Index: third_party/protobuf/java/src/main/java/com/google/protobuf/RopeByteString.java |
diff --git a/third_party/protobuf/java/src/main/java/com/google/protobuf/RopeByteString.java b/third_party/protobuf/java/src/main/java/com/google/protobuf/RopeByteString.java |
new file mode 100644 |
index 0000000000000000000000000000000000000000..6e8eb724c65bc44bf197eed3977fcb29499d8d77 |
--- /dev/null |
+++ b/third_party/protobuf/java/src/main/java/com/google/protobuf/RopeByteString.java |
@@ -0,0 +1,888 @@ |
+// Protocol Buffers - Google's data interchange format |
+// Copyright 2008 Google Inc. All rights reserved. |
+// https://developers.google.com/protocol-buffers/ |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following disclaimer |
+// in the documentation and/or other materials provided with the |
+// distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived from |
+// this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+package com.google.protobuf; |
+ |
+import java.io.ByteArrayInputStream; |
+import java.io.IOException; |
+import java.io.InputStream; |
+import java.io.InvalidObjectException; |
+import java.io.ObjectInputStream; |
+import java.io.OutputStream; |
+import java.nio.ByteBuffer; |
+import java.nio.charset.Charset; |
+import java.util.ArrayList; |
+import java.util.Arrays; |
+import java.util.Iterator; |
+import java.util.List; |
+import java.util.NoSuchElementException; |
+import java.util.Stack; |
+ |
+/** |
+ * Class to represent {@code ByteStrings} formed by concatenation of other |
+ * ByteStrings, without copying the data in the pieces. The concatenation is |
+ * represented as a tree whose leaf nodes are each a {@link LiteralByteString}. |
+ * |
+ * <p>Most of the operation here is inspired by the now-famous paper <a |
+ * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf"> |
+ * BAP95 </a> Ropes: an Alternative to Strings hans-j. boehm, russ atkinson and |
+ * michael plass |
+ * |
+ * <p>The algorithms described in the paper have been implemented for character |
+ * strings in {@code com.google.common.string.Rope} and in the c++ class {@code |
+ * cord.cc}. |
+ * |
+ * <p>Fundamentally the Rope algorithm represents the collection of pieces as a |
+ * binary tree. BAP95 uses a Fibonacci bound relating depth to a minimum |
+ * sequence length, sequences that are too short relative to their depth cause a |
+ * tree rebalance. More precisely, a tree of depth d is "balanced" in the |
+ * terminology of BAP95 if its length is at least F(d+2), where F(n) is the |
+ * n-the Fibonacci number. Thus for depths 0, 1, 2, 3, 4, 5,... we have minimum |
+ * lengths 1, 2, 3, 5, 8, 13,... |
+ * |
+ * @author carlanton@google.com (Carl Haverl) |
+ */ |
+final class RopeByteString extends ByteString { |
+ |
+ /** |
+ * BAP95. Let Fn be the nth Fibonacci number. A {@link RopeByteString} of |
+ * depth n is "balanced", i.e flat enough, if its length is at least Fn+2, |
+ * e.g. a "balanced" {@link RopeByteString} of depth 1 must have length at |
+ * least 2, of depth 4 must have length >= 8, etc. |
+ * |
+ * <p>There's nothing special about using the Fibonacci numbers for this, but |
+ * they are a reasonable sequence for encapsulating the idea that we are OK |
+ * with longer strings being encoded in deeper binary trees. |
+ * |
+ * <p>For 32-bit integers, this array has length 46. |
+ */ |
+ private static final int[] minLengthByDepth; |
+ |
+ static { |
+ // Dynamically generate the list of Fibonacci numbers the first time this |
+ // class is accessed. |
+ List<Integer> numbers = new ArrayList<Integer>(); |
+ |
+ // we skip the first Fibonacci number (1). So instead of: 1 1 2 3 5 8 ... |
+ // we have: 1 2 3 5 8 ... |
+ int f1 = 1; |
+ int f2 = 1; |
+ |
+ // get all the values until we roll over. |
+ while (f2 > 0) { |
+ numbers.add(f2); |
