Index: third_party/protobuf/src/google/protobuf/stubs/map_util.h |
diff --git a/third_party/protobuf/src/google/protobuf/stubs/map_util.h b/third_party/protobuf/src/google/protobuf/stubs/map_util.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4cccbbedcbbfe7bd078b81b6cddb255c1cd7568b |
--- /dev/null |
+++ b/third_party/protobuf/src/google/protobuf/stubs/map_util.h |
@@ -0,0 +1,769 @@ |
+// Protocol Buffers - Google's data interchange format |
+// Copyright 2014 Google Inc. All rights reserved. |
+// https://developers.google.com/protocol-buffers/ |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following disclaimer |
+// in the documentation and/or other materials provided with the |
+// distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived from |
+// this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+// from google3/util/gtl/map_util.h |
+// Author: Anton Carver |
+ |
+#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
+#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
+ |
+#include <stddef.h> |
+#include <iterator> |
+#include <string> |
+#include <utility> |
+#include <vector> |
+ |
+#include <google/protobuf/stubs/common.h> |
+ |
+namespace google { |
+namespace protobuf { |
+namespace internal { |
+// Local implementation of RemoveConst to avoid including base/type_traits.h. |
+template <class T> struct RemoveConst { typedef T type; }; |
+template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; |
+} // namespace internal |
+ |
+// |
+// Find*() |
+// |
+ |
+// Returns a const reference to the value associated with the given key if it |
+// exists. Crashes otherwise. |
+// |
+// This is intended as a replacement for operator[] as an rvalue (for reading) |
+// when the key is guaranteed to exist. |
+// |
+// operator[] for lookup is discouraged for several reasons: |
+// * It has a side-effect of inserting missing keys |
+// * It is not thread-safe (even when it is not inserting, it can still |
+// choose to resize the underlying storage) |
+// * It invalidates iterators (when it chooses to resize) |
+// * It default constructs a value object even if it doesn't need to |
+// |
+// This version assumes the key is printable, and includes it in the fatal log |
+// message. |
+template <class Collection> |
+const typename Collection::value_type::second_type& |
+FindOrDie(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
+ return it->second; |
+} |
+ |
+// Same as above, but returns a non-const reference. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+FindOrDie(Collection& collection, // NOLINT |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::iterator it = collection.find(key); |
+ GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
+ return it->second; |
+} |
+ |
+// Same as FindOrDie above, but doesn't log the key on failure. |
+template <class Collection> |
+const typename Collection::value_type::second_type& |
+FindOrDieNoPrint(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
+ return it->second; |
+} |
+ |
+// Same as above, but returns a non-const reference. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+FindOrDieNoPrint(Collection& collection, // NOLINT |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::iterator it = collection.find(key); |
+ GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
+ return it->second; |
+} |
+ |
+// Returns a const reference to the value associated with the given key if it |
+// exists, otherwise returns a const reference to the provided default value. |
+// |
+// WARNING: If a temporary object is passed as the default "value," |
+// this function will return a reference to that temporary object, |
+// which will be destroyed at the end of the statement. A common |
+// example: if you have a map with string values, and you pass a char* |
+// as the default "value," either use the returned value immediately |
+// or store it in a string (not string&). |
+// Details: http://go/findwithdefault |
+template <class Collection> |
+const typename Collection::value_type::second_type& |
+FindWithDefault(const Collection& collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return value; |
+ } |
+ return it->second; |
+} |
+ |
+// Returns a pointer to the const value associated with the given key if it |
+// exists, or NULL otherwise. |
+template <class Collection> |
+const typename Collection::value_type::second_type* |
+FindOrNull(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return 0; |
+ } |
+ return &it->second; |
+} |
+ |
+// Same as above but returns a pointer to the non-const value. |
+template <class Collection> |
+typename Collection::value_type::second_type* |
