Index: third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/InternalNano.java |
diff --git a/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/InternalNano.java b/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/InternalNano.java |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f1263df5807c9f2b95ebeab7921b9dce65001e08 |
--- /dev/null |
+++ b/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/InternalNano.java |
@@ -0,0 +1,547 @@ |
+// Protocol Buffers - Google's data interchange format |
+// Copyright 2008 Google Inc. All rights reserved. |
+// https://developers.google.com/protocol-buffers/ |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following disclaimer |
+// in the documentation and/or other materials provided with the |
+// distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived from |
+// this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+package com.google.protobuf.nano; |
+ |
+import com.google.protobuf.nano.MapFactories.MapFactory; |
+ |
+import java.io.IOException; |
+import java.nio.charset.Charset; |
+import java.util.Arrays; |
+import java.util.Map; |
+import java.util.Map.Entry; |
+ |
+/** |
+ * The classes contained within are used internally by the Protocol Buffer |
+ * library and generated message implementations. They are public only because |
+ * those generated messages do not reside in the {@code protobuf} package. |
+ * Others should not use this class directly. |
+ * |
+ * @author kenton@google.com (Kenton Varda) |
+ */ |
+public final class InternalNano { |
+ |
+ public static final int TYPE_DOUBLE = 1; |
+ public static final int TYPE_FLOAT = 2; |
+ public static final int TYPE_INT64 = 3; |
+ public static final int TYPE_UINT64 = 4; |
+ public static final int TYPE_INT32 = 5; |
+ public static final int TYPE_FIXED64 = 6; |
+ public static final int TYPE_FIXED32 = 7; |
+ public static final int TYPE_BOOL = 8; |
+ public static final int TYPE_STRING = 9; |
+ public static final int TYPE_GROUP = 10; |
+ public static final int TYPE_MESSAGE = 11; |
+ public static final int TYPE_BYTES = 12; |
+ public static final int TYPE_UINT32 = 13; |
+ public static final int TYPE_ENUM = 14; |
+ public static final int TYPE_SFIXED32 = 15; |
+ public static final int TYPE_SFIXED64 = 16; |
+ public static final int TYPE_SINT32 = 17; |
+ public static final int TYPE_SINT64 = 18; |
+ |
+ protected static final Charset UTF_8 = Charset.forName("UTF-8"); |
+ protected static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1"); |
+ |
+ private InternalNano() {} |
+ |
+ /** |
+ * An object to provide synchronization when lazily initializing static fields |
+ * of {@link MessageNano} subclasses. |
+ * <p> |
+ * To enable earlier versions of ProGuard to inline short methods from a |
+ * generated MessageNano subclass to the call sites, that class must not have |
+ * a class initializer, which will be created if there is any static variable |
+ * initializers. To lazily initialize the static variables in a thread-safe |
+ * manner, the initialization code will synchronize on this object. |
+ */ |
+ public static final Object LAZY_INIT_LOCK = new Object(); |
+ |
+ /** |
+ * Helper called by generated code to construct default values for string |
+ * fields. |
+ * <p> |
+ * The protocol compiler does not actually contain a UTF-8 decoder -- it |
+ * just pushes UTF-8-encoded text around without touching it. The one place |
+ * where this presents a problem is when generating Java string literals. |
+ * Unicode characters in the string literal would normally need to be encoded |
+ * using a Unicode escape sequence, which would require decoding them. |
+ * To get around this, protoc instead embeds the UTF-8 bytes into the |
+ * generated code and leaves it to the runtime library to decode them. |
+ * <p> |
+ * It gets worse, though. If protoc just generated a byte array, like: |
+ * new byte[] {0x12, 0x34, 0x56, 0x78} |
+ * Java actually generates *code* which allocates an array and then fills |
+ * in each value. This is much less efficient than just embedding the bytes |
+ * directly into the bytecode. To get around this, we need another |
+ * work-around. String literals are embedded directly, so protoc actually |
+ * generates a string literal corresponding to the bytes. The easiest way |
+ * to do this is to use the ISO-8859-1 character set, which corresponds to |
+ * the first 256 characters of the Unicode range. Protoc can then use |