+ int temp = f1 + f2; |
+ f1 = f2; |
+ f2 = temp; |
+ } |
+ |
+ // we include this here so that we can index this array to [x + 1] in the |
+ // loops below. |
+ numbers.add(Integer.MAX_VALUE); |
+ minLengthByDepth = new int[numbers.size()]; |
+ for (int i = 0; i < minLengthByDepth.length; i++) { |
+ // unbox all the values |
+ minLengthByDepth[i] = numbers.get(i); |
+ } |
+ } |
+ |
+ private final int totalLength; |
+ private final ByteString left; |
+ private final ByteString right; |
+ private final int leftLength; |
+ private final int treeDepth; |
+ |
+ /** |
+ * Create a new RopeByteString, which can be thought of as a new tree node, by |
+ * recording references to the two given strings. |
+ * |
+ * @param left string on the left of this node, should have {@code size() > |
+ * 0} |
+ * @param right string on the right of this node, should have {@code size() > |
+ * 0} |
+ */ |
+ private RopeByteString(ByteString left, ByteString right) { |
+ this.left = left; |
+ this.right = right; |
+ leftLength = left.size(); |
+ totalLength = leftLength + right.size(); |
+ treeDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1; |
+ } |
+ |
+ /** |
+ * Concatenate the given strings while performing various optimizations to |
+ * slow the growth rate of tree depth and tree node count. The result is |
+ * either a {@link LiteralByteString} or a {@link RopeByteString} |
+ * depending on which optimizations, if any, were applied. |
+ * |
+ * <p>Small pieces of length less than {@link |
+ * ByteString#CONCATENATE_BY_COPY_SIZE} may be copied by value here, as in |
+ * BAP95. Large pieces are referenced without copy. |
+ * |
+ * @param left string on the left |
+ * @param right string on the right |
+ * @return concatenation representing the same sequence as the given strings |
+ */ |
+ static ByteString concatenate(ByteString left, ByteString right) { |
+ if (right.size() == 0) { |
+ return left; |
+ } |
+ |
+ if (left.size() == 0) { |
+ return right; |
+ } |
+ |
+ final int newLength = left.size() + right.size(); |
+ if (newLength < ByteString.CONCATENATE_BY_COPY_SIZE) { |
+ // Optimization from BAP95: For short (leaves in paper, but just short |
+ // here) total length, do a copy of data to a new leaf. |
+ return concatenateBytes(left, right); |
+ } |
+ |
+ if (left instanceof RopeByteString) { |
+ final RopeByteString leftRope = (RopeByteString) left; |
+ if (leftRope.right.size() + right.size() < CONCATENATE_BY_COPY_SIZE) { |
+ // Optimization from BAP95: As an optimization of the case where the |
+ // ByteString is constructed by repeated concatenate, recognize the case |
+ // where a short string is concatenated to a left-hand node whose |
+ // right-hand branch is short. In the paper this applies to leaves, but |
+ // we just look at the length here. This has the advantage of shedding |
+ // references to unneeded data when substrings have been taken. |
+ // |
+ // When we recognize this case, we do a copy of the data and create a |
+ // new parent node so that the depth of the result is the same as the |
+ // given left tree. |
+ ByteString newRight = concatenateBytes(leftRope.right, right); |
+ return new RopeByteString(leftRope.left, newRight); |
+ } |
+ |
+ if (leftRope.left.getTreeDepth() > leftRope.right.getTreeDepth() |
+ && leftRope.getTreeDepth() > right.getTreeDepth()) { |
+ // Typically for concatenate-built strings the left-side is deeper than |
+ // the right. This is our final attempt to concatenate without |
+ // increasing the tree depth. We'll redo the the node on the RHS. This |
+ // is yet another optimization for building the string by repeatedly |
+ // concatenating on the right. |
+ ByteString newRight = new RopeByteString(leftRope.right, right); |
+ return new RopeByteString(leftRope.left, newRight); |
+ } |
+ } |
+ |