+FindOrNull(Collection& collection, // NOLINT |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return 0; |
+ } |
+ return &it->second; |
+} |
+ |
+// Returns the pointer value associated with the given key. If none is found, |
+// NULL is returned. The function is designed to be used with a map of keys to |
+// pointers. |
+// |
+// This function does not distinguish between a missing key and a key mapped |
+// to a NULL value. |
+template <class Collection> |
+typename Collection::value_type::second_type |
+FindPtrOrNull(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return typename Collection::value_type::second_type(); |
+ } |
+ return it->second; |
+} |
+ |
+// Same as above, except takes non-const reference to collection. |
+// |
+// This function is needed for containers that propagate constness to the |
+// pointee, such as boost::ptr_map. |
+template <class Collection> |
+typename Collection::value_type::second_type |
+FindPtrOrNull(Collection& collection, // NOLINT |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return typename Collection::value_type::second_type(); |
+ } |
+ return it->second; |
+} |
+ |
+// Finds the pointer value associated with the given key in a map whose values |
+// are linked_ptrs. Returns NULL if key is not found. |
+template <class Collection> |
+typename Collection::value_type::second_type::element_type* |
+FindLinkedPtrOrNull(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return 0; |
+ } |
+ // Since linked_ptr::get() is a const member returning a non const, |
+ // we do not need a version of this function taking a non const collection. |
+ return it->second.get(); |
+} |
+ |
+// Same as above, but dies if the key is not found. |
+template <class Collection> |
+typename Collection::value_type::second_type::element_type& |
+FindLinkedPtrOrDie(const Collection& collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ CHECK(it != collection.end()) << "key not found: " << key; |
+ // Since linked_ptr::operator*() is a const member returning a non const, |
+ // we do not need a version of this function taking a non const collection. |
+ return *it->second; |
+} |
+ |
+// Finds the value associated with the given key and copies it to *value (if not |
+// NULL). Returns false if the key was not found, true otherwise. |
+template <class Collection, class Key, class Value> |
+bool FindCopy(const Collection& collection, |
+ const Key& key, |
+ Value* const value) { |
+ typename Collection::const_iterator it = collection.find(key); |
+ if (it == collection.end()) { |
+ return false; |
+ } |
+ if (value) { |
+ *value = it->second; |
+ } |
+ return true; |
+} |
+ |
+// |
+// Contains*() |
+// |
+ |
+// Returns true if and only if the given collection contains the given key. |
+template <class Collection, class Key> |
+bool ContainsKey(const Collection& collection, const Key& key) { |
+ return collection.find(key) != collection.end(); |
+} |
+ |
+// Returns true if and only if the given collection contains the given key-value |
+// pair. |
+template <class Collection, class Key, class Value> |
+bool ContainsKeyValuePair(const Collection& collection, |
+ const Key& key, |
+ const Value& value) { |
+ typedef typename Collection::const_iterator const_iterator; |
+ std::pair<const_iterator, const_iterator> range = collection.equal_range(key); |
+ for (const_iterator it = range.first; it != range.second; ++it) { |
+ if (it->second == value) { |
+ return true; |
+ } |
+ } |
+ return false; |
+} |
+ |
+// |
+// Insert*() |
+// |
+ |
+// Inserts the given key-value pair into the collection. Returns true if and |
+// only if the key from the given pair didn't previously exist. Otherwise, the |
+// value in the map is replaced with the value from the given pair. |
+template <class Collection> |
+bool InsertOrUpdate(Collection* const collection, |
+ const typename Collection::value_type& vt) { |
+ std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
+ if (!ret.second) { |
+ // update |
+ ret.first->second = vt.second; |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+// Same as above, except that the key and value are passed separately. |
+template <class Collection> |
+bool InsertOrUpdate(Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value) { |
+ return InsertOrUpdate( |
+ collection, typename Collection::value_type(key, value)); |
+} |
+ |
+// Inserts/updates all the key-value pairs from the range defined by the |
+// iterators "first" and "last" into the given collection. |
+template <class Collection, class InputIterator> |
+void InsertOrUpdateMany(Collection* const collection, |
+ InputIterator first, InputIterator last) { |
+ for (; first != last; ++first) { |