+ * good old CEscape to generate the string. |
+ * <p> |
+ * So we have a string literal which represents a set of bytes which |
+ * represents another string. This function -- stringDefaultValue -- |
+ * converts from the generated string to the string we actually want. The |
+ * generated code calls this automatically. |
+ */ |
+ public static String stringDefaultValue(String bytes) { |
+ return new String(bytes.getBytes(ISO_8859_1), InternalNano.UTF_8); |
+ } |
+ |
+ /** |
+ * Helper called by generated code to construct default values for bytes |
+ * fields. |
+ * <p> |
+ * This is a lot like {@link #stringDefaultValue}, but for bytes fields. |
+ * In this case we only need the second of the two hacks -- allowing us to |
+ * embed raw bytes as a string literal with ISO-8859-1 encoding. |
+ */ |
+ public static byte[] bytesDefaultValue(String bytes) { |
+ return bytes.getBytes(ISO_8859_1); |
+ } |
+ |
+ /** |
+ * Helper function to convert a string into UTF-8 while turning the |
+ * UnsupportedEncodingException to a RuntimeException. |
+ */ |
+ public static byte[] copyFromUtf8(final String text) { |
+ return text.getBytes(InternalNano.UTF_8); |
+ } |
+ |
+ /** |
+ * Checks repeated int field equality; null-value and 0-length fields are |
+ * considered equal. |
+ */ |
+ public static boolean equals(int[] field1, int[] field2) { |
+ if (field1 == null || field1.length == 0) { |
+ return field2 == null || field2.length == 0; |
+ } else { |
+ return Arrays.equals(field1, field2); |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated long field equality; null-value and 0-length fields are |
+ * considered equal. |
+ */ |
+ public static boolean equals(long[] field1, long[] field2) { |
+ if (field1 == null || field1.length == 0) { |
+ return field2 == null || field2.length == 0; |
+ } else { |
+ return Arrays.equals(field1, field2); |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated float field equality; null-value and 0-length fields are |
+ * considered equal. |
+ */ |
+ public static boolean equals(float[] field1, float[] field2) { |
+ if (field1 == null || field1.length == 0) { |
+ return field2 == null || field2.length == 0; |
+ } else { |
+ return Arrays.equals(field1, field2); |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated double field equality; null-value and 0-length fields are |
+ * considered equal. |
+ */ |
+ public static boolean equals(double[] field1, double[] field2) { |
+ if (field1 == null || field1.length == 0) { |
+ return field2 == null || field2.length == 0; |
+ } else { |
+ return Arrays.equals(field1, field2); |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated boolean field equality; null-value and 0-length fields are |
+ * considered equal. |
+ */ |
+ public static boolean equals(boolean[] field1, boolean[] field2) { |
+ if (field1 == null || field1.length == 0) { |
+ return field2 == null || field2.length == 0; |
+ } else { |
+ return Arrays.equals(field1, field2); |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated bytes field equality. Only non-null elements are tested. |
+ * Returns true if the two fields have the same sequence of non-null |
+ * elements. Null-value fields and fields of any length with only null |
+ * elements are considered equal. |
+ */ |
+ public static boolean equals(byte[][] field1, byte[][] field2) { |
+ int index1 = 0; |
+ int length1 = field1 == null ? 0 : field1.length; |
+ int index2 = 0; |
+ int length2 = field2 == null ? 0 : field2.length; |
+ while (true) { |
+ while (index1 < length1 && field1[index1] == null) { |
+ index1++; |
+ } |
+ while (index2 < length2 && field2[index2] == null) { |
+ index2++; |
+ } |
+ boolean atEndOf1 = index1 >= length1; |
+ boolean atEndOf2 = index2 >= length2; |
+ if (atEndOf1 && atEndOf2) { |
+ // no more non-null elements to test in both arrays |
+ return true; |
+ } else if (atEndOf1 != atEndOf2) { |
+ // one of the arrays have extra non-null elements |
+ return false; |
+ } else if (!Arrays.equals(field1[index1], field2[index2])) { |
+ // element mismatch |
+ return false; |
+ } |
+ index1++; |
+ index2++; |
+ } |
+ } |
+ |
+ /** |
+ * Checks repeated string/message field equality. Only non-null elements are |
+ * tested. Returns true if the two fields have the same sequence of non-null |
+ * elements. Null-value fields and fields of any length with only null |
+ * elements are considered equal. |
+ */ |