+ // Fine, we'll add a node and increase the tree depth--unless we rebalance ;^) |
+ int newDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1; |
+ if (newLength >= minLengthByDepth[newDepth]) { |
+ // The tree is shallow enough, so don't rebalance |
+ return new RopeByteString(left, right); |
+ } |
+ |
+ return new Balancer().balance(left, right); |
+ } |
+ |
+ /** |
+ * Concatenates two strings by copying data values. This is called in a few |
+ * cases in order to reduce the growth of the number of tree nodes. |
+ * |
+ * @param left string on the left |
+ * @param right string on the right |
+ * @return string formed by copying data bytes |
+ */ |
+ private static LiteralByteString concatenateBytes(ByteString left, |
+ ByteString right) { |
+ int leftSize = left.size(); |
+ int rightSize = right.size(); |
+ byte[] bytes = new byte[leftSize + rightSize]; |
+ left.copyTo(bytes, 0, 0, leftSize); |
+ right.copyTo(bytes, 0, leftSize, rightSize); |
+ return new LiteralByteString(bytes); // Constructor wraps bytes |
+ } |
+ |
+ /** |
+ * Create a new RopeByteString for testing only while bypassing all the |
+ * defenses of {@link #concatenate(ByteString, ByteString)}. This allows |
+ * testing trees of specific structure. We are also able to insert empty |
+ * leaves, though these are dis-allowed, so that we can make sure the |
+ * implementation can withstand their presence. |
+ * |
+ * @param left string on the left of this node |
+ * @param right string on the right of this node |
+ * @return an unsafe instance for testing only |
+ */ |
+ static RopeByteString newInstanceForTest(ByteString left, ByteString right) { |
+ return new RopeByteString(left, right); |
+ } |
+ |
+ /** |
+ * Gets the byte at the given index. |
+ * Throws {@link ArrayIndexOutOfBoundsException} for backwards-compatibility |
+ * reasons although it would more properly be {@link |
+ * IndexOutOfBoundsException}. |
+ * |
+ * @param index index of byte |
+ * @return the value |
+ * @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size |
+ */ |
+ @Override |
+ public byte byteAt(int index) { |
+ checkIndex(index, totalLength); |
+ |
+ // Find the relevant piece by recursive descent |
+ if (index < leftLength) { |
+ return left.byteAt(index); |
+ } |
+ |
+ return right.byteAt(index - leftLength); |
+ } |
+ |
+ @Override |
+ public int size() { |
+ return totalLength; |
+ } |
+ |
+ // ================================================================= |
+ // Pieces |
+ |
+ @Override |
+ protected int getTreeDepth() { |
+ return treeDepth; |
+ } |
+ |
+ /** |
+ * Determines if the tree is balanced according to BAP95, which means the tree |
+ * is flat-enough with respect to the bounds. Note that this definition of |
+ * balanced is one where sub-trees of balanced trees are not necessarily |
+ * balanced. |
+ * |
+ * @return true if the tree is balanced |
+ */ |
+ @Override |
+ protected boolean isBalanced() { |
+ return totalLength >= minLengthByDepth[treeDepth]; |
+ } |
+ |
+ /** |
+ * Takes a substring of this one. This involves recursive descent along the |
+ * left and right edges of the substring, and referencing any wholly contained |
+ * segments in between. Any leaf nodes entirely uninvolved in the substring |
+ * will not be referenced by the substring. |
+ * |
+ * <p>Substrings of {@code length < 2} should result in at most a single |
+ * recursive call chain, terminating at a leaf node. Thus the result will be a |
+ * {@link LiteralByteString}. {@link #RopeByteString(ByteString, |
+ * ByteString)}. |
+ * |
+ * @param beginIndex start at this index |
+ * @param endIndex the last character is the one before this index |
+ * @return substring leaf node or tree |
+ */ |
+ @Override |
+ public ByteString substring(int beginIndex, int endIndex) { |
+ final int length = checkRange(beginIndex, endIndex, totalLength); |
