| Index: third_party/protobuf/src/google/protobuf/stubs/time.cc
|
| diff --git a/third_party/protobuf/src/google/protobuf/stubs/time.cc b/third_party/protobuf/src/google/protobuf/stubs/time.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..49c0412c17661dd0f9942fadca4781e51f0d8f54
|
| --- /dev/null
|
| +++ b/third_party/protobuf/src/google/protobuf/stubs/time.cc
|
| @@ -0,0 +1,365 @@
|
| +#include <google/protobuf/stubs/time.h>
|
| +
|
| +#include <ctime>
|
| +
|
| +#include <google/protobuf/stubs/stringprintf.h>
|
| +#include <google/protobuf/stubs/strutil.h>
|
| +
|
| +namespace google {
|
| +namespace protobuf {
|
| +namespace internal {
|
| +
|
| +namespace {
|
| +static const int64 kSecondsPerMinute = 60;
|
| +static const int64 kSecondsPerHour = 3600;
|
| +static const int64 kSecondsPerDay = kSecondsPerHour * 24;
|
| +static const int64 kSecondsPer400Years =
|
| + kSecondsPerDay * (400 * 365 + 400 / 4 - 3);
|
| +// Seconds from 0001-01-01T00:00:00 to 1970-01-01T:00:00:00
|
| +static const int64 kSecondsFromEraToEpoch = 62135596800LL;
|
| +// The range of timestamp values we support.
|
| +static const int64 kMinTime = -62135596800LL; // 0001-01-01T00:00:00
|
| +static const int64 kMaxTime = 253402300799LL; // 9999-12-31T23:59:59
|
| +
|
| +static const int kNanosPerMillisecond = 1000000;
|
| +static const int kNanosPerMicrosecond = 1000;
|
| +
|
| +// Count the seconds from the given year (start at Jan 1, 00:00) to 100 years
|
| +// after.
|
| +int64 SecondsPer100Years(int year) {
|
| + if (year % 400 == 0 || year % 400 > 300) {
|
| + return kSecondsPerDay * (100 * 365 + 100 / 4);
|
| + } else {
|
| + return kSecondsPerDay * (100 * 365 + 100 / 4 - 1);
|
| + }
|
| +}
|
| +
|
| +// Count the seconds from the given year (start at Jan 1, 00:00) to 4 years
|
| +// after.
|
| +int64 SecondsPer4Years(int year) {
|
| + if ((year % 100 == 0 || year % 100 > 96) &&
|
| + !(year % 400 == 0 || year % 400 > 396)) {
|
| + // No leap years.
|
| + return kSecondsPerDay * (4 * 365);
|
| + } else {
|
| + // One leap years.
|
| + return kSecondsPerDay * (4 * 365 + 1);
|
| + }
|
| +}
|
| +
|
| +bool IsLeapYear(int year) {
|
| + return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
|
| +}
|
| +
|
| +int64 SecondsPerYear(int year) {
|
| + return kSecondsPerDay * (IsLeapYear(year) ? 366 : 365);
|
| +}
|
| +
|
| +static const int kDaysInMonth[13] = {
|
| + 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
| +};
|
| +
|
| +int64 SecondsPerMonth(int month, bool leap) {
|
| + if (month == 2 && leap) {
|
| + return kSecondsPerDay * (kDaysInMonth[month] + 1);
|
| + }
|
| + return kSecondsPerDay * kDaysInMonth[month];
|
| +}
|
| +
|
| +static const int kDaysSinceJan[13] = {
|
| + 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
|
| +};
|
| +
|
| +bool ValidateDateTime(const DateTime& time) {
|
| + if (time.year < 1 || time.year > 9999 ||
|
| + time.month < 1 || time.month > 12 ||
|
| + time.day < 1 || time.day > 31 ||
|
| + time.hour < 0 || time.hour > 23 ||
|
| + time.minute < 0 || time.minute > 59 ||
|
| + time.second < 0 || time.second > 59) {
|
| + return false;
|
| + }
|
| + if (time.month == 2 && IsLeapYear(time.year)) {
|
| + return time.month <= kDaysInMonth[time.month] + 1;
|
| + } else {
|
| + return time.month <= kDaysInMonth[time.month];
|
| + }
|
| +}
|
| +
|
| +// Count the number of seconds elapsed from 0001-01-01T00:00:00 to the given
|
| +// time.
|
| +int64 SecondsSinceCommonEra(const DateTime& time) {
|
| + int64 result = 0;
|
| + // Years should be between 1 and 9999.
|
| + assert(time.year >= 1 && time.year <= 9999);
|
| + int year = 1;
|
| + if ((time.year - year) >= 400) {
|
| + int count_400years = (time.year - year) / 400;
|
| + result += kSecondsPer400Years * count_400years;
|
| + year += count_400years * 400;
|
| + }
|
| + while ((time.year - year) >= 100) {
|
| + result += SecondsPer100Years(year);
|
| + year += 100;
|
| + }
|
| + while ((time.year - year) >= 4) {
|
| + result += SecondsPer4Years(year);
|
| + year += 4;
|
| + }
|
| + while (time.year > year) {
|
| + result += SecondsPerYear(year);
|
| + ++year;
|
| + }
|
| + // Months should be between 1 and 12.