+ public static boolean equals(Object[] field1, Object[] field2) { |
+ int index1 = 0; |
+ int length1 = field1 == null ? 0 : field1.length; |
+ int index2 = 0; |
+ int length2 = field2 == null ? 0 : field2.length; |
+ while (true) { |
+ while (index1 < length1 && field1[index1] == null) { |
+ index1++; |
+ } |
+ while (index2 < length2 && field2[index2] == null) { |
+ index2++; |
+ } |
+ boolean atEndOf1 = index1 >= length1; |
+ boolean atEndOf2 = index2 >= length2; |
+ if (atEndOf1 && atEndOf2) { |
+ // no more non-null elements to test in both arrays |
+ return true; |
+ } else if (atEndOf1 != atEndOf2) { |
+ // one of the arrays have extra non-null elements |
+ return false; |
+ } else if (!field1[index1].equals(field2[index2])) { |
+ // element mismatch |
+ return false; |
+ } |
+ index1++; |
+ index2++; |
+ } |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated int field. Null-value and 0-length |
+ * fields have the same hash code. |
+ */ |
+ public static int hashCode(int[] field) { |
+ return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated long field. Null-value and 0-length |
+ * fields have the same hash code. |
+ */ |
+ public static int hashCode(long[] field) { |
+ return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated float field. Null-value and 0-length |
+ * fields have the same hash code. |
+ */ |
+ public static int hashCode(float[] field) { |
+ return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated double field. Null-value and 0-length |
+ * fields have the same hash code. |
+ */ |
+ public static int hashCode(double[] field) { |
+ return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated boolean field. Null-value and 0-length |
+ * fields have the same hash code. |
+ */ |
+ public static int hashCode(boolean[] field) { |
+ return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated bytes field. Only the sequence of all |
+ * non-null elements are used in the computation. Null-value fields and fields |
+ * of any length with only null elements have the same hash code. |
+ */ |
+ public static int hashCode(byte[][] field) { |
+ int result = 0; |
+ for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { |
+ byte[] element = field[i]; |
+ if (element != null) { |
+ result = 31 * result + Arrays.hashCode(element); |
+ } |
+ } |
+ return result; |
+ } |
+ |
+ /** |
+ * Computes the hash code of a repeated string/message field. Only the |
+ * sequence of all non-null elements are used in the computation. Null-value |
+ * fields and fields of any length with only null elements have the same hash |
+ * code. |
+ */ |
+ public static int hashCode(Object[] field) { |
+ int result = 0; |
+ for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { |
+ Object element = field[i]; |
+ if (element != null) { |
+ result = 31 * result + element.hashCode(); |
+ } |
+ } |
+ return result; |
+ } |
+ private static Object primitiveDefaultValue(int type) { |
+ switch (type) { |
+ case TYPE_BOOL: |
+ return Boolean.FALSE; |
+ case TYPE_BYTES: |
+ return WireFormatNano.EMPTY_BYTES; |
+ case TYPE_STRING: |
+ return ""; |
+ case TYPE_FLOAT: |
+ return Float.valueOf(0); |
+ case TYPE_DOUBLE: |
+ return Double.valueOf(0); |
+ case TYPE_ENUM: |
+ case TYPE_FIXED32: |
+ case TYPE_INT32: |
+ case TYPE_UINT32: |
+ case TYPE_SINT32: |
+ case TYPE_SFIXED32: |
+ return Integer.valueOf(0); |
+ case TYPE_INT64: |
+ case TYPE_UINT64: |
+ case TYPE_SINT64: |
+ case TYPE_FIXED64: |
+ case TYPE_SFIXED64: |
+ return Long.valueOf(0L); |
+ case TYPE_MESSAGE: |
+ case TYPE_GROUP: |
+ default: |
+ throw new IllegalArgumentException( |
+ "Type: " + type + " is not a primitive type."); |
+ } |
+ } |
+ |
+ /** |
+ * Merges the map entry into the map field. Note this is only supposed to |
+ * be called by generated messages. |
+ * |
+ * @param map the map field; may be null, in which case a map will be |
+ * instantiated using the {@link MapFactories.MapFactory} |
+ * @param input the input byte buffer |
+ * @param keyType key type, as defined in InternalNano.TYPE_* |
+ * @param valueType value type, as defined in InternalNano.TYPE_* |
+ * @param value an new instance of the value, if the value is a TYPE_MESSAGE; |
+ * otherwise this parameter can be null and will be ignored. |
+ * @param keyTag wire tag for the key |
+ * @param valueTag wire tag for the value |
+ * @return the map field |
+ * @throws IOException |
+ */ |
+ @SuppressWarnings("unchecked") |