+ |
+ if (length == 0) { |
+ // Empty substring |
+ return ByteString.EMPTY; |
+ } |
+ |
+ if (length == totalLength) { |
+ // The whole string |
+ return this; |
+ } |
+ |
+ // Proper substring |
+ if (endIndex <= leftLength) { |
+ // Substring on the left |
+ return left.substring(beginIndex, endIndex); |
+ } |
+ |
+ if (beginIndex >= leftLength) { |
+ // Substring on the right |
+ return right.substring(beginIndex - leftLength, endIndex - leftLength); |
+ } |
+ |
+ // Split substring |
+ ByteString leftSub = left.substring(beginIndex); |
+ ByteString rightSub = right.substring(0, endIndex - leftLength); |
+ // Intentionally not rebalancing, since in many cases these two |
+ // substrings will already be less deep than the top-level |
+ // RopeByteString we're taking a substring of. |
+ return new RopeByteString(leftSub, rightSub); |
+ } |
+ |
+ // ================================================================= |
+ // ByteString -> byte[] |
+ |
+ @Override |
+ protected void copyToInternal(byte[] target, int sourceOffset, |
+ int targetOffset, int numberToCopy) { |
+ if (sourceOffset + numberToCopy <= leftLength) { |
+ left.copyToInternal(target, sourceOffset, targetOffset, numberToCopy); |
+ } else if (sourceOffset >= leftLength) { |
+ right.copyToInternal(target, sourceOffset - leftLength, targetOffset, |
+ numberToCopy); |
+ } else { |
+ int leftLength = this.leftLength - sourceOffset; |
+ left.copyToInternal(target, sourceOffset, targetOffset, leftLength); |
+ right.copyToInternal(target, 0, targetOffset + leftLength, |
+ numberToCopy - leftLength); |
+ } |
+ } |
+ |
+ @Override |
+ public void copyTo(ByteBuffer target) { |
+ left.copyTo(target); |
+ right.copyTo(target); |
+ } |
+ |
+ @Override |
+ public ByteBuffer asReadOnlyByteBuffer() { |
+ ByteBuffer byteBuffer = ByteBuffer.wrap(toByteArray()); |
+ return byteBuffer.asReadOnlyBuffer(); |
+ } |
+ |
+ @Override |
+ public List<ByteBuffer> asReadOnlyByteBufferList() { |
+ // Walk through the list of LiteralByteString's that make up this |
+ // rope, and add each one as a read-only ByteBuffer. |
+ List<ByteBuffer> result = new ArrayList<ByteBuffer>(); |
+ PieceIterator pieces = new PieceIterator(this); |
+ while (pieces.hasNext()) { |
+ LeafByteString byteString = pieces.next(); |
+ result.add(byteString.asReadOnlyByteBuffer()); |
+ } |
+ return result; |
+ } |
+ |
+ @Override |
+ public void writeTo(OutputStream outputStream) throws IOException { |
+ left.writeTo(outputStream); |
+ right.writeTo(outputStream); |
+ } |
+ |
+ @Override |
+ void writeToInternal(OutputStream out, int sourceOffset, |
+ int numberToWrite) throws IOException { |
+ if (sourceOffset + numberToWrite <= leftLength) { |
+ left.writeToInternal(out, sourceOffset, numberToWrite); |
+ } else if (sourceOffset >= leftLength) { |
+ right.writeToInternal(out, sourceOffset - leftLength, numberToWrite); |
+ } else { |
+ int numberToWriteInLeft = leftLength - sourceOffset; |
+ left.writeToInternal(out, sourceOffset, numberToWriteInLeft); |
+ right.writeToInternal(out, 0, numberToWrite - numberToWriteInLeft); |
+ } |
+ } |
+ |
+ @Override |
+ protected String toStringInternal(Charset charset) { |
+ return new String(toByteArray(), charset); |
+ } |
+ |
+ // ================================================================= |
+ // UTF-8 decoding |
+ |
+ @Override |
+ public boolean isValidUtf8() { |
+ int leftPartial = left.partialIsValidUtf8(Utf8.COMPLETE, 0, leftLength); |
+ int state = right.partialIsValidUtf8(leftPartial, 0, right.size()); |
+ return state == Utf8.COMPLETE; |
+ } |
+ |
+ @Override |
+ protected int partialIsValidUtf8(int state, int offset, int length) { |
+ int toIndex = offset + length; |
+ if (toIndex <= leftLength) { |
+ return left.partialIsValidUtf8(state, offset, length); |
+ } else if (offset >= leftLength) { |