|
| + assert(time.month >= 1 && time.month <= 12);
|
| + int month = time.month;
|
| + result += kSecondsPerDay * kDaysSinceJan[month];
|
| + if (month > 2 && IsLeapYear(year)) {
|
| + result += kSecondsPerDay;
|
| + }
|
| + assert(time.day >= 1 &&
|
| + time.day <= (month == 2 && IsLeapYear(year)
|
| + ? kDaysInMonth[month] + 1
|
| + : kDaysInMonth[month]));
|
| + result += kSecondsPerDay * (time.day - 1);
|
| + result += kSecondsPerHour * time.hour +
|
| + kSecondsPerMinute * time.minute +
|
| + time.second;
|
| + return result;
|
| +}
|
| +
|
| +// Format nanoseconds with either 3, 6, or 9 digits depending on the required
|
| +// precision to represent the exact value.
|
| +string FormatNanos(int32 nanos) {
|
| + if (nanos % kNanosPerMillisecond == 0) {
|
| + return StringPrintf("%03d", nanos / kNanosPerMillisecond);
|
| + } else if (nanos % kNanosPerMicrosecond == 0) {
|
| + return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
|
| + } else {
|
| + return StringPrintf("%09d", nanos);
|
| + }
|
| +}
|
| +
|
| +// Parses an integer from a null-terminated char sequence. The method
|
| +// consumes at most "width" chars. Returns a pointer after the consumed
|
| +// integer, or NULL if the data does not start with an integer or the
|
| +// integer value does not fall in the range of [min_value, max_value].
|
| +const char* ParseInt(const char* data, int width, int min_value,
|
| + int max_value, int* result) {
|
| + if (!ascii_isdigit(*data)) {
|
| + return NULL;
|
| + }
|
| + int value = 0;
|
| + for (int i = 0; i < width; ++i, ++data) {
|
| + if (ascii_isdigit(*data)) {
|
| + value = value * 10 + (*data - '0');
|
| + } else {
|
| + break;
|
| + }
|
| + }
|
| + if (value >= min_value && value <= max_value) {
|
| + *result = value;
|
| + return data;
|
| + } else {
|
| + return NULL;
|
| + }
|
| +}
|
| +
|
| +// Consumes the fractional parts of a second into nanos. For example,
|
| +// "010" will be parsed to 10000000 nanos.
|
| +const char* ParseNanos(const char* data, int32* nanos) {
|
| + if (!ascii_isdigit(*data)) {
|
| + return NULL;
|
| + }
|
| + int value = 0;
|
| + int len = 0;
|
| + // Consume as many digits as there are but only take the first 9 into
|
| + // account.
|
| + while (ascii_isdigit(*data)) {
|
| + if (len < 9) {
|
| + value = value * 10 + *data - '0';
|
| + }
|
| + ++len;
|
| + ++data;
|
| + }
|
| + while (len < 9) {
|
| + value = value * 10;
|
| + ++len;
|
| + }
|
| + *nanos = value;
|
| + return data;
|
| +}
|
| +
|
| +const char* ParseTimezoneOffset(const char* data, int64* offset) {
|
| + // Accept format "HH:MM". E.g., "08:00"
|
| + int hour;
|
| + if ((data = ParseInt(data, 2, 0, 23, &hour)) == NULL) {
|
| + return NULL;
|
| + }
|
| + if (*data++ != ':') {
|
| + return NULL;
|
| + }
|
| + int minute;
|
| + if ((data = ParseInt(data, 2, 0, 59, &minute)) == NULL) {
|
| + return NULL;
|
| + }
|
| + *offset = (hour * 60 + minute) * 60;
|
| + return data;
|
| +}
|
| +} // namespace
|
| +
|
| +bool SecondsToDateTime(int64 seconds, DateTime* time) {
|
| + if (seconds < kMinTime || seconds > kMaxTime) {
|
| + return false;
|
| + }
|
| + // It's easier to calcuate the DateTime starting from 0001-01-01T00:00:00
|
| + seconds = seconds + kSecondsFromEraToEpoch;
|
| + int year = 1;
|
| + if (seconds >= kSecondsPer400Years) {
|
| + int count_400years = seconds / kSecondsPer400Years;
|
| + year += 400 * count_400years;
|
| + seconds %= kSecondsPer400Years;
|
| + }
|
| + while (seconds >= SecondsPer100Years(year)) {
|
| + seconds -= SecondsPer100Years(year);
|
| + year += 100;
|
| + }
|
| + while (seconds >= SecondsPer4Years(year)) {
|
| + seconds -= SecondsPer4Years(year);
|
| + year += 4;
|
| + }
|
| + while (seconds >= SecondsPerYear(year)) {
|
| + seconds -= SecondsPerYear(year);
|
| + year += 1;
|
| + }
|
| + bool leap = IsLeapYear(year);
|
| + int month = 1;
|
| + while (seconds >= SecondsPerMonth(month, leap)) {
|
| + seconds -= SecondsPerMonth(month, leap);
|
| + ++month;
|
| + }
|
| + int day = 1 + seconds / kSecondsPerDay;
|
| + seconds %= kSecondsPerDay;
|
| + int hour = seconds / kSecondsPerHour;
|
| + seconds %= kSecondsPerHour;
|
| + int minute = seconds / kSecondsPerMinute;
|
| + seconds %= kSecondsPerMinute;
|
| + time->year = year;
|
| + time->month = month;
|
| + time->day = day;
|
| + time->hour = hour;
|
| + time->minute = minute;
|
| + time->second = static_cast<int>(seconds);
|
| + return true;
|
| +}
|
| +
|
| +bool DateTimeToSeconds(const DateTime& time, int64* seconds) {
|
| + if (!ValidateDateTime(time)) {
|
| + return false;
|
| + }
|
| + *seconds = SecondsSinceCommonEra(time) - kSecondsFromEraToEpoch;
|
| + return true;
|
| +}
|
| +
|
| +void GetCurrentTime(int64* seconds, int32* nanos) {
|
| + // TODO(xiaofeng): Improve the accuracy of this implementation (or just
|
| + // remove this method from protobuf).
|
| + *seconds = time(NULL);
|
| + *nanos = 0;
|
| +}
|
| +
|
| +string FormatTime(int64 seconds, int32 nanos) {
|
| + DateTime time;
|
| + if (nanos < 0 || nanos > 999999999 || !SecondsToDateTime(seconds, &time)) {
|
| + return "InvalidTime";
|
| + }
|
| + string result = StringPrintf("%04d-%02d-%02dT%02d:%02d:%02d",
|
| + time.year, time.month, time.day,
|
| + time.hour, time.minute, time.second);
|
| + if (nanos != 0) {
|
| + result += "." + FormatNanos(nanos);
|
| + }
|
| + return result + "Z";
|
| +}
|
| +
|
| +bool ParseTime(const string& value, int64* seconds, int32* nanos) {
|
| + DateTime time;
|
| + const char* data = value.c_str();
|
| + // We only accept:
|
| + // Z-normalized: 2015-05-20T13:29:35.120Z
|
| + // With UTC offset: 2015-05-20T13:29:35.120-08:00
|
| +
|
| + // Parse year
|
| + if ((data = ParseInt(data, 4, 1, 9999, &time.year)) == NULL) {
|
| + return false;
|
| + }
|
| + // Expect '-'
|
| + if (*data++ != '-') return false;
|
| + // Parse month
|
| + if ((data = ParseInt(data, 2, 1, 12, &time.month)) == NULL) {
|
| + return false;
|
| + }
|
| + // Expect '-'
|
| + if (*data++ != '-') return false;
|
| + // Parse day
|
| + if ((data = ParseInt(data, 2, 1, 31, &time.day)) == NULL) {
|
| + return false;
|
| + }
|
| + // Expect 'T'
|
| + if (*data++ != 'T') return false;
|
| + // Parse hour
|
| + if ((data = ParseInt(data, 2, 0, 23, &time.hour)) == NULL) {
|
| + return false;
|
| + }
|
| + // Expect ':'
|
| + if (*data++ != ':') return false;
|
| + // Parse minute
|
| + if ((data = ParseInt(data, 2, 0, 59, &time.minute)) == NULL) {
|
| + return false;
|
| + }
|
| + // Expect ':'
|
| + if (*data++ != ':') return false;
|
| + // Parse second
|
| + if ((data = ParseInt(data, 2, 0, 59, &time.second)) == NULL) {
|
| + return false;
|
| + }
|
| + if (!DateTimeToSeconds(time, seconds)) {
|
| + return false;
|
| + }
|
| + // Parse nanoseconds.
|
| + if (*data == '.') {
|
| + ++data;
|
| + // Parse nanoseconds.
|
| + if ((data = ParseNanos(data, nanos)) == NULL) {
|
| + return false;
|
| + }
|
| + } else {
|
| + *nanos = 0;
|
| + }
|
| + // Parse UTC offsets.
|
| + if (*data == 'Z') {
|
| + ++data;
|
| + } else if (*data == '+') {
|
| + ++data;
|
| + int64 offset;
|
| + if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
|
| + return false;
|
| + }
|
| + *seconds -= offset;
|
| + } else if (*data == '-') {
|
| + ++data;
|
| + int64 offset;
|
| + if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
|
| + return false;
|
| + }
|
| + *seconds += offset;
|
| + } else {
|
| + return false;
|
| + }
|
| + // Done with parsing.
|
| + return *data == 0;
|
| +}
|
| +
|
| +} // namespace internal
|
| +} // namespace protobuf
|
| +} // namespace google
|
|
|