+ InsertOrUpdate(collection, *first); |
+ } |
+} |
+ |
+// Change the value associated with a particular key in a map or hash_map |
+// of the form map<Key, Value*> which owns the objects pointed to by the |
+// value pointers. If there was an existing value for the key, it is deleted. |
+// True indicates an insert took place, false indicates an update + delete. |
+template <class Collection> |
+bool InsertAndDeleteExisting( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value) { |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, value)); |
+ if (!ret.second) { |
+ delete ret.first->second; |
+ ret.first->second = value; |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+// Inserts the given key and value into the given collection if and only if the |
+// given key did NOT already exist in the collection. If the key previously |
+// existed in the collection, the value is not changed. Returns true if the |
+// key-value pair was inserted; returns false if the key was already present. |
+template <class Collection> |
+bool InsertIfNotPresent(Collection* const collection, |
+ const typename Collection::value_type& vt) { |
+ return collection->insert(vt).second; |
+} |
+ |
+// Same as above except the key and value are passed separately. |
+template <class Collection> |
+bool InsertIfNotPresent( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value) { |
+ return InsertIfNotPresent( |
+ collection, typename Collection::value_type(key, value)); |
+} |
+ |
+// Same as above except dies if the key already exists in the collection. |
+template <class Collection> |
+void InsertOrDie(Collection* const collection, |
+ const typename Collection::value_type& value) { |
+ CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; |
+} |
+ |
+// Same as above except doesn't log the value on error. |
+template <class Collection> |
+void InsertOrDieNoPrint(Collection* const collection, |
+ const typename Collection::value_type& value) { |
+ CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; |
+} |
+ |
+// Inserts the key-value pair into the collection. Dies if key was already |
+// present. |
+template <class Collection> |
+void InsertOrDie(Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& data) { |
+ GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) |
+ << "duplicate key: " << key; |
+} |
+ |
+// Same as above except doesn't log the key on error. |
+template <class Collection> |
+void InsertOrDieNoPrint( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& data) { |
+ GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; |
+} |
+ |
+// Inserts a new key and default-initialized value. Dies if the key was already |
+// present. Returns a reference to the value. Example usage: |
+// |
+// map<int, SomeProto> m; |
+// SomeProto& proto = InsertKeyOrDie(&m, 3); |
+// proto.set_field("foo"); |
+template <class Collection> |
+typename Collection::value_type::second_type& InsertKeyOrDie( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typedef typename Collection::value_type value_type; |
+ std::pair<typename Collection::iterator, bool> res = |
+ collection->insert(value_type(key, typename value_type::second_type())); |
+ GOOGLE_CHECK(res.second) << "duplicate key: " << key; |
+ return res.first->second; |
+} |
+ |
+// |
+// Lookup*() |
+// |
+ |
+// Looks up a given key and value pair in a collection and inserts the key-value |
+// pair if it's not already present. Returns a reference to the value associated |
+// with the key. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+LookupOrInsert(Collection* const collection, |
+ const typename Collection::value_type& vt) { |
+ return collection->insert(vt).first->second; |
+} |
+ |
+// Same as above except the key-value are passed separately. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+LookupOrInsert(Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value) { |
+ return LookupOrInsert( |
+ collection, typename Collection::value_type(key, value)); |
+} |
+ |
+// Counts the number of equivalent elements in the given "sequence", and stores |
+// the results in "count_map" with element as the key and count as the value. |
+// |
+// Example: |
+// vector<string> v = {"a", "b", "c", "a", "b"}; |
+// map<string, int> m; |
+// AddTokenCounts(v, 1, &m); |
+// assert(m["a"] == 2); |
+// assert(m["b"] == 2); |
+// assert(m["c"] == 1); |
+template <typename Sequence, typename Collection> |
+void AddTokenCounts( |
+ const Sequence& sequence, |
+ const typename Collection::value_type::second_type& increment, |
+ Collection* const count_map) { |
+ for (typename Sequence::const_iterator it = sequence.begin(); |