+ return right.partialIsValidUtf8(state, offset - leftLength, length); |
+ } else { |
+ int leftLength = this.leftLength - offset; |
+ int leftPartial = left.partialIsValidUtf8(state, offset, leftLength); |
+ return right.partialIsValidUtf8(leftPartial, 0, length - leftLength); |
+ } |
+ } |
+ |
+ // ================================================================= |
+ // equals() and hashCode() |
+ |
+ @Override |
+ public boolean equals(Object other) { |
+ if (other == this) { |
+ return true; |
+ } |
+ if (!(other instanceof ByteString)) { |
+ return false; |
+ } |
+ |
+ ByteString otherByteString = (ByteString) other; |
+ if (totalLength != otherByteString.size()) { |
+ return false; |
+ } |
+ if (totalLength == 0) { |
+ return true; |
+ } |
+ |
+ // You don't really want to be calling equals on long strings, but since |
+ // we cache the hashCode, we effectively cache inequality. We use the cached |
+ // hashCode if it's already computed. It's arguable we should compute the |
+ // hashCode here, and if we're going to be testing a bunch of byteStrings, |
+ // it might even make sense. |
+ int thisHash = peekCachedHashCode(); |
+ int thatHash = otherByteString.peekCachedHashCode(); |
+ if (thisHash != 0 && thatHash != 0 && thisHash != thatHash) { |
+ return false; |
+ } |
+ |
+ return equalsFragments(otherByteString); |
+ } |
+ |
+ /** |
+ * Determines if this string is equal to another of the same length by |
+ * iterating over the leaf nodes. On each step of the iteration, the |
+ * overlapping segments of the leaves are compared. |
+ * |
+ * @param other string of the same length as this one |
+ * @return true if the values of this string equals the value of the given |
+ * one |
+ */ |
+ private boolean equalsFragments(ByteString other) { |
+ int thisOffset = 0; |
+ Iterator<LeafByteString> thisIter = new PieceIterator(this); |
+ LeafByteString thisString = thisIter.next(); |
+ |
+ int thatOffset = 0; |
+ Iterator<LeafByteString> thatIter = new PieceIterator(other); |
+ LeafByteString thatString = thatIter.next(); |
+ |
+ int pos = 0; |
+ while (true) { |
+ int thisRemaining = thisString.size() - thisOffset; |
+ int thatRemaining = thatString.size() - thatOffset; |
+ int bytesToCompare = Math.min(thisRemaining, thatRemaining); |
+ |
+ // At least one of the offsets will be zero |
+ boolean stillEqual = (thisOffset == 0) |
+ ? thisString.equalsRange(thatString, thatOffset, bytesToCompare) |
+ : thatString.equalsRange(thisString, thisOffset, bytesToCompare); |
+ if (!stillEqual) { |
+ return false; |
+ } |
+ |
+ pos += bytesToCompare; |
+ if (pos >= totalLength) { |
+ if (pos == totalLength) { |
+ return true; |
+ } |
+ throw new IllegalStateException(); |
+ } |
+ // We always get to the end of at least one of the pieces |
+ if (bytesToCompare == thisRemaining) { // If reached end of this |
+ thisOffset = 0; |
+ thisString = thisIter.next(); |
+ } else { |
+ thisOffset += bytesToCompare; |
+ } |
+ if (bytesToCompare == thatRemaining) { // If reached end of that |
+ thatOffset = 0; |
+ thatString = thatIter.next(); |
+ } else { |
+ thatOffset += bytesToCompare; |
+ } |
+ } |
+ } |
+ |
+ @Override |
+ protected int partialHash(int h, int offset, int length) { |
+ int toIndex = offset + length; |
+ if (toIndex <= leftLength) { |
+ return left.partialHash(h, offset, length); |
+ } else if (offset >= leftLength) { |
+ return right.partialHash(h, offset - leftLength, length); |
+ } else { |
+ int leftLength = this.leftLength - offset; |
+ int leftPartial = left.partialHash(h, offset, leftLength); |
+ return right.partialHash(leftPartial, 0, length - leftLength); |
+ } |
+ } |
+ |
+ // ================================================================= |
+ // Input stream |
+ |
+ @Override |
+ public CodedInputStream newCodedInput() { |
+ return CodedInputStream.newInstance(new RopeInputStream()); |
+ } |
+ |
+ @Override |
+ public InputStream newInput() { |
+ return new RopeInputStream(); |
+ } |
+ |
+ /** |
+ * This class implements the balancing algorithm of BAP95. In the paper the |
+ * authors use an array to keep track of pieces, while here we use a stack. |
+ * The tree is balanced by traversing subtrees in left to right order, and the |
+ * stack always contains the part of the string we've traversed so far. |
+ * |
+ * <p>One surprising aspect of the algorithm is the result of balancing is not |
+ * necessarily balanced, though it is nearly balanced. For details, see |
+ * BAP95. |
+ */ |
+ private static class Balancer { |
+ // Stack containing the part of the string, starting from the left, that |
+ // we've already traversed. The final string should be the equivalent of |
+ // concatenating the strings on the stack from bottom to top. |
+ private final Stack<ByteString> prefixesStack = new Stack<ByteString>(); |
+ |
+ private ByteString balance(ByteString left, ByteString right) { |
+ doBalance(left); |
+ doBalance(right); |
+ |
+ // Sweep stack to gather the result |
+ ByteString partialString = prefixesStack.pop(); |
+ while (!prefixesStack.isEmpty()) { |
+ ByteString newLeft = prefixesStack.pop(); |
+ partialString = new RopeByteString(newLeft, partialString); |
+ } |
+ // We should end up with a RopeByteString since at a minimum we will |
+ // create one from concatenating left and right |
+ return partialString; |
+ } |
+ |
+ private void doBalance(ByteString root) { |
+ // BAP95: Insert balanced subtrees whole. This means the result might not |
+ // be balanced, leading to repeated rebalancings on concatenate. However, |
+ // these rebalancings are shallow due to ignoring balanced subtrees, and |
+ // relatively few calls to insert() result. |
+ if (root.isBalanced()) { |
+ insert(root); |
+ } else if (root instanceof RopeByteString) { |
+ RopeByteString rbs = (RopeByteString) root; |
+ doBalance(rbs.left); |
+ doBalance(rbs.right); |
+ } else { |
+ throw new IllegalArgumentException( |
+ "Has a new type of ByteString been created? Found " + |
+ root.getClass()); |
+ } |
+ } |
+ |
+ /** |
+ * Push a string on the balance stack (BAP95). BAP95 uses an array and |
+ * calls the elements in the array 'bins'. We instead use a stack, so the |
+ * 'bins' of lengths are represented by differences between the elements of |
+ * minLengthByDepth. |
+ * |
+ * <p>If the length bin for our string, and all shorter length bins, are |
+ * empty, we just push it on the stack. Otherwise, we need to start |
+ * concatenating, putting the given string in the "middle" and continuing |
+ * until we land in an empty length bin that matches the length of our |
+ * concatenation. |
+ * |
+ * @param byteString string to place on the balance stack |
+ */ |
+ private void insert(ByteString byteString) { |
+ int depthBin = getDepthBinForLength(byteString.size()); |
+ int binEnd = minLengthByDepth[depthBin + 1]; |
+ |
+ // BAP95: Concatenate all trees occupying bins representing the length of |
+ // our new piece or of shorter pieces, to the extent that is possible. |
+ // The goal is to clear the bin which our piece belongs in, but that may |
+ // not be entirely possible if there aren't enough longer bins occupied. |
+ if (prefixesStack.isEmpty() || prefixesStack.peek().size() >= binEnd) { |
+ prefixesStack.push(byteString); |
+ } else { |
+ int binStart = minLengthByDepth[depthBin]; |
+ |
+ // Concatenate the subtrees of shorter length |
+ ByteString newTree = prefixesStack.pop(); |
+ while (!prefixesStack.isEmpty() |
+ && prefixesStack.peek().size() < binStart) { |
+ ByteString left = prefixesStack.pop(); |
+ newTree = new RopeByteString(left, newTree); |
+ } |
+ |
+ // Concatenate the given string |
+ newTree = new RopeByteString(newTree, byteString); |
+ |
+ // Continue concatenating until we land in an empty bin |
+ while (!prefixesStack.isEmpty()) { |
+ depthBin = getDepthBinForLength(newTree.size()); |
+ binEnd = minLengthByDepth[depthBin + 1]; |
+ if (prefixesStack.peek().size() < binEnd) { |
+ ByteString left = prefixesStack.pop(); |
+ newTree = new RopeByteString(left, newTree); |
+ } else { |
+ break; |
+ } |
+ } |
+ prefixesStack.push(newTree); |
+ } |
+ } |
+ |
+ private int getDepthBinForLength(int length) { |
+ int depth = Arrays.binarySearch(minLengthByDepth, length); |
+ if (depth < 0) { |
+ // It wasn't an exact match, so convert to the index of the containing |
+ // fragment, which is one less even than the insertion point. |
+ int insertionPoint = -(depth + 1); |
+ depth = insertionPoint - 1; |
+ } |
+ |
+ return depth; |
+ } |
+ } |
+ |
+ /** |
+ * This class is a continuable tree traversal, which keeps the state |
+ * information which would exist on the stack in a recursive traversal instead |
+ * on a stack of "Bread Crumbs". The maximum depth of the stack in this |
+ * iterator is the same as the depth of the tree being traversed. |
+ * |
+ * <p>This iterator is used to implement |
+ * {@link RopeByteString#equalsFragments(ByteString)}. |
+ */ |
+ private static class PieceIterator implements Iterator<LeafByteString> { |
+ |
+ private final Stack<RopeByteString> breadCrumbs = |
+ new Stack<RopeByteString>(); |
+ private LeafByteString next; |
+ |
+ private PieceIterator(ByteString root) { |
+ next = getLeafByLeft(root); |
+ } |
+ |
+ private LeafByteString getLeafByLeft(ByteString root) { |
+ ByteString pos = root; |
+ while (pos instanceof RopeByteString) { |
+ RopeByteString rbs = (RopeByteString) pos; |
+ breadCrumbs.push(rbs); |
+ pos = rbs.left; |
+ } |
+ return (LeafByteString) pos; |
+ } |
+ |
+ private LeafByteString getNextNonEmptyLeaf() { |
+ while (true) { |
+ // Almost always, we go through this loop exactly once. However, if |
+ // we discover an empty string in the rope, we toss it and try again. |
+ if (breadCrumbs.isEmpty()) { |
+ return null; |
+ } else { |
+ LeafByteString result = getLeafByLeft(breadCrumbs.pop().right); |
+ if (!result.isEmpty()) { |
+ return result; |
+ } |
+ } |
+ } |
+ } |
+ |
+ @Override |
+ public boolean hasNext() { |
+ return next != null; |
+ } |
+ |
+ /** |
+ * Returns the next item and advances one {@code LiteralByteString}. |
+ * |
+ * @return next non-empty LiteralByteString or {@code null} |
+ */ |
+ @Override |
+ public LeafByteString next() { |
+ if (next == null) { |
+ throw new NoSuchElementException(); |
+ } |
+ LeafByteString result = next; |
+ next = getNextNonEmptyLeaf(); |
+ return result; |
+ } |
+ |
+ @Override |
+ public void remove() { |
+ throw new UnsupportedOperationException(); |
+ } |
+ } |
+ |
+ // ================================================================= |
+ // Serializable |
+ |
+ private static final long serialVersionUID = 1L; |
+ |
+ Object writeReplace() { |
+ return new LiteralByteString(toByteArray()); |
+ } |
+ |
+ private void readObject(@SuppressWarnings("unused") ObjectInputStream in) throws IOException { |
+ throw new InvalidObjectException( |
+ "RopeByteStream instances are not to be serialized directly"); |
+ } |
+ |
+ /** |
+ * This class is the {@link RopeByteString} equivalent for |
+ * {@link ByteArrayInputStream}. |
+ */ |
+ private class RopeInputStream extends InputStream { |
+ // Iterates through the pieces of the rope |
+ private PieceIterator pieceIterator; |
+ // The current piece |
+ private LeafByteString currentPiece; |
+ // The size of the current piece |
+ private int currentPieceSize; |
+ // The index of the next byte to read in the current piece |
+ private int currentPieceIndex; |
+ // The offset of the start of the current piece in the rope byte string |
+ private int currentPieceOffsetInRope; |
+ // Offset in the buffer at which user called mark(); |
+ private int mark; |
+ |
+ public RopeInputStream() { |
+ initialize(); |
+ } |
+ |
+ @Override |
+ public int read(byte b[], int offset, int length) { |
+ if (b == null) { |
+ throw new NullPointerException(); |
+ } else if (offset < 0 || length < 0 || length > b.length - offset) { |
+ throw new IndexOutOfBoundsException(); |
+ } |
+ return readSkipInternal(b, offset, length); |
+ } |
+ |
+ @Override |
+ public long skip(long length) { |
+ if (length < 0) { |
+ throw new IndexOutOfBoundsException(); |
+ } else if (length > Integer.MAX_VALUE) { |
+ length = Integer.MAX_VALUE; |
+ } |
+ return readSkipInternal(null, 0, (int) length); |
+ } |
+ |
+ /** |
+ * Internal implementation of read and skip. If b != null, then read the |
+ * next {@code length} bytes into the buffer {@code b} at |
+ * offset {@code offset}. If b == null, then skip the next {@code length} |
+ * bytes. |
+ * <p> |
+ * This method assumes that all error checking has already happened. |
+ * <p> |
+ * Returns the actual number of bytes read or skipped. |
+ */ |
+ private int readSkipInternal(byte b[], int offset, int length) { |
+ int bytesRemaining = length; |
+ while (bytesRemaining > 0) { |
+ advanceIfCurrentPieceFullyRead(); |
+ if (currentPiece == null) { |
+ if (bytesRemaining == length) { |
+ // We didn't manage to read anything |
+ return -1; |
+ } |
+ break; |
+ } else { |
+ // Copy the bytes from this piece. |
+ int currentPieceRemaining = currentPieceSize - currentPieceIndex; |
+ int count = Math.min(currentPieceRemaining, bytesRemaining); |
+ if (b != null) { |
+ currentPiece.copyTo(b, currentPieceIndex, offset, count); |
+ offset += count; |
+ } |
+ currentPieceIndex += count; |
+ bytesRemaining -= count; |
+ } |
+ } |
+ // Return the number of bytes read. |
+ return length - bytesRemaining; |
+ } |
+ |
+ @Override |
+ public int read() throws IOException { |
+ advanceIfCurrentPieceFullyRead(); |
+ if (currentPiece == null) { |
+ return -1; |
+ } else { |
+ return currentPiece.byteAt(currentPieceIndex++) & 0xFF; |
+ } |
+ } |
+ |
+ @Override |
+ public int available() throws IOException { |
+ int bytesRead = currentPieceOffsetInRope + currentPieceIndex; |
+ return RopeByteString.this.size() - bytesRead; |
+ } |
+ |
+ @Override |
+ public boolean markSupported() { |
+ return true; |
+ } |
+ |
+ @Override |
+ public void mark(int readAheadLimit) { |
+ // Set the mark to our position in the byte string |
+ mark = currentPieceOffsetInRope + currentPieceIndex; |
+ } |
+ |
+ @Override |
+ public synchronized void reset() { |
+ // Just reinitialize and skip the specified number of bytes. |
+ initialize(); |
+ readSkipInternal(null, 0, mark); |
+ } |
+ |
+ /** Common initialization code used by both the constructor and reset() */ |
+ private void initialize() { |
+ pieceIterator = new PieceIterator(RopeByteString.this); |
+ currentPiece = pieceIterator.next(); |
+ currentPieceSize = currentPiece.size(); |
+ currentPieceIndex = 0; |
+ currentPieceOffsetInRope = 0; |
+ } |
+ |
+ /** |
+ * Skips to the next piece if we have read all the data in the current |
+ * piece. Sets currentPiece to null if we have reached the end of the |
+ * input. |
+ */ |
+ private void advanceIfCurrentPieceFullyRead() { |
+ if (currentPiece != null && currentPieceIndex == currentPieceSize) { |
+ // Generally, we can only go through this loop at most once, since |
+ // empty strings can't end up in a rope. But better to test. |
+ currentPieceOffsetInRope += currentPieceSize; |
+ currentPieceIndex = 0; |
+ if (pieceIterator.hasNext()) { |
+ currentPiece = pieceIterator.next(); |
+ currentPieceSize = currentPiece.size(); |
+ } else { |
+ currentPiece = null; |
+ currentPieceSize = 0; |
+ } |
+ } |
+ } |
+ } |
+} |