD | NEW |