+ it != sequence.end(); ++it) { |
+ typename Collection::value_type::second_type& value = |
+ LookupOrInsert(count_map, *it, |
+ typename Collection::value_type::second_type()); |
+ value += increment; |
+ } |
+} |
+ |
+// Returns a reference to the value associated with key. If not found, a value |
+// is default constructed on the heap and added to the map. |
+// |
+// This function is useful for containers of the form map<Key, Value*>, where |
+// inserting a new key, value pair involves constructing a new heap-allocated |
+// Value, and storing a pointer to that in the collection. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+LookupOrInsertNew(Collection* const collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typedef typename std::iterator_traits< |
+ typename Collection::value_type::second_type>::value_type Element; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type( |
+ key, |
+ static_cast<typename Collection::value_type::second_type>(NULL))); |
+ if (ret.second) { |
+ ret.first->second = new Element(); |
+ } |
+ return ret.first->second; |
+} |
+ |
+// Same as above but constructs the value using the single-argument constructor |
+// and the given "arg". |
+template <class Collection, class Arg> |
+typename Collection::value_type::second_type& |
+LookupOrInsertNew(Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const Arg& arg) { |
+ typedef typename std::iterator_traits< |
+ typename Collection::value_type::second_type>::value_type Element; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type( |
+ key, |
+ static_cast<typename Collection::value_type::second_type>(NULL))); |
+ if (ret.second) { |
+ ret.first->second = new Element(arg); |
+ } |
+ return ret.first->second; |
+} |
+ |
+// Lookup of linked/shared pointers is used in two scenarios: |
+// |
+// Use LookupOrInsertNewLinkedPtr if the container owns the elements. |
+// In this case it is fine working with the raw pointer as long as it is |
+// guaranteed that no other thread can delete/update an accessed element. |
+// A mutex will need to lock the container operation as well as the use |
+// of the returned elements. Finding an element may be performed using |
+// FindLinkedPtr*(). |
+// |
+// Use LookupOrInsertNewSharedPtr if the container does not own the elements |
+// for their whole lifetime. This is typically the case when a reader allows |
+// parallel updates to the container. In this case a Mutex only needs to lock |
+// container operations, but all element operations must be performed on the |
+// shared pointer. Finding an element must be performed using FindPtr*() and |
+// cannot be done with FindLinkedPtr*() even though it compiles. |
+ |
+// Lookup a key in a map or hash_map whose values are linked_ptrs. If it is |
+// missing, set collection[key].reset(new Value::element_type) and return that. |
+// Value::element_type must be default constructable. |
+template <class Collection> |
+typename Collection::value_type::second_type::element_type* |
+LookupOrInsertNewLinkedPtr( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typedef typename Collection::value_type::second_type Value; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, Value())); |
+ if (ret.second) { |
+ ret.first->second.reset(new typename Value::element_type); |
+ } |
+ return ret.first->second.get(); |
+} |
+ |
+// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using |
+// a single-parameter constructor. Note: the constructor argument is computed |
+// even if it will not be used, so only values cheap to compute should be passed |
+// here. On the other hand it does not matter how expensive the construction of |
+// the actual stored value is, as that only occurs if necessary. |
+template <class Collection, class Arg> |
+typename Collection::value_type::second_type::element_type* |
+LookupOrInsertNewLinkedPtr( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const Arg& arg) { |
+ typedef typename Collection::value_type::second_type Value; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, Value())); |
+ if (ret.second) { |
+ ret.first->second.reset(new typename Value::element_type(arg)); |
+ } |
+ return ret.first->second.get(); |
+} |
+ |
+// Lookup a key in a map or hash_map whose values are shared_ptrs. If it is |
+// missing, set collection[key].reset(new Value::element_type). Unlike |
+// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of |
+// the raw pointer. Value::element_type must be default constructable. |
+template <class Collection> |
+typename Collection::value_type::second_type& |
+LookupOrInsertNewSharedPtr( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typedef typename Collection::value_type::second_type SharedPtr; |