+ public static final <K, V> Map<K, V> mergeMapEntry( |
+ CodedInputByteBufferNano input, |
+ Map<K, V> map, |
+ MapFactory mapFactory, |
+ int keyType, |
+ int valueType, |
+ V value, |
+ int keyTag, |
+ int valueTag) throws IOException { |
+ map = mapFactory.forMap(map); |
+ final int length = input.readRawVarint32(); |
+ final int oldLimit = input.pushLimit(length); |
+ K key = null; |
+ while (true) { |
+ int tag = input.readTag(); |
+ if (tag == 0) { |
+ break; |
+ } |
+ if (tag == keyTag) { |
+ key = (K) input.readPrimitiveField(keyType); |
+ } else if (tag == valueTag) { |
+ if (valueType == TYPE_MESSAGE) { |
+ input.readMessage((MessageNano) value); |
+ } else { |
+ value = (V) input.readPrimitiveField(valueType); |
+ } |
+ } else { |
+ if (!input.skipField(tag)) { |
+ break; |
+ } |
+ } |
+ } |
+ input.checkLastTagWas(0); |
+ input.popLimit(oldLimit); |
+ |
+ if (key == null) { |
+ // key can only be primitive types. |
+ key = (K) primitiveDefaultValue(keyType); |
+ } |
+ |
+ if (value == null) { |
+ // message type value will be initialized by code-gen. |
+ value = (V) primitiveDefaultValue(valueType); |
+ } |
+ |
+ map.put(key, value); |
+ return map; |
+ } |
+ |
+ public static <K, V> void serializeMapField( |
+ CodedOutputByteBufferNano output, |
+ Map<K, V> map, int number, int keyType, int valueType) |
+ throws IOException { |
+ for (Entry<K, V> entry: map.entrySet()) { |
+ K key = entry.getKey(); |
+ V value = entry.getValue(); |
+ if (key == null || value == null) { |
+ throw new IllegalStateException( |
+ "keys and values in maps cannot be null"); |
+ } |
+ int entrySize = |
+ CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) + |
+ CodedOutputByteBufferNano.computeFieldSize(2, valueType, value); |
+ output.writeTag(number, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); |
+ output.writeRawVarint32(entrySize); |
+ output.writeField(1, keyType, key); |
+ output.writeField(2, valueType, value); |
+ } |
+ } |
+ |
+ public static <K, V> int computeMapFieldSize( |
+ Map<K, V> map, int number, int keyType, int valueType) { |
+ int size = 0; |
+ int tagSize = CodedOutputByteBufferNano.computeTagSize(number); |
+ for (Entry<K, V> entry: map.entrySet()) { |
+ K key = entry.getKey(); |
+ V value = entry.getValue(); |
+ if (key == null || value == null) { |
+ throw new IllegalStateException( |
+ "keys and values in maps cannot be null"); |
+ } |
+ int entrySize = |
+ CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) + |
+ CodedOutputByteBufferNano.computeFieldSize(2, valueType, value); |
+ size += tagSize + entrySize |
+ + CodedOutputByteBufferNano.computeRawVarint32Size(entrySize); |
+ } |
+ return size; |
+ } |
+ |
+ /** |
+ * Checks whether two {@link Map} are equal. We don't use the default equals |
+ * method of {@link Map} because it compares by identity not by content for |
+ * byte arrays. |
+ */ |
+ public static <K, V> boolean equals(Map<K, V> a, Map<K, V> b) { |
+ if (a == b) { |
+ return true; |
+ } |
+ if (a == null) { |
+ return b.size() == 0; |
+ } |
+ if (b == null) { |
+ return a.size() == 0; |
+ } |
+ if (a.size() != b.size()) { |
+ return false; |
+ } |
+ for (Entry<K, V> entry : a.entrySet()) { |
+ if (!b.containsKey(entry.getKey())) { |
+ return false; |
+ } |
+ if (!equalsMapValue(entry.getValue(), b.get(entry.getKey()))) { |
+ return false; |
+ } |
+ } |
+ return true; |
+ } |
+ |
+ private static boolean equalsMapValue(Object a, Object b) { |
+ if (a == null || b == null) { |
+ throw new IllegalStateException( |
+ "keys and values in maps cannot be null"); |
+ } |
+ if (a instanceof byte[] && b instanceof byte[]) { |
+ return Arrays.equals((byte[]) a, (byte[]) b); |
+ } |
+ return a.equals(b); |
+ } |
+ |
+ public static <K, V> int hashCode(Map<K, V> map) { |
+ if (map == null) { |
+ return 0; |
+ } |
+ int result = 0; |
+ for (Entry<K, V> entry : map.entrySet()) { |
+ result += hashCodeForMap(entry.getKey()) |
+ ^ hashCodeForMap(entry.getValue()); |
+ } |
+ return result; |
+ } |
+ |
+ private static int hashCodeForMap(Object o) { |
+ if (o instanceof byte[]) { |
+ return Arrays.hashCode((byte[]) o); |
+ } |
+ return o.hashCode(); |
+ } |
+ |
+ // This avoids having to make FieldArray public. |
+ public static void cloneUnknownFieldData(ExtendableMessageNano original, |
+ ExtendableMessageNano cloned) { |
+ if (original.unknownFieldData != null) { |
+ cloned.unknownFieldData = (FieldArray) original.unknownFieldData.clone(); |
+ } |
+ } |
+} |