+ typedef typename Collection::value_type::second_type::element_type Element; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, SharedPtr())); |
+ if (ret.second) { |
+ ret.first->second.reset(new Element()); |
+ } |
+ return ret.first->second; |
+} |
+ |
+// A variant of LookupOrInsertNewSharedPtr where the value is constructed using |
+// a single-parameter constructor. Note: the constructor argument is computed |
+// even if it will not be used, so only values cheap to compute should be passed |
+// here. On the other hand it does not matter how expensive the construction of |
+// the actual stored value is, as that only occurs if necessary. |
+template <class Collection, class Arg> |
+typename Collection::value_type::second_type& |
+LookupOrInsertNewSharedPtr( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const Arg& arg) { |
+ typedef typename Collection::value_type::second_type SharedPtr; |
+ typedef typename Collection::value_type::second_type::element_type Element; |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, SharedPtr())); |
+ if (ret.second) { |
+ ret.first->second.reset(new Element(arg)); |
+ } |
+ return ret.first->second; |
+} |
+ |
+// |
+// Misc Utility Functions |
+// |
+ |
+// Updates the value associated with the given key. If the key was not already |
+// present, then the key-value pair are inserted and "previous" is unchanged. If |
+// the key was already present, the value is updated and "*previous" will |
+// contain a copy of the old value. |
+// |
+// InsertOrReturnExisting has complementary behavior that returns the |
+// address of an already existing value, rather than updating it. |
+template <class Collection> |
+bool UpdateReturnCopy(Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& value, |
+ typename Collection::value_type::second_type* previous) { |
+ std::pair<typename Collection::iterator, bool> ret = |
+ collection->insert(typename Collection::value_type(key, value)); |
+ if (!ret.second) { |
+ // update |
+ if (previous) { |
+ *previous = ret.first->second; |
+ } |
+ ret.first->second = value; |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+// Same as above except that the key and value are passed as a pair. |
+template <class Collection> |
+bool UpdateReturnCopy(Collection* const collection, |
+ const typename Collection::value_type& vt, |
+ typename Collection::value_type::second_type* previous) { |
+ std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
+ if (!ret.second) { |
+ // update |
+ if (previous) { |
+ *previous = ret.first->second; |
+ } |
+ ret.first->second = vt.second; |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+// Tries to insert the given key-value pair into the collection. Returns NULL if |
+// the insert succeeds. Otherwise, returns a pointer to the existing value. |
+// |
+// This complements UpdateReturnCopy in that it allows to update only after |
+// verifying the old value and still insert quickly without having to look up |
+// twice. Unlike UpdateReturnCopy this also does not come with the issue of an |
+// undefined previous* in case new data was inserted. |
+template <class Collection> |
+typename Collection::value_type::second_type* const |
+InsertOrReturnExisting(Collection* const collection, |
+ const typename Collection::value_type& vt) { |
+ std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
+ if (ret.second) { |
+ return NULL; // Inserted, no existing previous value. |
+ } else { |
+ return &ret.first->second; // Return address of already existing value. |
+ } |
+} |
+ |
+// Same as above, except for explicit key and data. |
+template <class Collection> |
+typename Collection::value_type::second_type* const |
+InsertOrReturnExisting( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key, |
+ const typename Collection::value_type::second_type& data) { |
+ return InsertOrReturnExisting(collection, |
+ typename Collection::value_type(key, data)); |
+} |
+ |
+// Erases the collection item identified by the given key, and returns the value |
+// associated with that key. It is assumed that the value (i.e., the |
+// mapped_type) is a pointer. Returns NULL if the key was not found in the |
+// collection. |
+// |
+// Examples: |
+// map<string, MyType*> my_map; |
+// |
+// One line cleanup: |
+// delete EraseKeyReturnValuePtr(&my_map, "abc"); |
+// |
+// Use returned value: |
+// scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); |
+// if (value_ptr.get()) |
+// value_ptr->DoSomething(); |
+// |
+template <class Collection> |
+typename Collection::value_type::second_type EraseKeyReturnValuePtr( |
+ Collection* const collection, |
+ const typename Collection::value_type::first_type& key) { |
+ typename Collection::iterator it = collection->find(key); |
+ if (it == collection->end()) { |
+ return NULL; |
+ } |
+ typename Collection::value_type::second_type v = it->second; |
+ collection->erase(it); |
+ return v; |
+} |
+ |
+// Inserts all the keys from map_container into key_container, which must |
+// support insert(MapContainer::key_type). |
+// |
+// Note: any initial contents of the key_container are not cleared. |
+template <class MapContainer, class KeyContainer> |
+void InsertKeysFromMap(const MapContainer& map_container, |
+ KeyContainer* key_container) { |
+ GOOGLE_CHECK(key_container != NULL); |
+ for (typename MapContainer::const_iterator it = map_container.begin(); |
+ it != map_container.end(); ++it) { |
+ key_container->insert(it->first); |
+ } |
+} |
+ |
+// Appends all the keys from map_container into key_container, which must |
+// support push_back(MapContainer::key_type). |
+// |
+// Note: any initial contents of the key_container are not cleared. |
+template <class MapContainer, class KeyContainer> |
+void AppendKeysFromMap(const MapContainer& map_container, |
+ KeyContainer* key_container) { |
+ GOOGLE_CHECK(key_container != NULL); |
+ for (typename MapContainer::const_iterator it = map_container.begin(); |
+ it != map_container.end(); ++it) { |
+ key_container->push_back(it->first); |
+ } |
+} |
+ |
+// A more specialized overload of AppendKeysFromMap to optimize reallocations |
+// for the common case in which we're appending keys to a vector and hence can |
+// (and sometimes should) call reserve() first. |
+// |
+// (It would be possible to play SFINAE games to call reserve() for any |
+// container that supports it, but this seems to get us 99% of what we need |
+// without the complexity of a SFINAE-based solution.) |
+template <class MapContainer, class KeyType> |
+void AppendKeysFromMap(const MapContainer& map_container, |
+ vector<KeyType>* key_container) { |
+ GOOGLE_CHECK(key_container != NULL); |
+ // We now have the opportunity to call reserve(). Calling reserve() every |
+ // time is a bad idea for some use cases: libstdc++'s implementation of |
+ // vector<>::reserve() resizes the vector's backing store to exactly the |
+ // given size (unless it's already at least that big). Because of this, |
+ // the use case that involves appending a lot of small maps (total size |
+ // N) one by one to a vector would be O(N^2). But never calling reserve() |
+ // loses the opportunity to improve the use case of adding from a large |
+ // map to an empty vector (this improves performance by up to 33%). A |
+ // number of heuristics are possible; see the discussion in |
+ // cl/34081696. Here we use the simplest one. |
+ if (key_container->empty()) { |
+ key_container->reserve(map_container.size()); |
+ } |
+ for (typename MapContainer::const_iterator it = map_container.begin(); |
+ it != map_container.end(); ++it) { |
+ key_container->push_back(it->first); |
+ } |
+} |
+ |
+// Inserts all the values from map_container into value_container, which must |
+// support push_back(MapContainer::mapped_type). |
+// |
+// Note: any initial contents of the value_container are not cleared. |
+template <class MapContainer, class ValueContainer> |
+void AppendValuesFromMap(const MapContainer& map_container, |
+ ValueContainer* value_container) { |
+ GOOGLE_CHECK(value_container != NULL); |
+ for (typename MapContainer::const_iterator it = map_container.begin(); |
+ it != map_container.end(); ++it) { |
+ value_container->push_back(it->second); |
+ } |
+} |
+ |
+// A more specialized overload of AppendValuesFromMap to optimize reallocations |
+// for the common case in which we're appending values to a vector and hence |
+// can (and sometimes should) call reserve() first. |
+// |
+// (It would be possible to play SFINAE games to call reserve() for any |
+// container that supports it, but this seems to get us 99% of what we need |
+// without the complexity of a SFINAE-based solution.) |
+template <class MapContainer, class ValueType> |
+void AppendValuesFromMap(const MapContainer& map_container, |
+ vector<ValueType>* value_container) { |
+ GOOGLE_CHECK(value_container != NULL); |
+ // See AppendKeysFromMap for why this is done. |
+ if (value_container->empty()) { |
+ value_container->reserve(map_container.size()); |
+ } |
+ for (typename MapContainer::const_iterator it = map_container.begin(); |
+ it != map_container.end(); ++it) { |
+ value_container->push_back(it->second); |
+ } |
+} |
+ |
+} // namespace protobuf |
+} // namespace google |
+ |
+#endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |