Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: third_party/protobuf/ruby/ext/google/protobuf_c/upb.h

Issue 1842653006: Update //third_party/protobuf to version 3. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: merge Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Amalgamated source file
2 /*
3 ** Defs are upb's internal representation of the constructs that can appear
4 ** in a .proto file:
5 **
6 ** - upb::MessageDef (upb_msgdef): describes a "message" construct.
7 ** - upb::FieldDef (upb_fielddef): describes a message field.
8 ** - upb::EnumDef (upb_enumdef): describes an enum.
9 ** - upb::OneofDef (upb_oneofdef): describes a oneof.
10 ** - upb::Def (upb_def): base class of all the others.
11 **
12 ** TODO: definitions of services.
13 **
14 ** Like upb_refcounted objects, defs are mutable only until frozen, and are
15 ** only thread-safe once frozen.
16 **
17 ** This is a mixed C/C++ interface that offers a full API to both languages.
18 ** See the top-level README for more information.
19 */
20
21 #ifndef UPB_DEF_H_
22 #define UPB_DEF_H_
23
24 /*
25 ** upb::RefCounted (upb_refcounted)
26 **
27 ** A refcounting scheme that supports circular refs. It accomplishes this by
28 ** partitioning the set of objects into groups such that no cycle spans groups;
29 ** we can then reference-count the group as a whole and ignore refs within the
30 ** group. When objects are mutable, these groups are computed very
31 ** conservatively; we group any objects that have ever had a link between them.
32 ** When objects are frozen, we compute strongly-connected components which
33 ** allows us to be precise and only group objects that are actually cyclic.
34 **
35 ** This is a mixed C/C++ interface that offers a full API to both languages.
36 ** See the top-level README for more information.
37 */
38
39 #ifndef UPB_REFCOUNTED_H_
40 #define UPB_REFCOUNTED_H_
41
42 /*
43 ** upb_table
44 **
45 ** This header is INTERNAL-ONLY! Its interfaces are not public or stable!
46 ** This file defines very fast int->upb_value (inttable) and string->upb_value
47 ** (strtable) hash tables.
48 **
49 ** The table uses chained scatter with Brent's variation (inspired by the Lua
50 ** implementation of hash tables). The hash function for strings is Austin
51 ** Appleby's "MurmurHash."
52 **
53 ** The inttable uses uintptr_t as its key, which guarantees it can be used to
54 ** store pointers or integers of at least 32 bits (upb isn't really useful on
55 ** systems where sizeof(void*) < 4).
56 **
57 ** The table must be homogenous (all values of the same type). In debug
58 ** mode, we check this on insert and lookup.
59 */
60
61 #ifndef UPB_TABLE_H_
62 #define UPB_TABLE_H_
63
64 #include <assert.h>
65 #include <stdint.h>
66 #include <string.h>
67 /*
68 ** This file contains shared definitions that are widely used across upb.
69 **
70 ** This is a mixed C/C++ interface that offers a full API to both languages.
71 ** See the top-level README for more information.
72 */
73
74 #ifndef UPB_H_
75 #define UPB_H_
76
77 #include <assert.h>
78 #include <stdarg.h>
79 #include <stdbool.h>
80 #include <stddef.h>
81
82 /* UPB_INLINE: inline if possible, emit standalone code if required. */
83 #ifdef __cplusplus
84 #define UPB_INLINE inline
85 #elif defined (__GNUC__)
86 #define UPB_INLINE static __inline__
87 #else
88 #define UPB_INLINE static
89 #endif
90
91 /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
92 * doesn't provide these preprocessor symbols. */
93 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
94 #define UPB_BIG_ENDIAN
95 #endif
96
97 /* Macros for function attributes on compilers that support them. */
98 #ifdef __GNUC__
99 #define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
100 #define UPB_NOINLINE __attribute__((noinline))
101 #define UPB_NORETURN __attribute__((__noreturn__))
102 #else /* !defined(__GNUC__) */
103 #define UPB_FORCEINLINE
104 #define UPB_NOINLINE
105 #define UPB_NORETURN
106 #endif
107
108 /* A few hacky workarounds for functions not in C89.
109 * For internal use only!
110 * TODO(haberman): fix these by including our own implementations, or finding
111 * another workaround.
112 */
113 #ifdef __GNUC__
114 #define _upb_snprintf __builtin_snprintf
115 #define _upb_vsnprintf __builtin_vsnprintf
116 #define _upb_va_copy(a, b) __va_copy(a, b)
117 #elif __STDC_VERSION__ >= 199901L
118 /* C99 versions. */
119 #define _upb_snprintf snprintf
120 #define _upb_vsnprintf vsnprintf
121 #define _upb_va_copy(a, b) va_copy(a, b)
122 #else
123 #error Need implementations of [v]snprintf and va_copy
124 #endif
125
126
127 #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
128 defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
129 #define UPB_CXX11
130 #endif
131
132 /* UPB_DISALLOW_COPY_AND_ASSIGN()
133 * UPB_DISALLOW_POD_OPS()
134 *
135 * Declare these in the "private" section of a C++ class to forbid copy/assign
136 * or all POD ops (construct, destruct, copy, assign) on that class. */
137 #ifdef UPB_CXX11
138 #include <type_traits>
139 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
140 class_name(const class_name&) = delete; \
141 void operator=(const class_name&) = delete;
142 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
143 class_name() = delete; \
144 ~class_name() = delete; \
145 UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
146 #define UPB_ASSERT_STDLAYOUT(type) \
147 static_assert(std::is_standard_layout<type>::value, \
148 #type " must be standard layout");
149 #else /* !defined(UPB_CXX11) */
150 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
151 class_name(const class_name&); \
152 void operator=(const class_name&);
153 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
154 class_name(); \
155 ~class_name(); \
156 UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
157 #define UPB_ASSERT_STDLAYOUT(type)
158 #endif
159
160 /* UPB_DECLARE_TYPE()
161 * UPB_DECLARE_DERIVED_TYPE()
162 * UPB_DECLARE_DERIVED_TYPE2()
163 *
164 * Macros for declaring C and C++ types both, including inheritance.
165 * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
166 *
167 * These macros also provide upcasts:
168 * - in C: types-specific functions (ie. upb_foo_upcast(foo))
169 * - in C++: upb::upcast(foo) along with implicit conversions
170 *
171 * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
172
173 #define UPB_C_UPCASTS(ty, base) \
174 UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
175 UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
176
177 #define UPB_C_UPCASTS2(ty, base, base2) \
178 UPB_C_UPCASTS(ty, base) \
179 UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
180 UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
181
182 #ifdef __cplusplus
183
184 #define UPB_BEGIN_EXTERN_C extern "C" {
185 #define UPB_END_EXTERN_C }
186 #define UPB_PRIVATE_FOR_CPP private:
187 #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
188
189 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
190 UPB_DECLARE_TYPE(cppname, cname) \
191 UPB_C_UPCASTS(cname, cbase) \
192 namespace upb { \
193 template <> \
194 class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
195 public: \
196 explicit Pointer(cppname* ptr) : PointerBase(ptr) {} \
197 }; \
198 template <> \
199 class Pointer<const cppname> \
200 : public PointerBase<const cppname, const cppbase> { \
201 public: \
202 explicit Pointer(const cppname* ptr) : PointerBase(ptr) {} \
203 }; \
204 }
205
206 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase, \
207 cbase2) \
208 UPB_DECLARE_TYPE(cppname, cname) \
209 UPB_C_UPCASTS2(cname, cbase, cbase2) \
210 namespace upb { \
211 template <> \
212 class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
213 public: \
214 explicit Pointer(cppname* ptr) : PointerBase2(ptr) {} \
215 }; \
216 template <> \
217 class Pointer<const cppname> \
218 : public PointerBase2<const cppname, const cppbase, const cppbase2> { \
219 public: \
220 explicit Pointer(const cppname* ptr) : PointerBase2(ptr) {} \
221 }; \
222 }
223
224 #else /* !defined(__cplusplus) */
225
226 #define UPB_BEGIN_EXTERN_C
227 #define UPB_END_EXTERN_C
228 #define UPB_PRIVATE_FOR_CPP
229 #define UPB_DECLARE_TYPE(cppname, cname) \
230 struct cname; \
231 typedef struct cname cname;
232 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
233 UPB_DECLARE_TYPE(cppname, cname) \
234 UPB_C_UPCASTS(cname, cbase)
235 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, \
236 cname, cbase, cbase2) \
237 UPB_DECLARE_TYPE(cppname, cname) \
238 UPB_C_UPCASTS2(cname, cbase, cbase2)
239
240 #endif /* defined(__cplusplus) */
241
242 #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
243 #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
244
245 #define UPB_UNUSED(var) (void)var
246
247 /* For asserting something about a variable when the variable is not used for
248 * anything else. This prevents "unused variable" warnings when compiling in
249 * debug mode. */
250 #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
251
252 /* Generic function type. */
253 typedef void upb_func();
254
255 /* C++ Casts ******************************************************************/
256
257 #ifdef __cplusplus
258
259 namespace upb {
260
261 template <class T> class Pointer;
262
263 /* Casts to a subclass. The caller must know that cast is correct; an
264 * incorrect cast will throw an assertion failure in debug mode.
265 *
266 * Example:
267 * upb::Def* def = GetDef();
268 * // Assert-fails if this was not actually a MessageDef.
269 * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
270 *
271 * Note that downcasts are only defined for some types (at the moment you can
272 * only downcast from a upb::Def to a specific Def type). */
273 template<class To, class From> To down_cast(From* f);
274
275 /* Casts to a subclass. If the class does not actually match the given To type,
276 * returns NULL.
277 *
278 * Example:
279 * upb::Def* def = GetDef();
280 * // md will be NULL if this was not actually a MessageDef.
281 * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
282 *
283 * Note that dynamic casts are only defined for some types (at the moment you
284 * can only downcast from a upb::Def to a specific Def type).. */
285 template<class To, class From> To dyn_cast(From* f);
286
287 /* Casts to any base class, or the type itself (ie. can be a no-op).
288 *
289 * Example:
290 * upb::MessageDef* md = GetDef();
291 * // This will fail to compile if this wasn't actually a base class.
292 * upb::Def* def = upb::upcast(md);
293 */
294 template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
295
296 /* Attempt upcast to specific base class.
297 *
298 * Example:
299 * upb::MessageDef* md = GetDef();
300 * upb::upcast_to<upb::Def>(md)->MethodOnDef();
301 */
302 template <class T, class F> inline T* upcast_to(F *f) {
303 return static_cast<T*>(upcast(f));
304 }
305
306 /* PointerBase<T>: implementation detail of upb::upcast().
307 * It is implicitly convertable to pointers to the Base class(es).
308 */
309 template <class T, class Base>
310 class PointerBase {
311 public:
312 explicit PointerBase(T* ptr) : ptr_(ptr) {}
313 operator T*() { return ptr_; }
314 operator Base*() { return (Base*)ptr_; }
315
316 private:
317 T* ptr_;
318 };
319
320 template <class T, class Base, class Base2>
321 class PointerBase2 : public PointerBase<T, Base> {
322 public:
323 explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
324 operator Base2*() { return Pointer<Base>(*this); }
325 };
326
327 }
328
329 #endif
330
331
332 /* upb::reffed_ptr ************************************************************/
333
334 #ifdef __cplusplus
335
336 #include <algorithm> /* For std::swap(). */
337
338 namespace upb {
339
340 /* Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a
341 * ref on whatever object it points to (if any). */
342 template <class T> class reffed_ptr {
343 public:
344 reffed_ptr() : ptr_(NULL) {}
345
346 /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
347 template <class U>
348 reffed_ptr(U* val, const void* ref_donor = NULL)
349 : ptr_(upb::upcast(val)) {
350 if (ref_donor) {
351 assert(ptr_);
352 ptr_->DonateRef(ref_donor, this);
353 } else if (ptr_) {
354 ptr_->Ref(this);
355 }
356 }
357
358 template <class U>
359 reffed_ptr(const reffed_ptr<U>& other)
360 : ptr_(upb::upcast(other.get())) {
361 if (ptr_) ptr_->Ref(this);
362 }
363
364 ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
365
366 template <class U>
367 reffed_ptr& operator=(const reffed_ptr<U>& other) {
368 reset(other.get());
369 return *this;
370 }
371
372 reffed_ptr& operator=(const reffed_ptr& other) {
373 reset(other.get());
374 return *this;
375 }
376
377 /* TODO(haberman): add C++11 move construction/assignment for greater
378 * efficiency. */
379
380 void swap(reffed_ptr& other) {
381 if (ptr_ == other.ptr_) {
382 return;
383 }
384
385 if (ptr_) ptr_->DonateRef(this, &other);
386 if (other.ptr_) other.ptr_->DonateRef(&other, this);
387 std::swap(ptr_, other.ptr_);
388 }
389
390 T& operator*() const {
391 assert(ptr_);
392 return *ptr_;
393 }
394
395 T* operator->() const {
396 assert(ptr_);
397 return ptr_;
398 }
399
400 T* get() const { return ptr_; }
401
402 /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
403 template <class U>
404 void reset(U* ptr = NULL, const void* ref_donor = NULL) {
405 reffed_ptr(ptr, ref_donor).swap(*this);
406 }
407
408 template <class U>
409 reffed_ptr<U> down_cast() {
410 return reffed_ptr<U>(upb::down_cast<U*>(get()));
411 }
412
413 template <class U>
414 reffed_ptr<U> dyn_cast() {
415 return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
416 }
417
418 /* Plain release() is unsafe; if we were the only owner, it would leak the
419 * object. Instead we provide this: */
420 T* ReleaseTo(const void* new_owner) {
421 T* ret = NULL;
422 ptr_->DonateRef(this, new_owner);
423 std::swap(ret, ptr_);
424 return ret;
425 }
426
427 private:
428 T* ptr_;
429 };
430
431 } /* namespace upb */
432
433 #endif /* __cplusplus */
434
435
436 /* upb::Status ****************************************************************/
437
438 #ifdef __cplusplus
439 namespace upb {
440 class ErrorSpace;
441 class Status;
442 }
443 #endif
444
445 UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
446 UPB_DECLARE_TYPE(upb::Status, upb_status)
447
448 /* The maximum length of an error message before it will get truncated. */
449 #define UPB_STATUS_MAX_MESSAGE 128
450
451 /* An error callback function is used to report errors from some component.
452 * The function can return "true" to indicate that the component should try
453 * to recover and proceed, but this is not always possible. */
454 typedef bool upb_errcb_t(void *closure, const upb_status* status);
455
456 #ifdef __cplusplus
457 class upb::ErrorSpace {
458 #else
459 struct upb_errorspace {
460 #endif
461 const char *name;
462 /* Should the error message in the status object according to this code. */
463 void (*set_message)(upb_status* status, int code);
464 };
465
466 #ifdef __cplusplus
467
468 /* Object representing a success or failure status.
469 * It owns no resources and allocates no memory, so it should work
470 * even in OOM situations. */
471
472 class upb::Status {
473 public:
474 Status();
475
476 /* Returns true if there is no error. */
477 bool ok() const;
478
479 /* Optional error space and code, useful if the caller wants to
480 * programmatically check the specific kind of error. */
481 ErrorSpace* error_space();
482 int code() const;
483
484 const char *error_message() const;
485
486 /* The error message will be truncated if it is longer than
487 * UPB_STATUS_MAX_MESSAGE-4. */
488 void SetErrorMessage(const char* msg);
489 void SetFormattedErrorMessage(const char* fmt, ...);
490
491 /* If there is no error message already, this will use the ErrorSpace to
492 * populate the error message for this code. The caller can still call
493 * SetErrorMessage() to give a more specific message. */
494 void SetErrorCode(ErrorSpace* space, int code);
495
496 /* Resets the status to a successful state with no message. */
497 void Clear();
498
499 void CopyFrom(const Status& other);
500
501 private:
502 UPB_DISALLOW_COPY_AND_ASSIGN(Status)
503 #else
504 struct upb_status {
505 #endif
506 bool ok_;
507
508 /* Specific status code defined by some error space (optional). */
509 int code_;
510 upb_errorspace *error_space_;
511
512 /* Error message; NULL-terminated. */
513 char msg[UPB_STATUS_MAX_MESSAGE];
514 };
515
516 #define UPB_STATUS_INIT {true, 0, NULL, {0}}
517
518 #ifdef __cplusplus
519 extern "C" {
520 #endif
521
522 /* The returned string is invalidated by any other call into the status. */
523 const char *upb_status_errmsg(const upb_status *status);
524 bool upb_ok(const upb_status *status);
525 upb_errorspace *upb_status_errspace(const upb_status *status);
526 int upb_status_errcode(const upb_status *status);
527
528 /* Any of the functions that write to a status object allow status to be NULL,
529 * to support use cases where the function's caller does not care about the
530 * status message. */
531 void upb_status_clear(upb_status *status);
532 void upb_status_seterrmsg(upb_status *status, const char *msg);
533 void upb_status_seterrf(upb_status *status, const char *fmt, ...);
534 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
535 void upb_status_seterrcode(upb_status *status, upb_errorspace *space, int code);
536 void upb_status_copy(upb_status *to, const upb_status *from);
537
538 #ifdef __cplusplus
539 } /* extern "C" */
540
541 namespace upb {
542
543 /* C++ Wrappers */
544 inline Status::Status() { Clear(); }
545 inline bool Status::ok() const { return upb_ok(this); }
546 inline const char* Status::error_message() const {
547 return upb_status_errmsg(this);
548 }
549 inline void Status::SetErrorMessage(const char* msg) {
550 upb_status_seterrmsg(this, msg);
551 }
552 inline void Status::SetFormattedErrorMessage(const char* fmt, ...) {
553 va_list args;
554 va_start(args, fmt);
555 upb_status_vseterrf(this, fmt, args);
556 va_end(args);
557 }
558 inline void Status::SetErrorCode(ErrorSpace* space, int code) {
559 upb_status_seterrcode(this, space, code);
560 }
561 inline void Status::Clear() { upb_status_clear(this); }
562 inline void Status::CopyFrom(const Status& other) {
563 upb_status_copy(this, &other);
564 }
565
566 } /* namespace upb */
567
568 #endif
569
570 #endif /* UPB_H_ */
571
572 #ifdef __cplusplus
573 extern "C" {
574 #endif
575
576
577 /* upb_value ******************************************************************/
578
579 /* A tagged union (stored untagged inside the table) so that we can check that
580 * clients calling table accessors are correctly typed without having to have
581 * an explosion of accessors. */
582 typedef enum {
583 UPB_CTYPE_INT32 = 1,
584 UPB_CTYPE_INT64 = 2,
585 UPB_CTYPE_UINT32 = 3,
586 UPB_CTYPE_UINT64 = 4,
587 UPB_CTYPE_BOOL = 5,
588 UPB_CTYPE_CSTR = 6,
589 UPB_CTYPE_PTR = 7,
590 UPB_CTYPE_CONSTPTR = 8,
591 UPB_CTYPE_FPTR = 9
592 } upb_ctype_t;
593
594 typedef struct {
595 uint64_t val;
596 #ifndef NDEBUG
597 /* In debug mode we carry the value type around also so we can check accesses
598 * to be sure the right member is being read. */
599 upb_ctype_t ctype;
600 #endif
601 } upb_value;
602
603 #ifdef NDEBUG
604 #define SET_TYPE(dest, val) UPB_UNUSED(val)
605 #else
606 #define SET_TYPE(dest, val) dest = val
607 #endif
608
609 /* Like strdup(), which isn't always available since it's not ANSI C. */
610 char *upb_strdup(const char *s);
611 /* Variant that works with a length-delimited rather than NULL-delimited string,
612 * as supported by strtable. */
613 char *upb_strdup2(const char *s, size_t len);
614
615 UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
616 upb_ctype_t ctype) {
617 v->val = val;
618 SET_TYPE(v->ctype, ctype);
619 }
620
621 UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
622 upb_value ret;
623 _upb_value_setval(&ret, val, ctype);
624 return ret;
625 }
626
627 /* For each value ctype, define the following set of functions:
628 *
629 * // Get/set an int32 from a upb_value.
630 * int32_t upb_value_getint32(upb_value val);
631 * void upb_value_setint32(upb_value *val, int32_t cval);
632 *
633 * // Construct a new upb_value from an int32.
634 * upb_value upb_value_int32(int32_t val); */
635 #define FUNCS(name, membername, type_t, converter, proto_type) \
636 UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
637 val->val = (converter)cval; \
638 SET_TYPE(val->ctype, proto_type); \
639 } \
640 UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
641 upb_value ret; \
642 upb_value_set ## name(&ret, val); \
643 return ret; \
644 } \
645 UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
646 assert(val.ctype == proto_type); \
647 return (type_t)(converter)val.val; \
648 }
649
650 FUNCS(int32, int32, int32_t, int32_t, UPB_CTYPE_INT32)
651 FUNCS(int64, int64, int64_t, int64_t, UPB_CTYPE_INT64)
652 FUNCS(uint32, uint32, uint32_t, uint32_t, UPB_CTYPE_UINT32)
653 FUNCS(uint64, uint64, uint64_t, uint64_t, UPB_CTYPE_UINT64)
654 FUNCS(bool, _bool, bool, bool, UPB_CTYPE_BOOL)
655 FUNCS(cstr, cstr, char*, uintptr_t, UPB_CTYPE_CSTR)
656 FUNCS(ptr, ptr, void*, uintptr_t, UPB_CTYPE_PTR)
657 FUNCS(constptr, constptr, const void*, uintptr_t, UPB_CTYPE_CONSTPTR)
658 FUNCS(fptr, fptr, upb_func*, uintptr_t, UPB_CTYPE_FPTR)
659
660 #undef FUNCS
661 #undef SET_TYPE
662
663
664 /* upb_tabkey *****************************************************************/
665
666 /* Either:
667 * 1. an actual integer key, or
668 * 2. a pointer to a string prefixed by its uint32_t length, owned by us.
669 *
670 * ...depending on whether this is a string table or an int table. We would
671 * make this a union of those two types, but C89 doesn't support statically
672 * initializing a non-first union member. */
673 typedef uintptr_t upb_tabkey;
674
675 #define UPB_TABKEY_NUM(n) n
676 #define UPB_TABKEY_NONE 0
677 /* The preprocessor isn't quite powerful enough to turn the compile-time string
678 * length into a byte-wise string representation, so code generation needs to
679 * help it along.
680 *
681 * "len1" is the low byte and len4 is the high byte. */
682 #ifdef UPB_BIG_ENDIAN
683 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
684 (uintptr_t)(len4 len3 len2 len1 strval)
685 #else
686 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
687 (uintptr_t)(len1 len2 len3 len4 strval)
688 #endif
689
690 UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
691 char* mem = (char*)key;
692 if (len) memcpy(len, mem, sizeof(*len));
693 return mem + sizeof(*len);
694 }
695
696
697 /* upb_tabval *****************************************************************/
698
699 #ifdef __cplusplus
700
701 /* Status initialization not supported.
702 *
703 * This separate definition is necessary because in C++, UINTPTR_MAX isn't
704 * reliably available. */
705 typedef struct {
706 uint64_t val;
707 } upb_tabval;
708
709 #else
710
711 /* C -- supports static initialization, but to support static initialization of
712 * both integers and points for both 32 and 64 bit targets, it takes a little
713 * bit of doing. */
714
715 #if UINTPTR_MAX == 0xffffffffffffffffULL
716 #define UPB_PTR_IS_64BITS
717 #elif UINTPTR_MAX != 0xffffffff
718 #error Could not determine how many bits pointers are.
719 #endif
720
721 typedef union {
722 /* For static initialization.
723 *
724 * Unfortunately this ugliness is necessary -- it is the only way that we can,
725 * with -std=c89 -pedantic, statically initialize this to either a pointer or
726 * an integer on 32-bit platforms. */
727 struct {
728 #ifdef UPB_PTR_IS_64BITS
729 uintptr_t val;
730 #else
731 uintptr_t val1;
732 uintptr_t val2;
733 #endif
734 } staticinit;
735
736 /* The normal accessor that we use for everything at runtime. */
737 uint64_t val;
738 } upb_tabval;
739
740 #ifdef UPB_PTR_IS_64BITS
741 #define UPB_TABVALUE_INT_INIT(v) {{v}}
742 #define UPB_TABVALUE_EMPTY_INIT {{-1}}
743 #else
744
745 /* 32-bit pointers */
746
747 #ifdef UPB_BIG_ENDIAN
748 #define UPB_TABVALUE_INT_INIT(v) {{0, v}}
749 #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}}
750 #else
751 #define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
752 #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}}
753 #endif
754
755 #endif
756
757 #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
758
759 #undef UPB_PTR_IS_64BITS
760
761 #endif /* __cplusplus */
762
763
764 /* upb_table ******************************************************************/
765
766 typedef struct _upb_tabent {
767 upb_tabkey key;
768 upb_tabval val;
769
770 /* Internal chaining. This is const so we can create static initializers for
771 * tables. We cast away const sometimes, but *only* when the containing
772 * upb_table is known to be non-const. This requires a bit of care, but
773 * the subtlety is confined to table.c. */
774 const struct _upb_tabent *next;
775 } upb_tabent;
776
777 typedef struct {
778 size_t count; /* Number of entries in the hash part. */
779 size_t mask; /* Mask to turn hash value -> bucket. */
780 upb_ctype_t ctype; /* Type of all values. */
781 uint8_t size_lg2; /* Size of the hashtable part is 2^size_lg2 entries. */
782
783 /* Hash table entries.
784 * Making this const isn't entirely accurate; what we really want is for it to
785 * have the same const-ness as the table it's inside. But there's no way to
786 * declare that in C. So we have to make it const so that we can statically
787 * initialize const hash tables. Then we cast away const when we have to.
788 */
789 const upb_tabent *entries;
790 } upb_table;
791
792 typedef struct {
793 upb_table t;
794 } upb_strtable;
795
796 #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
797 {{count, mask, ctype, size_lg2, entries}}
798
799 #define UPB_EMPTY_STRTABLE_INIT(ctype) \
800 UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
801
802 typedef struct {
803 upb_table t; /* For entries that don't fit in the array part. */
804 const upb_tabval *array; /* Array part of the table. See const note above. */
805 size_t array_size; /* Array part size. */
806 size_t array_count; /* Array part number of elements. */
807 } upb_inttable;
808
809 #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
810 {{count, mask, ctype, size_lg2, ent}, a, asize, acount}
811
812 #define UPB_EMPTY_INTTABLE_INIT(ctype) \
813 UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
814
815 #define UPB_ARRAY_EMPTYENT -1
816
817 UPB_INLINE size_t upb_table_size(const upb_table *t) {
818 if (t->size_lg2 == 0)
819 return 0;
820 else
821 return 1 << t->size_lg2;
822 }
823
824 /* Internal-only functions, in .h file only out of necessity. */
825 UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
826 return e->key == 0;
827 }
828
829 /* Used by some of the unit tests for generic hashing functionality. */
830 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
831
832 UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
833 return key;
834 }
835
836 UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
837 return (uint32_t)key;
838 }
839
840 static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
841 return t->entries + (hash & t->mask);
842 }
843
844 UPB_INLINE bool upb_arrhas(upb_tabval key) {
845 return key.val != (uint64_t)-1;
846 }
847
848 /* Initialize and uninitialize a table, respectively. If memory allocation
849 * failed, false is returned that the table is uninitialized. */
850 bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype);
851 bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype);
852 void upb_inttable_uninit(upb_inttable *table);
853 void upb_strtable_uninit(upb_strtable *table);
854
855 /* Returns the number of values in the table. */
856 size_t upb_inttable_count(const upb_inttable *t);
857 UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
858 return t->t.count;
859 }
860
861 /* Inserts the given key into the hashtable with the given value. The key must
862 * not already exist in the hash table. For string tables, the key must be
863 * NULL-terminated, and the table will make an internal copy of the key.
864 * Inttables must not insert a value of UINTPTR_MAX.
865 *
866 * If a table resize was required but memory allocation failed, false is
867 * returned and the table is unchanged. */
868 bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val);
869 bool upb_strtable_insert2(upb_strtable *t, const char *key, size_t len,
870 upb_value val);
871
872 /* For NULL-terminated strings. */
873 UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
874 upb_value val) {
875 return upb_strtable_insert2(t, key, strlen(key), val);
876 }
877
878 /* Looks up key in this table, returning "true" if the key was found.
879 * If v is non-NULL, copies the value for this key into *v. */
880 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
881 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
882 upb_value *v);
883
884 /* For NULL-terminated strings. */
885 UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
886 upb_value *v) {
887 return upb_strtable_lookup2(t, key, strlen(key), v);
888 }
889
890 /* Removes an item from the table. Returns true if the remove was successful,
891 * and stores the removed item in *val if non-NULL. */
892 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
893 bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
894 upb_value *val);
895
896 /* For NULL-terminated strings. */
897 UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
898 upb_value *v) {
899 return upb_strtable_remove2(t, key, strlen(key), v);
900 }
901
902 /* Updates an existing entry in an inttable. If the entry does not exist,
903 * returns false and does nothing. Unlike insert/remove, this does not
904 * invalidate iterators. */
905 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
906
907 /* Handy routines for treating an inttable like a stack. May not be mixed with
908 * other insert/remove calls. */
909 bool upb_inttable_push(upb_inttable *t, upb_value val);
910 upb_value upb_inttable_pop(upb_inttable *t);
911
912 /* Convenience routines for inttables with pointer keys. */
913 bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val);
914 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
915 bool upb_inttable_lookupptr(
916 const upb_inttable *t, const void *key, upb_value *val);
917
918 /* Optimizes the table for the current set of entries, for both memory use and
919 * lookup time. Client should call this after all entries have been inserted;
920 * inserting more entries is legal, but will likely require a table resize. */
921 void upb_inttable_compact(upb_inttable *t);
922
923 /* A special-case inlinable version of the lookup routine for 32-bit
924 * integers. */
925 UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
926 upb_value *v) {
927 *v = upb_value_int32(0); /* Silence compiler warnings. */
928 if (key < t->array_size) {
929 upb_tabval arrval = t->array[key];
930 if (upb_arrhas(arrval)) {
931 _upb_value_setval(v, arrval.val, t->t.ctype);
932 return true;
933 } else {
934 return false;
935 }
936 } else {
937 const upb_tabent *e;
938 if (t->t.entries == NULL) return false;
939 for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
940 if ((uint32_t)e->key == key) {
941 _upb_value_setval(v, e->val.val, t->t.ctype);
942 return true;
943 }
944 if (e->next == NULL) return false;
945 }
946 }
947 }
948
949 /* Exposed for testing only. */
950 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2);
951
952 /* Iterators ******************************************************************/
953
954 /* Iterators for int and string tables. We are subject to some kind of unusual
955 * design constraints:
956 *
957 * For high-level languages:
958 * - we must be able to guarantee that we don't crash or corrupt memory even if
959 * the program accesses an invalidated iterator.
960 *
961 * For C++11 range-based for:
962 * - iterators must be copyable
963 * - iterators must be comparable
964 * - it must be possible to construct an "end" value.
965 *
966 * Iteration order is undefined.
967 *
968 * Modifying the table invalidates iterators. upb_{str,int}table_done() is
969 * guaranteed to work even on an invalidated iterator, as long as the table it
970 * is iterating over has not been freed. Calling next() or accessing data from
971 * an invalidated iterator yields unspecified elements from the table, but it is
972 * guaranteed not to crash and to return real table elements (except when done()
973 * is true). */
974
975
976 /* upb_strtable_iter **********************************************************/
977
978 /* upb_strtable_iter i;
979 * upb_strtable_begin(&i, t);
980 * for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
981 * const char *key = upb_strtable_iter_key(&i);
982 * const upb_value val = upb_strtable_iter_value(&i);
983 * // ...
984 * }
985 */
986
987 typedef struct {
988 const upb_strtable *t;
989 size_t index;
990 } upb_strtable_iter;
991
992 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
993 void upb_strtable_next(upb_strtable_iter *i);
994 bool upb_strtable_done(const upb_strtable_iter *i);
995 const char *upb_strtable_iter_key(upb_strtable_iter *i);
996 size_t upb_strtable_iter_keylength(upb_strtable_iter *i);
997 upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
998 void upb_strtable_iter_setdone(upb_strtable_iter *i);
999 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
1000 const upb_strtable_iter *i2);
1001
1002
1003 /* upb_inttable_iter **********************************************************/
1004
1005 /* upb_inttable_iter i;
1006 * upb_inttable_begin(&i, t);
1007 * for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
1008 * uintptr_t key = upb_inttable_iter_key(&i);
1009 * upb_value val = upb_inttable_iter_value(&i);
1010 * // ...
1011 * }
1012 */
1013
1014 typedef struct {
1015 const upb_inttable *t;
1016 size_t index;
1017 bool array_part;
1018 } upb_inttable_iter;
1019
1020 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
1021 void upb_inttable_next(upb_inttable_iter *i);
1022 bool upb_inttable_done(const upb_inttable_iter *i);
1023 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
1024 upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
1025 void upb_inttable_iter_setdone(upb_inttable_iter *i);
1026 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
1027 const upb_inttable_iter *i2);
1028
1029
1030 #ifdef __cplusplus
1031 } /* extern "C" */
1032 #endif
1033
1034 #endif /* UPB_TABLE_H_ */
1035
1036 /* Reference tracking will check ref()/unref() operations to make sure the
1037 * ref ownership is correct. Where possible it will also make tools like
1038 * Valgrind attribute ref leaks to the code that took the leaked ref, not
1039 * the code that originally created the object.
1040 *
1041 * Enabling this requires the application to define upb_lock()/upb_unlock()
1042 * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
1043 * For this reason we don't enable it by default, even in debug builds.
1044 */
1045
1046 /* #define UPB_DEBUG_REFS */
1047
1048 #ifdef __cplusplus
1049 namespace upb { class RefCounted; }
1050 #endif
1051
1052 UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
1053
1054 struct upb_refcounted_vtbl;
1055
1056 #ifdef __cplusplus
1057
1058 class upb::RefCounted {
1059 public:
1060 /* Returns true if the given object is frozen. */
1061 bool IsFrozen() const;
1062
1063 /* Increases the ref count, the new ref is owned by "owner" which must not
1064 * already own a ref (and should not itself be a refcounted object if the ref
1065 * could possibly be circular; see below).
1066 * Thread-safe iff "this" is frozen. */
1067 void Ref(const void *owner) const;
1068
1069 /* Release a ref that was acquired from upb_refcounted_ref() and collects any
1070 * objects it can. */
1071 void Unref(const void *owner) const;
1072
1073 /* Moves an existing ref from "from" to "to", without changing the overall
1074 * ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
1075 * but "to" may not be NULL. */
1076 void DonateRef(const void *from, const void *to) const;
1077
1078 /* Verifies that a ref to the given object is currently held by the given
1079 * owner. Only effective in UPB_DEBUG_REFS builds. */
1080 void CheckRef(const void *owner) const;
1081
1082 private:
1083 UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
1084 #else
1085 struct upb_refcounted {
1086 #endif
1087 /* TODO(haberman): move the actual structure definition to structdefs.int.h.
1088 * The only reason they are here is because inline functions need to see the
1089 * definition of upb_handlers, which needs to see this definition. But we
1090 * can change the upb_handlers inline functions to deal in raw offsets
1091 * instead.
1092 */
1093
1094 /* A single reference count shared by all objects in the group. */
1095 uint32_t *group;
1096
1097 /* A singly-linked list of all objects in the group. */
1098 upb_refcounted *next;
1099
1100 /* Table of function pointers for this type. */
1101 const struct upb_refcounted_vtbl *vtbl;
1102
1103 /* Maintained only when mutable, this tracks the number of refs (but not
1104 * ref2's) to this object. *group should be the sum of all individual_count
1105 * in the group. */
1106 uint32_t individual_count;
1107
1108 bool is_frozen;
1109
1110 #ifdef UPB_DEBUG_REFS
1111 upb_inttable *refs; /* Maps owner -> trackedref for incoming refs. */
1112 upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
1113 #endif
1114 };
1115
1116 #ifdef UPB_DEBUG_REFS
1117 #define UPB_REFCOUNT_INIT(refs, ref2s) \
1118 {&static_refcount, NULL, NULL, 0, true, refs, ref2s}
1119 #else
1120 #define UPB_REFCOUNT_INIT(refs, ref2s) {&static_refcount, NULL, NULL, 0, true}
1121 #endif
1122
1123 UPB_BEGIN_EXTERN_C
1124
1125 /* It is better to use tracked refs when possible, for the extra debugging
1126 * capability. But if this is not possible (because you don't have easy access
1127 * to a stable pointer value that is associated with the ref), you can pass
1128 * UPB_UNTRACKED_REF instead. */
1129 extern const void *UPB_UNTRACKED_REF;
1130
1131 /* Native C API. */
1132 bool upb_refcounted_isfrozen(const upb_refcounted *r);
1133 void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
1134 void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
1135 void upb_refcounted_donateref(
1136 const upb_refcounted *r, const void *from, const void *to);
1137 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
1138
1139 #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
1140 UPB_INLINE bool type ## _isfrozen(const type *v) { \
1141 return upb_refcounted_isfrozen(upcastfunc(v)); \
1142 } \
1143 UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
1144 upb_refcounted_ref(upcastfunc(v), owner); \
1145 } \
1146 UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
1147 upb_refcounted_unref(upcastfunc(v), owner); \
1148 } \
1149 UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
1150 upb_refcounted_donateref(upcastfunc(v), from, to); \
1151 } \
1152 UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
1153 upb_refcounted_checkref(upcastfunc(v), owner); \
1154 }
1155
1156 #define UPB_REFCOUNTED_CPPMETHODS \
1157 bool IsFrozen() const { \
1158 return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
1159 } \
1160 void Ref(const void *owner) const { \
1161 return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
1162 } \
1163 void Unref(const void *owner) const { \
1164 return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
1165 } \
1166 void DonateRef(const void *from, const void *to) const { \
1167 return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
1168 } \
1169 void CheckRef(const void *owner) const { \
1170 return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
1171 }
1172
1173 /* Internal-to-upb Interface **************************************************/
1174
1175 typedef void upb_refcounted_visit(const upb_refcounted *r,
1176 const upb_refcounted *subobj,
1177 void *closure);
1178
1179 struct upb_refcounted_vtbl {
1180 /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
1181 * Must be longjmp()-safe. */
1182 void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
1183
1184 /* Must free the object and release all references to other objects. */
1185 void (*free)(upb_refcounted *r);
1186 };
1187
1188 /* Initializes the refcounted with a single ref for the given owner. Returns
1189 * false if memory could not be allocated. */
1190 bool upb_refcounted_init(upb_refcounted *r,
1191 const struct upb_refcounted_vtbl *vtbl,
1192 const void *owner);
1193
1194 /* Adds a ref from one refcounted object to another ("from" must not already
1195 * own a ref). These refs may be circular; cycles will be collected correctly
1196 * (if conservatively). These refs do not need to be freed in from's free()
1197 * function. */
1198 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
1199
1200 /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
1201 * object it can. This is only necessary when "from" no longer points to "r",
1202 * and not from from's "free" function. */
1203 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
1204
1205 #define upb_ref2(r, from) \
1206 upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
1207 #define upb_unref2(r, from) \
1208 upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
1209
1210 /* Freezes all mutable object reachable by ref2() refs from the given roots.
1211 * This will split refcounting groups into precise SCC groups, so that
1212 * refcounting of frozen objects can be more aggressive. If memory allocation
1213 * fails, or if more than 2**31 mutable objects are reachable from "roots", or
1214 * if the maximum depth of the graph exceeds "maxdepth", false is returned and
1215 * the objects are unchanged.
1216 *
1217 * After this operation succeeds, the objects are frozen/const, and may not be
1218 * used through non-const pointers. In particular, they may not be passed as
1219 * the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all
1220 * operations on frozen refcounteds are threadsafe, and objects will be freed
1221 * at the precise moment that they become unreachable.
1222 *
1223 * Caller must own refs on each object in the "roots" list. */
1224 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
1225 int maxdepth);
1226
1227 /* Shared by all compiled-in refcounted objects. */
1228 extern uint32_t static_refcount;
1229
1230 UPB_END_EXTERN_C
1231
1232 #ifdef __cplusplus
1233 /* C++ Wrappers. */
1234 namespace upb {
1235 inline bool RefCounted::IsFrozen() const {
1236 return upb_refcounted_isfrozen(this);
1237 }
1238 inline void RefCounted::Ref(const void *owner) const {
1239 upb_refcounted_ref(this, owner);
1240 }
1241 inline void RefCounted::Unref(const void *owner) const {
1242 upb_refcounted_unref(this, owner);
1243 }
1244 inline void RefCounted::DonateRef(const void *from, const void *to) const {
1245 upb_refcounted_donateref(this, from, to);
1246 }
1247 inline void RefCounted::CheckRef(const void *owner) const {
1248 upb_refcounted_checkref(this, owner);
1249 }
1250 } /* namespace upb */
1251 #endif
1252
1253 #endif /* UPB_REFCOUNT_H_ */
1254
1255 #ifdef __cplusplus
1256 #include <cstring>
1257 #include <string>
1258 #include <vector>
1259
1260 namespace upb {
1261 class Def;
1262 class EnumDef;
1263 class FieldDef;
1264 class MessageDef;
1265 class OneofDef;
1266 }
1267 #endif
1268
1269 UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
1270
1271 /* The maximum message depth that the type graph can have. This is a resource
1272 * limit for the C stack since we sometimes need to recursively traverse the
1273 * graph. Cycles are ok; the traversal will stop when it detects a cycle, but
1274 * we must hit the cycle before the maximum depth is reached.
1275 *
1276 * If having a single static limit is too inflexible, we can add another variant
1277 * of Def::Freeze that allows specifying this as a parameter. */
1278 #define UPB_MAX_MESSAGE_DEPTH 64
1279
1280
1281 /* upb::Def: base class for defs *********************************************/
1282
1283 /* All the different kind of defs we support. These correspond 1:1 with
1284 * declarations in a .proto file. */
1285 typedef enum {
1286 UPB_DEF_MSG,
1287 UPB_DEF_FIELD,
1288 UPB_DEF_ENUM,
1289 UPB_DEF_ONEOF,
1290 UPB_DEF_SERVICE, /* Not yet implemented. */
1291 UPB_DEF_ANY = -1 /* Wildcard for upb_symtab_get*() */
1292 } upb_deftype_t;
1293
1294 #ifdef __cplusplus
1295
1296 /* The base class of all defs. Its base is upb::RefCounted (use upb::upcast()
1297 * to convert). */
1298 class upb::Def {
1299 public:
1300 typedef upb_deftype_t Type;
1301
1302 Def* Dup(const void *owner) const;
1303
1304 /* upb::RefCounted methods like Ref()/Unref(). */
1305 UPB_REFCOUNTED_CPPMETHODS
1306
1307 Type def_type() const;
1308
1309 /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
1310 const char *full_name() const;
1311
1312 /* The def must be mutable. Caller retains ownership of fullname. Defs are
1313 * not required to have a name; if a def has no name when it is frozen, it
1314 * will remain an anonymous def. On failure, returns false and details in "s"
1315 * if non-NULL. */
1316 bool set_full_name(const char* fullname, upb::Status* s);
1317 bool set_full_name(const std::string &fullname, upb::Status* s);
1318
1319 /* Freezes the given defs; this validates all constraints and marks the defs
1320 * as frozen (read-only). "defs" may not contain any fielddefs, but fields
1321 * of any msgdefs will be frozen.
1322 *
1323 * Symbolic references to sub-types and enum defaults must have already been
1324 * resolved. Any mutable defs reachable from any of "defs" must also be in
1325 * the list; more formally, "defs" must be a transitive closure of mutable
1326 * defs.
1327 *
1328 * After this operation succeeds, the finalized defs must only be accessed
1329 * through a const pointer! */
1330 static bool Freeze(Def* const* defs, int n, Status* status);
1331 static bool Freeze(const std::vector<Def*>& defs, Status* status);
1332
1333 private:
1334 UPB_DISALLOW_POD_OPS(Def, upb::Def)
1335 };
1336
1337 #endif /* __cplusplus */
1338
1339 UPB_BEGIN_EXTERN_C
1340
1341 /* Native C API. */
1342 upb_def *upb_def_dup(const upb_def *def, const void *owner);
1343
1344 /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
1345 UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
1346
1347 upb_deftype_t upb_def_type(const upb_def *d);
1348 const char *upb_def_fullname(const upb_def *d);
1349 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
1350 bool upb_def_freeze(upb_def *const *defs, int n, upb_status *s);
1351
1352 UPB_END_EXTERN_C
1353
1354
1355 /* upb::Def casts *************************************************************/
1356
1357 #ifdef __cplusplus
1358 #define UPB_CPP_CASTS(cname, cpptype) \
1359 namespace upb { \
1360 template <> \
1361 inline cpptype *down_cast<cpptype *, Def>(Def * def) { \
1362 return upb_downcast_##cname##_mutable(def); \
1363 } \
1364 template <> \
1365 inline cpptype *dyn_cast<cpptype *, Def>(Def * def) { \
1366 return upb_dyncast_##cname##_mutable(def); \
1367 } \
1368 template <> \
1369 inline const cpptype *down_cast<const cpptype *, const Def>( \
1370 const Def *def) { \
1371 return upb_downcast_##cname(def); \
1372 } \
1373 template <> \
1374 inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
1375 return upb_dyncast_##cname(def); \
1376 } \
1377 template <> \
1378 inline const cpptype *down_cast<const cpptype *, Def>(Def * def) { \
1379 return upb_downcast_##cname(def); \
1380 } \
1381 template <> \
1382 inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) { \
1383 return upb_dyncast_##cname(def); \
1384 } \
1385 } /* namespace upb */
1386 #else
1387 #define UPB_CPP_CASTS(cname, cpptype)
1388 #endif /* __cplusplus */
1389
1390 /* Dynamic casts, for determining if a def is of a particular type at runtime.
1391 * Downcasts, for when some wants to assert that a def is of a particular type.
1392 * These are only checked if we are building debug. */
1393 #define UPB_DEF_CASTS(lower, upper, cpptype) \
1394 UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \
1395 if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \
1396 return (upb_##lower *)def; \
1397 } \
1398 UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
1399 assert(upb_def_type(def) == UPB_DEF_##upper); \
1400 return (const upb_##lower *)def; \
1401 } \
1402 UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \
1403 return (upb_##lower *)upb_dyncast_##lower(def); \
1404 } \
1405 UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \
1406 return (upb_##lower *)upb_downcast_##lower(def); \
1407 } \
1408 UPB_CPP_CASTS(lower, cpptype)
1409
1410 #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \
1411 UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods, \
1412 members) \
1413 UPB_DEF_CASTS(lower, upper, cppname)
1414
1415 #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
1416 UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
1417 upb_ ## lower, upb_def, upb_refcounted) \
1418 UPB_DEF_CASTS(lower, upper, cppname)
1419
1420 UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
1421 UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
1422 UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
1423 UPB_DECLARE_DEF_TYPE(upb::OneofDef, oneofdef, ONEOF)
1424
1425 #undef UPB_DECLARE_DEF_TYPE
1426 #undef UPB_DEF_CASTS
1427 #undef UPB_CPP_CASTS
1428
1429
1430 /* upb::FieldDef **************************************************************/
1431
1432 /* The types a field can have. Note that this list is not identical to the
1433 * types defined in descriptor.proto, which gives INT32 and SINT32 separate
1434 * types (we distinguish the two with the "integer encoding" enum below). */
1435 typedef enum {
1436 UPB_TYPE_FLOAT = 1,
1437 UPB_TYPE_DOUBLE = 2,
1438 UPB_TYPE_BOOL = 3,
1439 UPB_TYPE_STRING = 4,
1440 UPB_TYPE_BYTES = 5,
1441 UPB_TYPE_MESSAGE = 6,
1442 UPB_TYPE_ENUM = 7, /* Enum values are int32. */
1443 UPB_TYPE_INT32 = 8,
1444 UPB_TYPE_UINT32 = 9,
1445 UPB_TYPE_INT64 = 10,
1446 UPB_TYPE_UINT64 = 11
1447 } upb_fieldtype_t;
1448
1449 /* The repeated-ness of each field; this matches descriptor.proto. */
1450 typedef enum {
1451 UPB_LABEL_OPTIONAL = 1,
1452 UPB_LABEL_REQUIRED = 2,
1453 UPB_LABEL_REPEATED = 3
1454 } upb_label_t;
1455
1456 /* How integers should be encoded in serializations that offer multiple
1457 * integer encoding methods. */
1458 typedef enum {
1459 UPB_INTFMT_VARIABLE = 1,
1460 UPB_INTFMT_FIXED = 2,
1461 UPB_INTFMT_ZIGZAG = 3 /* Only for signed types (INT32/INT64). */
1462 } upb_intfmt_t;
1463
1464 /* Descriptor types, as defined in descriptor.proto. */
1465 typedef enum {
1466 UPB_DESCRIPTOR_TYPE_DOUBLE = 1,
1467 UPB_DESCRIPTOR_TYPE_FLOAT = 2,
1468 UPB_DESCRIPTOR_TYPE_INT64 = 3,
1469 UPB_DESCRIPTOR_TYPE_UINT64 = 4,
1470 UPB_DESCRIPTOR_TYPE_INT32 = 5,
1471 UPB_DESCRIPTOR_TYPE_FIXED64 = 6,
1472 UPB_DESCRIPTOR_TYPE_FIXED32 = 7,
1473 UPB_DESCRIPTOR_TYPE_BOOL = 8,
1474 UPB_DESCRIPTOR_TYPE_STRING = 9,
1475 UPB_DESCRIPTOR_TYPE_GROUP = 10,
1476 UPB_DESCRIPTOR_TYPE_MESSAGE = 11,
1477 UPB_DESCRIPTOR_TYPE_BYTES = 12,
1478 UPB_DESCRIPTOR_TYPE_UINT32 = 13,
1479 UPB_DESCRIPTOR_TYPE_ENUM = 14,
1480 UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
1481 UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
1482 UPB_DESCRIPTOR_TYPE_SINT32 = 17,
1483 UPB_DESCRIPTOR_TYPE_SINT64 = 18
1484 } upb_descriptortype_t;
1485
1486 /* Maximum field number allowed for FieldDefs. This is an inherent limit of the
1487 * protobuf wire format. */
1488 #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
1489
1490 #ifdef __cplusplus
1491
1492 /* A upb_fielddef describes a single field in a message. It is most often
1493 * found as a part of a upb_msgdef, but can also stand alone to represent
1494 * an extension.
1495 *
1496 * Its base class is upb::Def (use upb::upcast() to convert). */
1497 class upb::FieldDef {
1498 public:
1499 typedef upb_fieldtype_t Type;
1500 typedef upb_label_t Label;
1501 typedef upb_intfmt_t IntegerFormat;
1502 typedef upb_descriptortype_t DescriptorType;
1503
1504 /* These return true if the given value is a valid member of the enumeration. */
1505 static bool CheckType(int32_t val);
1506 static bool CheckLabel(int32_t val);
1507 static bool CheckDescriptorType(int32_t val);
1508 static bool CheckIntegerFormat(int32_t val);
1509
1510 /* These convert to the given enumeration; they require that the value is
1511 * valid. */
1512 static Type ConvertType(int32_t val);
1513 static Label ConvertLabel(int32_t val);
1514 static DescriptorType ConvertDescriptorType(int32_t val);
1515 static IntegerFormat ConvertIntegerFormat(int32_t val);
1516
1517 /* Returns NULL if memory allocation failed. */
1518 static reffed_ptr<FieldDef> New();
1519
1520 /* Duplicates the given field, returning NULL if memory allocation failed.
1521 * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
1522 * wasn't already. If the subdef is set but has no name (which is possible
1523 * since msgdefs are not required to have a name) the new fielddef's subdef
1524 * will be unset. */
1525 FieldDef* Dup(const void* owner) const;
1526
1527 /* upb::RefCounted methods like Ref()/Unref(). */
1528 UPB_REFCOUNTED_CPPMETHODS
1529
1530 /* Functionality from upb::Def. */
1531 const char* full_name() const;
1532
1533 bool type_is_set() const; /* set_[descriptor_]type() has been called? */
1534 Type type() const; /* Requires that type_is_set() == true. */
1535 Label label() const; /* Defaults to UPB_LABEL_OPTIONAL. */
1536 const char* name() const; /* NULL if uninitialized. */
1537 uint32_t number() const; /* Returns 0 if uninitialized. */
1538 bool is_extension() const;
1539
1540 /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
1541 * indicates whether this field should have lazy parsing handlers that yield
1542 * the unparsed string for the submessage.
1543 *
1544 * TODO(haberman): I think we want to move this into a FieldOptions container
1545 * when we add support for custom options (the FieldOptions struct will
1546 * contain both regular FieldOptions like "lazy" *and* custom options). */
1547 bool lazy() const;
1548
1549 /* For non-string, non-submessage fields, this indicates whether binary
1550 * protobufs are encoded in packed or non-packed format.
1551 *
1552 * TODO(haberman): see note above about putting options like this into a
1553 * FieldOptions container. */
1554 bool packed() const;
1555
1556 /* An integer that can be used as an index into an array of fields for
1557 * whatever message this field belongs to. Guaranteed to be less than
1558 * f->containing_type()->field_count(). May only be accessed once the def has
1559 * been finalized. */
1560 int index() const;
1561
1562 /* The MessageDef to which this field belongs.
1563 *
1564 * If this field has been added to a MessageDef, that message can be retrieved
1565 * directly (this is always the case for frozen FieldDefs).
1566 *
1567 * If the field has not yet been added to a MessageDef, you can set the name
1568 * of the containing type symbolically instead. This is mostly useful for
1569 * extensions, where the extension is declared separately from the message. */
1570 const MessageDef* containing_type() const;
1571 const char* containing_type_name();
1572
1573 /* The OneofDef to which this field belongs, or NULL if this field is not part
1574 * of a oneof. */
1575 const OneofDef* containing_oneof() const;
1576
1577 /* The field's type according to the enum in descriptor.proto. This is not
1578 * the same as UPB_TYPE_*, because it distinguishes between (for example)
1579 * INT32 and SINT32, whereas our "type" enum does not. This return of
1580 * descriptor_type() is a function of type(), integer_format(), and
1581 * is_tag_delimited(). Likewise set_descriptor_type() sets all three
1582 * appropriately. */
1583 DescriptorType descriptor_type() const;
1584
1585 /* Convenient field type tests. */
1586 bool IsSubMessage() const;
1587 bool IsString() const;
1588 bool IsSequence() const;
1589 bool IsPrimitive() const;
1590 bool IsMap() const;
1591
1592 /* How integers are encoded. Only meaningful for integer types.
1593 * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
1594 IntegerFormat integer_format() const;
1595
1596 /* Whether a submessage field is tag-delimited or not (if false, then
1597 * length-delimited). May only be set when type() == UPB_TYPE_MESSAGE. */
1598 bool is_tag_delimited() const;
1599
1600 /* Returns the non-string default value for this fielddef, which may either
1601 * be something the client set explicitly or the "default default" (0 for
1602 * numbers, empty for strings). The field's type indicates the type of the
1603 * returned value, except for enum fields that are still mutable.
1604 *
1605 * Requires that the given function matches the field's current type. */
1606 int64_t default_int64() const;
1607 int32_t default_int32() const;
1608 uint64_t default_uint64() const;
1609 uint32_t default_uint32() const;
1610 bool default_bool() const;
1611 float default_float() const;
1612 double default_double() const;
1613
1614 /* The resulting string is always NULL-terminated. If non-NULL, the length
1615 * will be stored in *len. */
1616 const char *default_string(size_t* len) const;
1617
1618 /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
1619 * string or int32, and both of these methods will always return true.
1620 *
1621 * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
1622 * Enum defaults are unusual. They can be specified either as string or int32,
1623 * but to be valid the enum must have that value as a member. And if no
1624 * default is specified, the "default default" comes from the EnumDef.
1625 *
1626 * We allow reading the default as either an int32 or a string, but only if
1627 * we have a meaningful value to report. We have a meaningful value if it was
1628 * set explicitly, or if we could get the "default default" from the EnumDef.
1629 * Also if you explicitly set the name and we find the number in the EnumDef * /
1630 bool EnumHasStringDefault() const;
1631 bool EnumHasInt32Default() const;
1632
1633 /* Submessage and enum fields must reference a "subdef", which is the
1634 * upb::MessageDef or upb::EnumDef that defines their type. Note that when
1635 * the FieldDef is mutable it may not have a subdef *yet*, but this function
1636 * still returns true to indicate that the field's type requires a subdef. */
1637 bool HasSubDef() const;
1638
1639 /* Returns the enum or submessage def for this field, if any. The field's
1640 * type must match (ie. you may only call enum_subdef() for fields where
1641 * type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or
1642 * is currently set symbolically. */
1643 const EnumDef* enum_subdef() const;
1644 const MessageDef* message_subdef() const;
1645
1646 /* Returns the generic subdef for this field. Requires that HasSubDef() (ie.
1647 * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
1648 const Def* subdef() const;
1649
1650 /* Returns the symbolic name of the subdef. If the subdef is currently set
1651 * unresolved (ie. set symbolically) returns the symbolic name. If it has
1652 * been resolved to a specific subdef, returns the name from that subdef. */
1653 const char* subdef_name() const;
1654
1655 /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
1656
1657 bool set_full_name(const char* fullname, upb::Status* s);
1658 bool set_full_name(const std::string& fullname, upb::Status* s);
1659
1660 /* This may only be called if containing_type() == NULL (ie. the field has not
1661 * been added to a message yet). */
1662 bool set_containing_type_name(const char *name, Status* status);
1663 bool set_containing_type_name(const std::string& name, Status* status);
1664
1665 /* Defaults to false. When we freeze, we ensure that this can only be true
1666 * for length-delimited message fields. Prior to freezing this can be true or
1667 * false with no restrictions. */
1668 void set_lazy(bool lazy);
1669
1670 /* Defaults to true. Sets whether this field is encoded in packed format. */
1671 void set_packed(bool packed);
1672
1673 /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
1674 * finalized. These setters require that the enum value is valid; if the
1675 * value did not come directly from an enum constant, the caller should
1676 * validate it first with the functions above (CheckFieldType(), etc). */
1677 void set_type(Type type);
1678 void set_label(Label label);
1679 void set_descriptor_type(DescriptorType type);
1680 void set_is_extension(bool is_extension);
1681
1682 /* "number" and "name" must be set before the FieldDef is added to a
1683 * MessageDef, and may not be set after that.
1684 *
1685 * "name" is the same as full_name()/set_full_name(), but since fielddefs
1686 * most often use simple, non-qualified names, we provide this accessor
1687 * also. Generally only extensions will want to think of this name as
1688 * fully-qualified. */
1689 bool set_number(uint32_t number, upb::Status* s);
1690 bool set_name(const char* name, upb::Status* s);
1691 bool set_name(const std::string& name, upb::Status* s);
1692
1693 void set_integer_format(IntegerFormat format);
1694 bool set_tag_delimited(bool tag_delimited, upb::Status* s);
1695
1696 /* Sets default value for the field. The call must exactly match the type
1697 * of the field. Enum fields may use either setint32 or setstring to set
1698 * the default numerically or symbolically, respectively, but symbolic
1699 * defaults must be resolved before finalizing (see ResolveEnumDefault()).
1700 *
1701 * Changing the type of a field will reset its default. */
1702 void set_default_int64(int64_t val);
1703 void set_default_int32(int32_t val);
1704 void set_default_uint64(uint64_t val);
1705 void set_default_uint32(uint32_t val);
1706 void set_default_bool(bool val);
1707 void set_default_float(float val);
1708 void set_default_double(double val);
1709 bool set_default_string(const void *str, size_t len, Status *s);
1710 bool set_default_string(const std::string &str, Status *s);
1711 void set_default_cstr(const char *str, Status *s);
1712
1713 /* Before a fielddef is frozen, its subdef may be set either directly (with a
1714 * upb::Def*) or symbolically. Symbolic refs must be resolved before the
1715 * containing msgdef can be frozen (see upb_resolve() above). upb always
1716 * guarantees that any def reachable from a live def will also be kept alive.
1717 *
1718 * Both methods require that upb_hassubdef(f) (so the type must be set prior
1719 * to calling these methods). Returns false if this is not the case, or if
1720 * the given subdef is not of the correct type. The subdef is reset if the
1721 * field's type is changed. The subdef can be set to NULL to clear it. */
1722 bool set_subdef(const Def* subdef, Status* s);
1723 bool set_enum_subdef(const EnumDef* subdef, Status* s);
1724 bool set_message_subdef(const MessageDef* subdef, Status* s);
1725 bool set_subdef_name(const char* name, Status* s);
1726 bool set_subdef_name(const std::string &name, Status* s);
1727
1728 private:
1729 UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
1730 };
1731
1732 # endif /* defined(__cplusplus) */
1733
1734 UPB_BEGIN_EXTERN_C
1735
1736 /* Native C API. */
1737 upb_fielddef *upb_fielddef_new(const void *owner);
1738 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
1739
1740 /* Include upb_refcounted methods like upb_fielddef_ref(). */
1741 UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
1742
1743 /* Methods from upb_def. */
1744 const char *upb_fielddef_fullname(const upb_fielddef *f);
1745 bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
1746 upb_status *s);
1747
1748 bool upb_fielddef_typeisset(const upb_fielddef *f);
1749 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
1750 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
1751 upb_label_t upb_fielddef_label(const upb_fielddef *f);
1752 uint32_t upb_fielddef_number(const upb_fielddef *f);
1753 const char *upb_fielddef_name(const upb_fielddef *f);
1754 bool upb_fielddef_isextension(const upb_fielddef *f);
1755 bool upb_fielddef_lazy(const upb_fielddef *f);
1756 bool upb_fielddef_packed(const upb_fielddef *f);
1757 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
1758 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
1759 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
1760 const char *upb_fielddef_containingtypename(upb_fielddef *f);
1761 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
1762 uint32_t upb_fielddef_index(const upb_fielddef *f);
1763 bool upb_fielddef_istagdelim(const upb_fielddef *f);
1764 bool upb_fielddef_issubmsg(const upb_fielddef *f);
1765 bool upb_fielddef_isstring(const upb_fielddef *f);
1766 bool upb_fielddef_isseq(const upb_fielddef *f);
1767 bool upb_fielddef_isprimitive(const upb_fielddef *f);
1768 bool upb_fielddef_ismap(const upb_fielddef *f);
1769 int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
1770 int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
1771 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
1772 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
1773 bool upb_fielddef_defaultbool(const upb_fielddef *f);
1774 float upb_fielddef_defaultfloat(const upb_fielddef *f);
1775 double upb_fielddef_defaultdouble(const upb_fielddef *f);
1776 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
1777 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
1778 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
1779 bool upb_fielddef_hassubdef(const upb_fielddef *f);
1780 const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
1781 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
1782 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
1783 const char *upb_fielddef_subdefname(const upb_fielddef *f);
1784
1785 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
1786 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
1787 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
1788 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
1789 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
1790 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
1791 upb_status *s);
1792 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
1793 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
1794 void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
1795 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
1796 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
1797 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
1798 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
1799 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
1800 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
1801 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
1802 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
1803 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
1804 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
1805 upb_status *s);
1806 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
1807 upb_status *s);
1808 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
1809 upb_status *s);
1810 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
1811 upb_status *s);
1812 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
1813 upb_status *s);
1814 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
1815 upb_status *s);
1816
1817 bool upb_fielddef_checklabel(int32_t label);
1818 bool upb_fielddef_checktype(int32_t type);
1819 bool upb_fielddef_checkdescriptortype(int32_t type);
1820 bool upb_fielddef_checkintfmt(int32_t fmt);
1821
1822 UPB_END_EXTERN_C
1823
1824
1825 /* upb::MessageDef ************************************************************/
1826
1827 typedef upb_inttable_iter upb_msg_field_iter;
1828 typedef upb_strtable_iter upb_msg_oneof_iter;
1829
1830 #ifdef __cplusplus
1831
1832 /* Structure that describes a single .proto message type.
1833 *
1834 * Its base class is upb::Def (use upb::upcast() to convert). */
1835 class upb::MessageDef {
1836 public:
1837 /* Returns NULL if memory allocation failed. */
1838 static reffed_ptr<MessageDef> New();
1839
1840 /* upb::RefCounted methods like Ref()/Unref(). */
1841 UPB_REFCOUNTED_CPPMETHODS
1842
1843 /* Functionality from upb::Def. */
1844 const char* full_name() const;
1845 bool set_full_name(const char* fullname, Status* s);
1846 bool set_full_name(const std::string& fullname, Status* s);
1847
1848 /* Call to freeze this MessageDef.
1849 * WARNING: this will fail if this message has any unfrozen submessages!
1850 * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
1851 bool Freeze(Status* s);
1852
1853 /* The number of fields that belong to the MessageDef. */
1854 int field_count() const;
1855
1856 /* The number of oneofs that belong to the MessageDef. */
1857 int oneof_count() const;
1858
1859 /* Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef
1860 * and the fielddefs are mutable. The fielddef's name and number must be
1861 * set, and the message may not already contain any field with this name or
1862 * number, and this fielddef may not be part of another message. In error
1863 * cases false is returned and the msgdef is unchanged.
1864 *
1865 * If the given field is part of a oneof, this call succeeds if and only if
1866 * that oneof is already part of this msgdef. (Note that adding a oneof to a
1867 * msgdef automatically adds all of its fields to the msgdef at the time that
1868 * the oneof is added, so it is usually more idiomatic to add the oneof's
1869 * fields first then add the oneof to the msgdef. This case is supported for
1870 * convenience.)
1871 *
1872 * If |f| is already part of this MessageDef, this method performs no action
1873 * and returns true (success). Thus, this method is idempotent. */
1874 bool AddField(FieldDef* f, Status* s);
1875 bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
1876
1877 /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
1878 * oneof, and any fielddefs are mutable, that the fielddefs contained in the
1879 * oneof do not have any name or number conflicts with existing fields in the
1880 * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
1881 * If the oneof is added successfully, all of its fields will be added
1882 * directly to the msgdef as well. In error cases, false is returned and the
1883 * msgdef is unchanged. */
1884 bool AddOneof(OneofDef* o, Status* s);
1885 bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
1886
1887 /* These return NULL if the field is not found. */
1888 FieldDef* FindFieldByNumber(uint32_t number);
1889 FieldDef* FindFieldByName(const char *name, size_t len);
1890 const FieldDef* FindFieldByNumber(uint32_t number) const;
1891 const FieldDef* FindFieldByName(const char* name, size_t len) const;
1892
1893
1894 FieldDef* FindFieldByName(const char *name) {
1895 return FindFieldByName(name, strlen(name));
1896 }
1897 const FieldDef* FindFieldByName(const char *name) const {
1898 return FindFieldByName(name, strlen(name));
1899 }
1900
1901 template <class T>
1902 FieldDef* FindFieldByName(const T& str) {
1903 return FindFieldByName(str.c_str(), str.size());
1904 }
1905 template <class T>
1906 const FieldDef* FindFieldByName(const T& str) const {
1907 return FindFieldByName(str.c_str(), str.size());
1908 }
1909
1910 OneofDef* FindOneofByName(const char* name, size_t len);
1911 const OneofDef* FindOneofByName(const char* name, size_t len) const;
1912
1913 OneofDef* FindOneofByName(const char* name) {
1914 return FindOneofByName(name, strlen(name));
1915 }
1916 const OneofDef* FindOneofByName(const char* name) const {
1917 return FindOneofByName(name, strlen(name));
1918 }
1919
1920 template<class T>
1921 OneofDef* FindOneofByName(const T& str) {
1922 return FindOneofByName(str.c_str(), str.size());
1923 }
1924 template<class T>
1925 const OneofDef* FindOneofByName(const T& str) const {
1926 return FindOneofByName(str.c_str(), str.size());
1927 }
1928
1929 /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
1930 * the fields) but with any references to submessages broken and replaced
1931 * with just the name of the submessage. Returns NULL if memory allocation
1932 * failed.
1933 *
1934 * TODO(haberman): which is more useful, keeping fields resolved or
1935 * unresolving them? If there's no obvious answer, Should this functionality
1936 * just be moved into symtab.c? */
1937 MessageDef* Dup(const void* owner) const;
1938
1939 /* Is this message a map entry? */
1940 void setmapentry(bool map_entry);
1941 bool mapentry() const;
1942
1943 /* Iteration over fields. The order is undefined. */
1944 class field_iterator
1945 : public std::iterator<std::forward_iterator_tag, FieldDef*> {
1946 public:
1947 explicit field_iterator(MessageDef* md);
1948 static field_iterator end(MessageDef* md);
1949
1950 void operator++();
1951 FieldDef* operator*() const;
1952 bool operator!=(const field_iterator& other) const;
1953 bool operator==(const field_iterator& other) const;
1954
1955 private:
1956 upb_msg_field_iter iter_;
1957 };
1958
1959 class const_field_iterator
1960 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
1961 public:
1962 explicit const_field_iterator(const MessageDef* md);
1963 static const_field_iterator end(const MessageDef* md);
1964
1965 void operator++();
1966 const FieldDef* operator*() const;
1967 bool operator!=(const const_field_iterator& other) const;
1968 bool operator==(const const_field_iterator& other) const;
1969
1970 private:
1971 upb_msg_field_iter iter_;
1972 };
1973
1974 /* Iteration over oneofs. The order is undefined. */
1975 class oneof_iterator
1976 : public std::iterator<std::forward_iterator_tag, FieldDef*> {
1977 public:
1978 explicit oneof_iterator(MessageDef* md);
1979 static oneof_iterator end(MessageDef* md);
1980
1981 void operator++();
1982 OneofDef* operator*() const;
1983 bool operator!=(const oneof_iterator& other) const;
1984 bool operator==(const oneof_iterator& other) const;
1985
1986 private:
1987 upb_msg_oneof_iter iter_;
1988 };
1989
1990 class const_oneof_iterator
1991 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
1992 public:
1993 explicit const_oneof_iterator(const MessageDef* md);
1994 static const_oneof_iterator end(const MessageDef* md);
1995
1996 void operator++();
1997 const OneofDef* operator*() const;
1998 bool operator!=(const const_oneof_iterator& other) const;
1999 bool operator==(const const_oneof_iterator& other) const;
2000
2001 private:
2002 upb_msg_oneof_iter iter_;
2003 };
2004
2005 class FieldAccessor {
2006 public:
2007 explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
2008 field_iterator begin() { return msg_->field_begin(); }
2009 field_iterator end() { return msg_->field_end(); }
2010 private:
2011 MessageDef* msg_;
2012 };
2013
2014 class ConstFieldAccessor {
2015 public:
2016 explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
2017 const_field_iterator begin() { return msg_->field_begin(); }
2018 const_field_iterator end() { return msg_->field_end(); }
2019 private:
2020 const MessageDef* msg_;
2021 };
2022
2023 class OneofAccessor {
2024 public:
2025 explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
2026 oneof_iterator begin() { return msg_->oneof_begin(); }
2027 oneof_iterator end() { return msg_->oneof_end(); }
2028 private:
2029 MessageDef* msg_;
2030 };
2031
2032 class ConstOneofAccessor {
2033 public:
2034 explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
2035 const_oneof_iterator begin() { return msg_->oneof_begin(); }
2036 const_oneof_iterator end() { return msg_->oneof_end(); }
2037 private:
2038 const MessageDef* msg_;
2039 };
2040
2041 field_iterator field_begin();
2042 field_iterator field_end();
2043 const_field_iterator field_begin() const;
2044 const_field_iterator field_end() const;
2045
2046 oneof_iterator oneof_begin();
2047 oneof_iterator oneof_end();
2048 const_oneof_iterator oneof_begin() const;
2049 const_oneof_iterator oneof_end() const;
2050
2051 FieldAccessor fields() { return FieldAccessor(this); }
2052 ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
2053 OneofAccessor oneofs() { return OneofAccessor(this); }
2054 ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
2055
2056 private:
2057 UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
2058 };
2059
2060 #endif /* __cplusplus */
2061
2062 UPB_BEGIN_EXTERN_C
2063
2064 /* Returns NULL if memory allocation failed. */
2065 upb_msgdef *upb_msgdef_new(const void *owner);
2066
2067 /* Include upb_refcounted methods like upb_msgdef_ref(). */
2068 UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
2069
2070 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
2071
2072 const char *upb_msgdef_fullname(const upb_msgdef *m);
2073 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
2074
2075 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
2076 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
2077 upb_status *s);
2078 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
2079 upb_status *s);
2080
2081 /* Field lookup in a couple of different variations:
2082 * - itof = int to field
2083 * - ntof = name to field
2084 * - ntofz = name to field, null-terminated string. */
2085 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
2086 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
2087 size_t len);
2088 int upb_msgdef_numfields(const upb_msgdef *m);
2089
2090 UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
2091 const char *name) {
2092 return upb_msgdef_ntof(m, name, strlen(name));
2093 }
2094
2095 UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
2096 return (upb_fielddef*)upb_msgdef_itof(m, i);
2097 }
2098
2099 UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
2100 const char *name, size_t len) {
2101 return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
2102 }
2103
2104 /* Oneof lookup:
2105 * - ntoo = name to oneof
2106 * - ntooz = name to oneof, null-terminated string. */
2107 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
2108 size_t len);
2109 int upb_msgdef_numoneofs(const upb_msgdef *m);
2110
2111 UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
2112 const char *name) {
2113 return upb_msgdef_ntoo(m, name, strlen(name));
2114 }
2115
2116 UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
2117 const char *name, size_t len) {
2118 return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
2119 }
2120
2121 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
2122 bool upb_msgdef_mapentry(const upb_msgdef *m);
2123
2124 /* Well-known field tag numbers for map-entry messages. */
2125 #define UPB_MAPENTRY_KEY 1
2126 #define UPB_MAPENTRY_VALUE 2
2127
2128 const upb_oneofdef *upb_msgdef_findoneof(const upb_msgdef *m,
2129 const char *name);
2130 int upb_msgdef_numoneofs(const upb_msgdef *m);
2131
2132 /* upb_msg_field_iter i;
2133 * for(upb_msg_field_begin(&i, m);
2134 * !upb_msg_field_done(&i);
2135 * upb_msg_field_next(&i)) {
2136 * upb_fielddef *f = upb_msg_iter_field(&i);
2137 * // ...
2138 * }
2139 *
2140 * For C we don't have separate iterators for const and non-const.
2141 * It is the caller's responsibility to cast the upb_fielddef* to
2142 * const if the upb_msgdef* is const. */
2143 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
2144 void upb_msg_field_next(upb_msg_field_iter *iter);
2145 bool upb_msg_field_done(const upb_msg_field_iter *iter);
2146 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
2147 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
2148
2149 /* Similar to above, we also support iterating through the oneofs in a
2150 * msgdef. */
2151 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
2152 void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
2153 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
2154 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
2155 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
2156
2157 UPB_END_EXTERN_C
2158
2159
2160 /* upb::EnumDef ***************************************************************/
2161
2162 typedef upb_strtable_iter upb_enum_iter;
2163
2164 #ifdef __cplusplus
2165
2166 /* Class that represents an enum. Its base class is upb::Def (convert with
2167 * upb::upcast()). */
2168 class upb::EnumDef {
2169 public:
2170 /* Returns NULL if memory allocation failed. */
2171 static reffed_ptr<EnumDef> New();
2172
2173 /* upb::RefCounted methods like Ref()/Unref(). */
2174 UPB_REFCOUNTED_CPPMETHODS
2175
2176 /* Functionality from upb::Def. */
2177 const char* full_name() const;
2178 bool set_full_name(const char* fullname, Status* s);
2179 bool set_full_name(const std::string& fullname, Status* s);
2180
2181 /* Call to freeze this EnumDef. */
2182 bool Freeze(Status* s);
2183
2184 /* The value that is used as the default when no field default is specified.
2185 * If not set explicitly, the first value that was added will be used.
2186 * The default value must be a member of the enum.
2187 * Requires that value_count() > 0. */
2188 int32_t default_value() const;
2189
2190 /* Sets the default value. If this value is not valid, returns false and an
2191 * error message in status. */
2192 bool set_default_value(int32_t val, Status* status);
2193
2194 /* Returns the number of values currently defined in the enum. Note that
2195 * multiple names can refer to the same number, so this may be greater than
2196 * the total number of unique numbers. */
2197 int value_count() const;
2198
2199 /* Adds a single name/number pair to the enum. Fails if this name has
2200 * already been used by another value. */
2201 bool AddValue(const char* name, int32_t num, Status* status);
2202 bool AddValue(const std::string& name, int32_t num, Status* status);
2203
2204 /* Lookups from name to integer, returning true if found. */
2205 bool FindValueByName(const char* name, int32_t* num) const;
2206
2207 /* Finds the name corresponding to the given number, or NULL if none was
2208 * found. If more than one name corresponds to this number, returns the
2209 * first one that was added. */
2210 const char* FindValueByNumber(int32_t num) const;
2211
2212 /* Returns a new EnumDef with all the same values. The new EnumDef will be
2213 * owned by the given owner. */
2214 EnumDef* Dup(const void* owner) const;
2215
2216 /* Iteration over name/value pairs. The order is undefined.
2217 * Adding an enum val invalidates any iterators.
2218 *
2219 * TODO: make compatible with range-for, with elements as pairs? */
2220 class Iterator {
2221 public:
2222 explicit Iterator(const EnumDef*);
2223
2224 int32_t number();
2225 const char *name();
2226 bool Done();
2227 void Next();
2228
2229 private:
2230 upb_enum_iter iter_;
2231 };
2232
2233 private:
2234 UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
2235 };
2236
2237 #endif /* __cplusplus */
2238
2239 UPB_BEGIN_EXTERN_C
2240
2241 /* Native C API. */
2242 upb_enumdef *upb_enumdef_new(const void *owner);
2243 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
2244
2245 /* Include upb_refcounted methods like upb_enumdef_ref(). */
2246 UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
2247
2248 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
2249
2250 /* From upb_def. */
2251 const char *upb_enumdef_fullname(const upb_enumdef *e);
2252 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
2253 upb_status *s);
2254
2255 int32_t upb_enumdef_default(const upb_enumdef *e);
2256 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
2257 int upb_enumdef_numvals(const upb_enumdef *e);
2258 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
2259 upb_status *status);
2260
2261 /* Enum lookups:
2262 * - ntoi: look up a name with specified length.
2263 * - ntoiz: look up a name provided as a null-terminated string.
2264 * - iton: look up an integer, returning the name as a null-terminated
2265 * string. */
2266 bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
2267 int32_t *num);
2268 UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
2269 const char *name, int32_t *num) {
2270 return upb_enumdef_ntoi(e, name, strlen(name), num);
2271 }
2272 const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
2273
2274 /* upb_enum_iter i;
2275 * for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
2276 * // ...
2277 * }
2278 */
2279 void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
2280 void upb_enum_next(upb_enum_iter *iter);
2281 bool upb_enum_done(upb_enum_iter *iter);
2282 const char *upb_enum_iter_name(upb_enum_iter *iter);
2283 int32_t upb_enum_iter_number(upb_enum_iter *iter);
2284
2285 UPB_END_EXTERN_C
2286
2287 /* upb::OneofDef **************************************************************/
2288
2289 typedef upb_inttable_iter upb_oneof_iter;
2290
2291 #ifdef __cplusplus
2292
2293 /* Class that represents a oneof. Its base class is upb::Def (convert with
2294 * upb::upcast()). */
2295 class upb::OneofDef {
2296 public:
2297 /* Returns NULL if memory allocation failed. */
2298 static reffed_ptr<OneofDef> New();
2299
2300 /* upb::RefCounted methods like Ref()/Unref(). */
2301 UPB_REFCOUNTED_CPPMETHODS
2302
2303 /* Functionality from upb::Def. */
2304 const char* full_name() const;
2305
2306 /* Returns the MessageDef that owns this OneofDef. */
2307 const MessageDef* containing_type() const;
2308
2309 /* Returns the name of this oneof. This is the name used to look up the oneof
2310 * by name once added to a message def. */
2311 const char* name() const;
2312 bool set_name(const char* name, Status* s);
2313
2314 /* Returns the number of fields currently defined in the oneof. */
2315 int field_count() const;
2316
2317 /* Adds a field to the oneof. The field must not have been added to any other
2318 * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
2319 * oneof is eventually added to a msgdef, all fields added to the oneof will
2320 * also be added to the msgdef at that time. If the oneof is already part of a
2321 * msgdef, the field must either be a part of that msgdef already, or must not
2322 * be a part of any msgdef; in the latter case, the field is added to the
2323 * msgdef as a part of this operation.
2324 *
2325 * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
2326 *
2327 * If |f| is already part of this MessageDef, this method performs no action
2328 * and returns true (success). Thus, this method is idempotent. */
2329 bool AddField(FieldDef* field, Status* s);
2330 bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
2331
2332 /* Looks up by name. */
2333 const FieldDef* FindFieldByName(const char* name, size_t len) const;
2334 FieldDef* FindFieldByName(const char* name, size_t len);
2335 const FieldDef* FindFieldByName(const char* name) const {
2336 return FindFieldByName(name, strlen(name));
2337 }
2338 FieldDef* FindFieldByName(const char* name) {
2339 return FindFieldByName(name, strlen(name));
2340 }
2341
2342 template <class T>
2343 FieldDef* FindFieldByName(const T& str) {
2344 return FindFieldByName(str.c_str(), str.size());
2345 }
2346 template <class T>
2347 const FieldDef* FindFieldByName(const T& str) const {
2348 return FindFieldByName(str.c_str(), str.size());
2349 }
2350
2351 /* Looks up by tag number. */
2352 const FieldDef* FindFieldByNumber(uint32_t num) const;
2353
2354 /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
2355 * by the given owner. */
2356 OneofDef* Dup(const void* owner) const;
2357
2358 /* Iteration over fields. The order is undefined. */
2359 class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2360 public:
2361 explicit iterator(OneofDef* md);
2362 static iterator end(OneofDef* md);
2363
2364 void operator++();
2365 FieldDef* operator*() const;
2366 bool operator!=(const iterator& other) const;
2367 bool operator==(const iterator& other) const;
2368
2369 private:
2370 upb_oneof_iter iter_;
2371 };
2372
2373 class const_iterator
2374 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2375 public:
2376 explicit const_iterator(const OneofDef* md);
2377 static const_iterator end(const OneofDef* md);
2378
2379 void operator++();
2380 const FieldDef* operator*() const;
2381 bool operator!=(const const_iterator& other) const;
2382 bool operator==(const const_iterator& other) const;
2383
2384 private:
2385 upb_oneof_iter iter_;
2386 };
2387
2388 iterator begin();
2389 iterator end();
2390 const_iterator begin() const;
2391 const_iterator end() const;
2392
2393 private:
2394 UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
2395 };
2396
2397 #endif /* __cplusplus */
2398
2399 UPB_BEGIN_EXTERN_C
2400
2401 /* Native C API. */
2402 upb_oneofdef *upb_oneofdef_new(const void *owner);
2403 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
2404
2405 /* Include upb_refcounted methods like upb_oneofdef_ref(). */
2406 UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast2)
2407
2408 const char *upb_oneofdef_name(const upb_oneofdef *o);
2409 bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
2410
2411 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
2412 int upb_oneofdef_numfields(const upb_oneofdef *o);
2413 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
2414 const void *ref_donor,
2415 upb_status *s);
2416
2417 /* Oneof lookups:
2418 * - ntof: look up a field by name.
2419 * - ntofz: look up a field by name (as a null-terminated string).
2420 * - itof: look up a field by number. */
2421 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
2422 const char *name, size_t length);
2423 UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
2424 const char *name) {
2425 return upb_oneofdef_ntof(o, name, strlen(name));
2426 }
2427 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
2428
2429 /* upb_oneof_iter i;
2430 * for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
2431 * // ...
2432 * }
2433 */
2434 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
2435 void upb_oneof_next(upb_oneof_iter *iter);
2436 bool upb_oneof_done(upb_oneof_iter *iter);
2437 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
2438 void upb_oneof_iter_setdone(upb_oneof_iter *iter);
2439
2440 UPB_END_EXTERN_C
2441
2442 #ifdef __cplusplus
2443
2444 UPB_INLINE const char* upb_safecstr(const std::string& str) {
2445 assert(str.size() == std::strlen(str.c_str()));
2446 return str.c_str();
2447 }
2448
2449 /* Inline C++ wrappers. */
2450 namespace upb {
2451
2452 inline Def* Def::Dup(const void* owner) const {
2453 return upb_def_dup(this, owner);
2454 }
2455 inline Def::Type Def::def_type() const { return upb_def_type(this); }
2456 inline const char* Def::full_name() const { return upb_def_fullname(this); }
2457 inline bool Def::set_full_name(const char* fullname, Status* s) {
2458 return upb_def_setfullname(this, fullname, s);
2459 }
2460 inline bool Def::set_full_name(const std::string& fullname, Status* s) {
2461 return upb_def_setfullname(this, upb_safecstr(fullname), s);
2462 }
2463 inline bool Def::Freeze(Def* const* defs, int n, Status* status) {
2464 return upb_def_freeze(defs, n, status);
2465 }
2466 inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
2467 return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
2468 }
2469
2470 inline bool FieldDef::CheckType(int32_t val) {
2471 return upb_fielddef_checktype(val);
2472 }
2473 inline bool FieldDef::CheckLabel(int32_t val) {
2474 return upb_fielddef_checklabel(val);
2475 }
2476 inline bool FieldDef::CheckDescriptorType(int32_t val) {
2477 return upb_fielddef_checkdescriptortype(val);
2478 }
2479 inline bool FieldDef::CheckIntegerFormat(int32_t val) {
2480 return upb_fielddef_checkintfmt(val);
2481 }
2482 inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
2483 assert(CheckType(val));
2484 return static_cast<FieldDef::Type>(val);
2485 }
2486 inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
2487 assert(CheckLabel(val));
2488 return static_cast<FieldDef::Label>(val);
2489 }
2490 inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
2491 assert(CheckDescriptorType(val));
2492 return static_cast<FieldDef::DescriptorType>(val);
2493 }
2494 inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
2495 assert(CheckIntegerFormat(val));
2496 return static_cast<FieldDef::IntegerFormat>(val);
2497 }
2498
2499 inline reffed_ptr<FieldDef> FieldDef::New() {
2500 upb_fielddef *f = upb_fielddef_new(&f);
2501 return reffed_ptr<FieldDef>(f, &f);
2502 }
2503 inline FieldDef* FieldDef::Dup(const void* owner) const {
2504 return upb_fielddef_dup(this, owner);
2505 }
2506 inline const char* FieldDef::full_name() const {
2507 return upb_fielddef_fullname(this);
2508 }
2509 inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
2510 return upb_fielddef_setfullname(this, fullname, s);
2511 }
2512 inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
2513 return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
2514 }
2515 inline bool FieldDef::type_is_set() const {
2516 return upb_fielddef_typeisset(this);
2517 }
2518 inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
2519 inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
2520 return upb_fielddef_descriptortype(this);
2521 }
2522 inline FieldDef::Label FieldDef::label() const {
2523 return upb_fielddef_label(this);
2524 }
2525 inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
2526 inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
2527 inline bool FieldDef::is_extension() const {
2528 return upb_fielddef_isextension(this);
2529 }
2530 inline bool FieldDef::lazy() const {
2531 return upb_fielddef_lazy(this);
2532 }
2533 inline void FieldDef::set_lazy(bool lazy) {
2534 upb_fielddef_setlazy(this, lazy);
2535 }
2536 inline bool FieldDef::packed() const {
2537 return upb_fielddef_packed(this);
2538 }
2539 inline void FieldDef::set_packed(bool packed) {
2540 upb_fielddef_setpacked(this, packed);
2541 }
2542 inline const MessageDef* FieldDef::containing_type() const {
2543 return upb_fielddef_containingtype(this);
2544 }
2545 inline const OneofDef* FieldDef::containing_oneof() const {
2546 return upb_fielddef_containingoneof(this);
2547 }
2548 inline const char* FieldDef::containing_type_name() {
2549 return upb_fielddef_containingtypename(this);
2550 }
2551 inline bool FieldDef::set_number(uint32_t number, Status* s) {
2552 return upb_fielddef_setnumber(this, number, s);
2553 }
2554 inline bool FieldDef::set_name(const char *name, Status* s) {
2555 return upb_fielddef_setname(this, name, s);
2556 }
2557 inline bool FieldDef::set_name(const std::string& name, Status* s) {
2558 return upb_fielddef_setname(this, upb_safecstr(name), s);
2559 }
2560 inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
2561 return upb_fielddef_setcontainingtypename(this, name, s);
2562 }
2563 inline bool FieldDef::set_containing_type_name(const std::string &name,
2564 Status *s) {
2565 return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
2566 }
2567 inline void FieldDef::set_type(upb_fieldtype_t type) {
2568 upb_fielddef_settype(this, type);
2569 }
2570 inline void FieldDef::set_is_extension(bool is_extension) {
2571 upb_fielddef_setisextension(this, is_extension);
2572 }
2573 inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
2574 upb_fielddef_setdescriptortype(this, type);
2575 }
2576 inline void FieldDef::set_label(upb_label_t label) {
2577 upb_fielddef_setlabel(this, label);
2578 }
2579 inline bool FieldDef::IsSubMessage() const {
2580 return upb_fielddef_issubmsg(this);
2581 }
2582 inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
2583 inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
2584 inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
2585 inline int64_t FieldDef::default_int64() const {
2586 return upb_fielddef_defaultint64(this);
2587 }
2588 inline int32_t FieldDef::default_int32() const {
2589 return upb_fielddef_defaultint32(this);
2590 }
2591 inline uint64_t FieldDef::default_uint64() const {
2592 return upb_fielddef_defaultuint64(this);
2593 }
2594 inline uint32_t FieldDef::default_uint32() const {
2595 return upb_fielddef_defaultuint32(this);
2596 }
2597 inline bool FieldDef::default_bool() const {
2598 return upb_fielddef_defaultbool(this);
2599 }
2600 inline float FieldDef::default_float() const {
2601 return upb_fielddef_defaultfloat(this);
2602 }
2603 inline double FieldDef::default_double() const {
2604 return upb_fielddef_defaultdouble(this);
2605 }
2606 inline const char* FieldDef::default_string(size_t* len) const {
2607 return upb_fielddef_defaultstr(this, len);
2608 }
2609 inline void FieldDef::set_default_int64(int64_t value) {
2610 upb_fielddef_setdefaultint64(this, value);
2611 }
2612 inline void FieldDef::set_default_int32(int32_t value) {
2613 upb_fielddef_setdefaultint32(this, value);
2614 }
2615 inline void FieldDef::set_default_uint64(uint64_t value) {
2616 upb_fielddef_setdefaultuint64(this, value);
2617 }
2618 inline void FieldDef::set_default_uint32(uint32_t value) {
2619 upb_fielddef_setdefaultuint32(this, value);
2620 }
2621 inline void FieldDef::set_default_bool(bool value) {
2622 upb_fielddef_setdefaultbool(this, value);
2623 }
2624 inline void FieldDef::set_default_float(float value) {
2625 upb_fielddef_setdefaultfloat(this, value);
2626 }
2627 inline void FieldDef::set_default_double(double value) {
2628 upb_fielddef_setdefaultdouble(this, value);
2629 }
2630 inline bool FieldDef::set_default_string(const void *str, size_t len,
2631 Status *s) {
2632 return upb_fielddef_setdefaultstr(this, str, len, s);
2633 }
2634 inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
2635 return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
2636 }
2637 inline void FieldDef::set_default_cstr(const char* str, Status* s) {
2638 return upb_fielddef_setdefaultcstr(this, str, s);
2639 }
2640 inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
2641 inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
2642 inline const MessageDef *FieldDef::message_subdef() const {
2643 return upb_fielddef_msgsubdef(this);
2644 }
2645 inline const EnumDef *FieldDef::enum_subdef() const {
2646 return upb_fielddef_enumsubdef(this);
2647 }
2648 inline const char* FieldDef::subdef_name() const {
2649 return upb_fielddef_subdefname(this);
2650 }
2651 inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
2652 return upb_fielddef_setsubdef(this, subdef, s);
2653 }
2654 inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
2655 return upb_fielddef_setenumsubdef(this, subdef, s);
2656 }
2657 inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
2658 return upb_fielddef_setmsgsubdef(this, subdef, s);
2659 }
2660 inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
2661 return upb_fielddef_setsubdefname(this, name, s);
2662 }
2663 inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
2664 return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
2665 }
2666
2667 inline reffed_ptr<MessageDef> MessageDef::New() {
2668 upb_msgdef *m = upb_msgdef_new(&m);
2669 return reffed_ptr<MessageDef>(m, &m);
2670 }
2671 inline const char *MessageDef::full_name() const {
2672 return upb_msgdef_fullname(this);
2673 }
2674 inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
2675 return upb_msgdef_setfullname(this, fullname, s);
2676 }
2677 inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
2678 return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
2679 }
2680 inline bool MessageDef::Freeze(Status* status) {
2681 return upb_msgdef_freeze(this, status);
2682 }
2683 inline int MessageDef::field_count() const {
2684 return upb_msgdef_numfields(this);
2685 }
2686 inline int MessageDef::oneof_count() const {
2687 return upb_msgdef_numoneofs(this);
2688 }
2689 inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
2690 return upb_msgdef_addfield(this, f, NULL, s);
2691 }
2692 inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
2693 return upb_msgdef_addfield(this, f.get(), NULL, s);
2694 }
2695 inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
2696 return upb_msgdef_addoneof(this, o, NULL, s);
2697 }
2698 inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
2699 return upb_msgdef_addoneof(this, o.get(), NULL, s);
2700 }
2701 inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
2702 return upb_msgdef_itof_mutable(this, number);
2703 }
2704 inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
2705 return upb_msgdef_ntof_mutable(this, name, len);
2706 }
2707 inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
2708 return upb_msgdef_itof(this, number);
2709 }
2710 inline const FieldDef *MessageDef::FindFieldByName(const char *name,
2711 size_t len) const {
2712 return upb_msgdef_ntof(this, name, len);
2713 }
2714 inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
2715 return upb_msgdef_ntoo_mutable(this, name, len);
2716 }
2717 inline const OneofDef* MessageDef::FindOneofByName(const char* name,
2718 size_t len) const {
2719 return upb_msgdef_ntoo(this, name, len);
2720 }
2721 inline MessageDef* MessageDef::Dup(const void *owner) const {
2722 return upb_msgdef_dup(this, owner);
2723 }
2724 inline void MessageDef::setmapentry(bool map_entry) {
2725 upb_msgdef_setmapentry(this, map_entry);
2726 }
2727 inline bool MessageDef::mapentry() const {
2728 return upb_msgdef_mapentry(this);
2729 }
2730 inline MessageDef::field_iterator MessageDef::field_begin() {
2731 return field_iterator(this);
2732 }
2733 inline MessageDef::field_iterator MessageDef::field_end() {
2734 return field_iterator::end(this);
2735 }
2736 inline MessageDef::const_field_iterator MessageDef::field_begin() const {
2737 return const_field_iterator(this);
2738 }
2739 inline MessageDef::const_field_iterator MessageDef::field_end() const {
2740 return const_field_iterator::end(this);
2741 }
2742
2743 inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
2744 return oneof_iterator(this);
2745 }
2746 inline MessageDef::oneof_iterator MessageDef::oneof_end() {
2747 return oneof_iterator::end(this);
2748 }
2749 inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
2750 return const_oneof_iterator(this);
2751 }
2752 inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
2753 return const_oneof_iterator::end(this);
2754 }
2755
2756 inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
2757 upb_msg_field_begin(&iter_, md);
2758 }
2759 inline MessageDef::field_iterator MessageDef::field_iterator::end(
2760 MessageDef* md) {
2761 MessageDef::field_iterator iter(md);
2762 upb_msg_field_iter_setdone(&iter.iter_);
2763 return iter;
2764 }
2765 inline FieldDef* MessageDef::field_iterator::operator*() const {
2766 return upb_msg_iter_field(&iter_);
2767 }
2768 inline void MessageDef::field_iterator::operator++() {
2769 return upb_msg_field_next(&iter_);
2770 }
2771 inline bool MessageDef::field_iterator::operator==(
2772 const field_iterator &other) const {
2773 return upb_inttable_iter_isequal(&iter_, &other.iter_);
2774 }
2775 inline bool MessageDef::field_iterator::operator!=(
2776 const field_iterator &other) const {
2777 return !(*this == other);
2778 }
2779
2780 inline MessageDef::const_field_iterator::const_field_iterator(
2781 const MessageDef* md) {
2782 upb_msg_field_begin(&iter_, md);
2783 }
2784 inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
2785 const MessageDef *md) {
2786 MessageDef::const_field_iterator iter(md);
2787 upb_msg_field_iter_setdone(&iter.iter_);
2788 return iter;
2789 }
2790 inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
2791 return upb_msg_iter_field(&iter_);
2792 }
2793 inline void MessageDef::const_field_iterator::operator++() {
2794 return upb_msg_field_next(&iter_);
2795 }
2796 inline bool MessageDef::const_field_iterator::operator==(
2797 const const_field_iterator &other) const {
2798 return upb_inttable_iter_isequal(&iter_, &other.iter_);
2799 }
2800 inline bool MessageDef::const_field_iterator::operator!=(
2801 const const_field_iterator &other) const {
2802 return !(*this == other);
2803 }
2804
2805 inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
2806 upb_msg_oneof_begin(&iter_, md);
2807 }
2808 inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
2809 MessageDef* md) {
2810 MessageDef::oneof_iterator iter(md);
2811 upb_msg_oneof_iter_setdone(&iter.iter_);
2812 return iter;
2813 }
2814 inline OneofDef* MessageDef::oneof_iterator::operator*() const {
2815 return upb_msg_iter_oneof(&iter_);
2816 }
2817 inline void MessageDef::oneof_iterator::operator++() {
2818 return upb_msg_oneof_next(&iter_);
2819 }
2820 inline bool MessageDef::oneof_iterator::operator==(
2821 const oneof_iterator &other) const {
2822 return upb_strtable_iter_isequal(&iter_, &other.iter_);
2823 }
2824 inline bool MessageDef::oneof_iterator::operator!=(
2825 const oneof_iterator &other) const {
2826 return !(*this == other);
2827 }
2828
2829 inline MessageDef::const_oneof_iterator::const_oneof_iterator(
2830 const MessageDef* md) {
2831 upb_msg_oneof_begin(&iter_, md);
2832 }
2833 inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
2834 const MessageDef *md) {
2835 MessageDef::const_oneof_iterator iter(md);
2836 upb_msg_oneof_iter_setdone(&iter.iter_);
2837 return iter;
2838 }
2839 inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
2840 return upb_msg_iter_oneof(&iter_);
2841 }
2842 inline void MessageDef::const_oneof_iterator::operator++() {
2843 return upb_msg_oneof_next(&iter_);
2844 }
2845 inline bool MessageDef::const_oneof_iterator::operator==(
2846 const const_oneof_iterator &other) const {
2847 return upb_strtable_iter_isequal(&iter_, &other.iter_);
2848 }
2849 inline bool MessageDef::const_oneof_iterator::operator!=(
2850 const const_oneof_iterator &other) const {
2851 return !(*this == other);
2852 }
2853
2854 inline reffed_ptr<EnumDef> EnumDef::New() {
2855 upb_enumdef *e = upb_enumdef_new(&e);
2856 return reffed_ptr<EnumDef>(e, &e);
2857 }
2858 inline const char* EnumDef::full_name() const {
2859 return upb_enumdef_fullname(this);
2860 }
2861 inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
2862 return upb_enumdef_setfullname(this, fullname, s);
2863 }
2864 inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
2865 return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
2866 }
2867 inline bool EnumDef::Freeze(Status* status) {
2868 return upb_enumdef_freeze(this, status);
2869 }
2870 inline int32_t EnumDef::default_value() const {
2871 return upb_enumdef_default(this);
2872 }
2873 inline bool EnumDef::set_default_value(int32_t val, Status* status) {
2874 return upb_enumdef_setdefault(this, val, status);
2875 }
2876 inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
2877 inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
2878 return upb_enumdef_addval(this, name, num, status);
2879 }
2880 inline bool EnumDef::AddValue(const std::string& name, int32_t num,
2881 Status* status) {
2882 return upb_enumdef_addval(this, upb_safecstr(name), num, status);
2883 }
2884 inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
2885 return upb_enumdef_ntoiz(this, name, num);
2886 }
2887 inline const char* EnumDef::FindValueByNumber(int32_t num) const {
2888 return upb_enumdef_iton(this, num);
2889 }
2890 inline EnumDef* EnumDef::Dup(const void* owner) const {
2891 return upb_enumdef_dup(this, owner);
2892 }
2893
2894 inline EnumDef::Iterator::Iterator(const EnumDef* e) {
2895 upb_enum_begin(&iter_, e);
2896 }
2897 inline int32_t EnumDef::Iterator::number() {
2898 return upb_enum_iter_number(&iter_);
2899 }
2900 inline const char* EnumDef::Iterator::name() {
2901 return upb_enum_iter_name(&iter_);
2902 }
2903 inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
2904 inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
2905
2906 inline reffed_ptr<OneofDef> OneofDef::New() {
2907 upb_oneofdef *o = upb_oneofdef_new(&o);
2908 return reffed_ptr<OneofDef>(o, &o);
2909 }
2910 inline const char* OneofDef::full_name() const {
2911 return upb_oneofdef_name(this);
2912 }
2913
2914 inline const MessageDef* OneofDef::containing_type() const {
2915 return upb_oneofdef_containingtype(this);
2916 }
2917 inline const char* OneofDef::name() const {
2918 return upb_oneofdef_name(this);
2919 }
2920 inline bool OneofDef::set_name(const char* name, Status* s) {
2921 return upb_oneofdef_setname(this, name, s);
2922 }
2923 inline int OneofDef::field_count() const {
2924 return upb_oneofdef_numfields(this);
2925 }
2926 inline bool OneofDef::AddField(FieldDef* field, Status* s) {
2927 return upb_oneofdef_addfield(this, field, NULL, s);
2928 }
2929 inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
2930 return upb_oneofdef_addfield(this, field.get(), NULL, s);
2931 }
2932 inline const FieldDef* OneofDef::FindFieldByName(const char* name,
2933 size_t len) const {
2934 return upb_oneofdef_ntof(this, name, len);
2935 }
2936 inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
2937 return upb_oneofdef_itof(this, num);
2938 }
2939 inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
2940 inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
2941 inline OneofDef::const_iterator OneofDef::begin() const {
2942 return const_iterator(this);
2943 }
2944 inline OneofDef::const_iterator OneofDef::end() const {
2945 return const_iterator::end(this);
2946 }
2947
2948 inline OneofDef::iterator::iterator(OneofDef* o) {
2949 upb_oneof_begin(&iter_, o);
2950 }
2951 inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
2952 OneofDef::iterator iter(o);
2953 upb_oneof_iter_setdone(&iter.iter_);
2954 return iter;
2955 }
2956 inline FieldDef* OneofDef::iterator::operator*() const {
2957 return upb_oneof_iter_field(&iter_);
2958 }
2959 inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
2960 inline bool OneofDef::iterator::operator==(const iterator &other) const {
2961 return upb_inttable_iter_isequal(&iter_, &other.iter_);
2962 }
2963 inline bool OneofDef::iterator::operator!=(const iterator &other) const {
2964 return !(*this == other);
2965 }
2966
2967 inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
2968 upb_oneof_begin(&iter_, md);
2969 }
2970 inline OneofDef::const_iterator OneofDef::const_iterator::end(
2971 const OneofDef *md) {
2972 OneofDef::const_iterator iter(md);
2973 upb_oneof_iter_setdone(&iter.iter_);
2974 return iter;
2975 }
2976 inline const FieldDef* OneofDef::const_iterator::operator*() const {
2977 return upb_msg_iter_field(&iter_);
2978 }
2979 inline void OneofDef::const_iterator::operator++() {
2980 return upb_oneof_next(&iter_);
2981 }
2982 inline bool OneofDef::const_iterator::operator==(
2983 const const_iterator &other) const {
2984 return upb_inttable_iter_isequal(&iter_, &other.iter_);
2985 }
2986 inline bool OneofDef::const_iterator::operator!=(
2987 const const_iterator &other) const {
2988 return !(*this == other);
2989 }
2990
2991 } /* namespace upb */
2992 #endif
2993
2994 #endif /* UPB_DEF_H_ */
2995 /*
2996 ** This file contains definitions of structs that should be considered private
2997 ** and NOT stable across versions of upb.
2998 **
2999 ** The only reason they are declared here and not in .c files is to allow upb
3000 ** and the application (if desired) to embed statically-initialized instances
3001 ** of structures like defs.
3002 **
3003 ** If you include this file, all guarantees of ABI compatibility go out the
3004 ** window! Any code that includes this file needs to recompile against the
3005 ** exact same version of upb that they are linking against.
3006 **
3007 ** You also need to recompile if you change the value of the UPB_DEBUG_REFS
3008 ** flag.
3009 */
3010
3011
3012 #ifndef UPB_STATICINIT_H_
3013 #define UPB_STATICINIT_H_
3014
3015 #ifdef __cplusplus
3016 /* Because of how we do our typedefs, this header can't be included from C++. */
3017 #error This file cannot be included from C++
3018 #endif
3019
3020 /* upb_refcounted *************************************************************/
3021
3022
3023 /* upb_def ********************************************************************/
3024
3025 struct upb_def {
3026 upb_refcounted base;
3027
3028 const char *fullname;
3029 char type; /* A upb_deftype_t (char to save space) */
3030
3031 /* Used as a flag during the def's mutable stage. Must be false unless
3032 * it is currently being used by a function on the stack. This allows
3033 * us to easily determine which defs were passed into the function's
3034 * current invocation. */
3035 bool came_from_user;
3036 };
3037
3038 #define UPB_DEF_INIT(name, type, refs, ref2s) \
3039 { UPB_REFCOUNT_INIT(refs, ref2s), name, type, false }
3040
3041
3042 /* upb_fielddef ***************************************************************/
3043
3044 struct upb_fielddef {
3045 upb_def base;
3046
3047 union {
3048 int64_t sint;
3049 uint64_t uint;
3050 double dbl;
3051 float flt;
3052 void *bytes;
3053 } defaultval;
3054 union {
3055 const upb_msgdef *def; /* If !msg_is_symbolic. */
3056 char *name; /* If msg_is_symbolic. */
3057 } msg;
3058 union {
3059 const upb_def *def; /* If !subdef_is_symbolic. */
3060 char *name; /* If subdef_is_symbolic. */
3061 } sub; /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
3062 bool subdef_is_symbolic;
3063 bool msg_is_symbolic;
3064 const upb_oneofdef *oneof;
3065 bool default_is_string;
3066 bool type_is_set_; /* False until type is explicitly set. */
3067 bool is_extension_;
3068 bool lazy_;
3069 bool packed_;
3070 upb_intfmt_t intfmt;
3071 bool tagdelim;
3072 upb_fieldtype_t type_;
3073 upb_label_t label_;
3074 uint32_t number_;
3075 uint32_t selector_base; /* Used to index into a upb::Handlers table. */
3076 uint32_t index_;
3077 };
3078
3079 #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \
3080 packed, name, num, msgdef, subdef, selector_base, \
3081 index, defaultval, refs, ref2s) \
3082 { \
3083 UPB_DEF_INIT(name, UPB_DEF_FIELD, refs, ref2s), defaultval, {msgdef}, \
3084 {subdef}, NULL, false, false, \
3085 type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
3086 lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
3087 }
3088
3089
3090 /* upb_msgdef *****************************************************************/
3091
3092 struct upb_msgdef {
3093 upb_def base;
3094
3095 size_t selector_count;
3096 uint32_t submsg_field_count;
3097
3098 /* Tables for looking up fields by number and name. */
3099 upb_inttable itof; /* int to field */
3100 upb_strtable ntof; /* name to field */
3101
3102 /* Tables for looking up oneofs by name. */
3103 upb_strtable ntoo; /* name to oneof */
3104
3105 /* Is this a map-entry message?
3106 * TODO: set this flag properly for static descriptors; regenerate
3107 * descriptor.upb.c. */
3108 bool map_entry;
3109
3110 /* TODO(haberman): proper extension ranges (there can be multiple). */
3111 };
3112
3113 /* TODO: also support static initialization of the oneofs table. This will be
3114 * needed if we compile in descriptors that contain oneofs. */
3115 #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
3116 refs, ref2s) \
3117 { \
3118 UPB_DEF_INIT(name, UPB_DEF_MSG, refs, ref2s), selector_count, \
3119 submsg_field_count, itof, ntof, \
3120 UPB_EMPTY_STRTABLE_INIT(UPB_CTYPE_PTR), false \
3121 }
3122
3123
3124 /* upb_enumdef ****************************************************************/
3125
3126 struct upb_enumdef {
3127 upb_def base;
3128
3129 upb_strtable ntoi;
3130 upb_inttable iton;
3131 int32_t defaultval;
3132 };
3133
3134 #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
3135 { UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntoi, iton, defaultval }
3136
3137
3138 /* upb_oneofdef ***************************************************************/
3139
3140 struct upb_oneofdef {
3141 upb_def base;
3142
3143 upb_strtable ntof;
3144 upb_inttable itof;
3145 const upb_msgdef *parent;
3146 };
3147
3148 #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
3149 { UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntof, itof }
3150
3151
3152 /* upb_symtab *****************************************************************/
3153
3154 struct upb_symtab {
3155 upb_refcounted base;
3156
3157 upb_strtable symtab;
3158 };
3159
3160 #define UPB_SYMTAB_INIT(symtab, refs, ref2s) \
3161 { UPB_REFCOUNT_INIT(refs, ref2s), symtab }
3162
3163
3164 #endif /* UPB_STATICINIT_H_ */
3165 /*
3166 ** upb::Handlers (upb_handlers)
3167 **
3168 ** A upb_handlers is like a virtual table for a upb_msgdef. Each field of the
3169 ** message can have associated functions that will be called when we are
3170 ** parsing or visiting a stream of data. This is similar to how handlers work
3171 ** in SAX (the Simple API for XML).
3172 **
3173 ** The handlers have no idea where the data is coming from, so a single set of
3174 ** handlers could be used with two completely different data sources (for
3175 ** example, a parser and a visitor over in-memory objects). This decoupling is
3176 ** the most important feature of upb, because it allows parsers and serializers
3177 ** to be highly reusable.
3178 **
3179 ** This is a mixed C/C++ interface that offers a full API to both languages.
3180 ** See the top-level README for more information.
3181 */
3182
3183 #ifndef UPB_HANDLERS_H
3184 #define UPB_HANDLERS_H
3185
3186
3187 #ifdef __cplusplus
3188 namespace upb {
3189 class BufferHandle;
3190 class BytesHandler;
3191 class HandlerAttributes;
3192 class Handlers;
3193 template <class T> class Handler;
3194 template <class T> struct CanonicalType;
3195 } /* namespace upb */
3196 #endif
3197
3198 UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
3199 UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
3200 UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
3201 UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
3202 upb_handlers, upb_refcounted)
3203
3204 /* The maximum depth that the handler graph can have. This is a resource limit
3205 * for the C stack since we sometimes need to recursively traverse the graph.
3206 * Cycles are ok; the traversal will stop when it detects a cycle, but we must
3207 * hit the cycle before the maximum depth is reached.
3208 *
3209 * If having a single static limit is too inflexible, we can add another variant
3210 * of Handlers::Freeze that allows specifying this as a parameter. */
3211 #define UPB_MAX_HANDLER_DEPTH 64
3212
3213 /* All the different types of handlers that can be registered.
3214 * Only needed for the advanced functions in upb::Handlers. */
3215 typedef enum {
3216 UPB_HANDLER_INT32,
3217 UPB_HANDLER_INT64,
3218 UPB_HANDLER_UINT32,
3219 UPB_HANDLER_UINT64,
3220 UPB_HANDLER_FLOAT,
3221 UPB_HANDLER_DOUBLE,
3222 UPB_HANDLER_BOOL,
3223 UPB_HANDLER_STARTSTR,
3224 UPB_HANDLER_STRING,
3225 UPB_HANDLER_ENDSTR,
3226 UPB_HANDLER_STARTSUBMSG,
3227 UPB_HANDLER_ENDSUBMSG,
3228 UPB_HANDLER_STARTSEQ,
3229 UPB_HANDLER_ENDSEQ
3230 } upb_handlertype_t;
3231
3232 #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
3233
3234 #define UPB_BREAK NULL
3235
3236 /* A convenient definition for when no closure is needed. */
3237 extern char _upb_noclosure;
3238 #define UPB_NO_CLOSURE &_upb_noclosure
3239
3240 /* A selector refers to a specific field handler in the Handlers object
3241 * (for example: the STARTSUBMSG handler for field "field15"). */
3242 typedef int32_t upb_selector_t;
3243
3244 UPB_BEGIN_EXTERN_C
3245
3246 /* Forward-declares for C inline accessors. We need to declare these here
3247 * so we can "friend" them in the class declarations in C++. */
3248 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
3249 upb_selector_t s);
3250 UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
3251 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
3252 upb_selector_t s);
3253
3254 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
3255 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
3256 const void *type);
3257 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
3258 size_t ofs);
3259 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
3260 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
3261 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
3262
3263 UPB_END_EXTERN_C
3264
3265
3266 /* Static selectors for upb::Handlers. */
3267 #define UPB_STARTMSG_SELECTOR 0
3268 #define UPB_ENDMSG_SELECTOR 1
3269 #define UPB_STATIC_SELECTOR_COUNT 2
3270
3271 /* Static selectors for upb::BytesHandler. */
3272 #define UPB_STARTSTR_SELECTOR 0
3273 #define UPB_STRING_SELECTOR 1
3274 #define UPB_ENDSTR_SELECTOR 2
3275
3276 typedef void upb_handlerfree(void *d);
3277
3278 #ifdef __cplusplus
3279
3280 /* A set of attributes that accompanies a handler's function pointer. */
3281 class upb::HandlerAttributes {
3282 public:
3283 HandlerAttributes();
3284 ~HandlerAttributes();
3285
3286 /* Sets the handler data that will be passed as the second parameter of the
3287 * handler. To free this pointer when the handlers are freed, call
3288 * Handlers::AddCleanup(). */
3289 bool SetHandlerData(const void *handler_data);
3290 const void* handler_data() const;
3291
3292 /* Use this to specify the type of the closure. This will be checked against
3293 * all other closure types for handler that use the same closure.
3294 * Registration will fail if this does not match all other non-NULL closure
3295 * types. */
3296 bool SetClosureType(const void *closure_type);
3297 const void* closure_type() const;
3298
3299 /* Use this to specify the type of the returned closure. Only used for
3300 * Start*{String,SubMessage,Sequence} handlers. This must match the closure
3301 * type of any handlers that use it (for example, the StringBuf handler must
3302 * match the closure returned from StartString). */
3303 bool SetReturnClosureType(const void *return_closure_type);
3304 const void* return_closure_type() const;
3305
3306 /* Set to indicate that the handler always returns "ok" (either "true" or a
3307 * non-NULL closure). This is a hint that can allow code generators to
3308 * generate more efficient code. */
3309 bool SetAlwaysOk(bool always_ok);
3310 bool always_ok() const;
3311
3312 private:
3313 friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
3314 const upb_handlerattr *attr);
3315 #else
3316 struct upb_handlerattr {
3317 #endif
3318 const void *handler_data_;
3319 const void *closure_type_;
3320 const void *return_closure_type_;
3321 bool alwaysok_;
3322 };
3323
3324 #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
3325
3326 typedef struct {
3327 upb_func *func;
3328
3329 /* It is wasteful to include the entire attributes here:
3330 *
3331 * * Some of the information is redundant (like storing the closure type
3332 * separately for each handler that must match).
3333 * * Some of the info is only needed prior to freeze() (like closure types).
3334 * * alignment padding wastes a lot of space for alwaysok_.
3335 *
3336 * If/when the size and locality of handlers is an issue, we can optimize this
3337 * not to store the entire attr like this. We do not expose the table's
3338 * layout to allow this optimization in the future. */
3339 upb_handlerattr attr;
3340 } upb_handlers_tabent;
3341
3342 #ifdef __cplusplus
3343
3344 /* Extra information about a buffer that is passed to a StringBuf handler.
3345 * TODO(haberman): allow the handle to be pinned so that it will outlive
3346 * the handler invocation. */
3347 class upb::BufferHandle {
3348 public:
3349 BufferHandle();
3350 ~BufferHandle();
3351
3352 /* The beginning of the buffer. This may be different than the pointer
3353 * passed to a StringBuf handler because the handler may receive data
3354 * that is from the middle or end of a larger buffer. */
3355 const char* buffer() const;
3356
3357 /* The offset within the attached object where this buffer begins. Only
3358 * meaningful if there is an attached object. */
3359 size_t object_offset() const;
3360
3361 /* Note that object_offset is the offset of "buf" within the attached
3362 * object. */
3363 void SetBuffer(const char* buf, size_t object_offset);
3364
3365 /* The BufferHandle can have an "attached object", which can be used to
3366 * tunnel through a pointer to the buffer's underlying representation. */
3367 template <class T>
3368 void SetAttachedObject(const T* obj);
3369
3370 /* Returns NULL if the attached object is not of this type. */
3371 template <class T>
3372 const T* GetAttachedObject() const;
3373
3374 private:
3375 friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
3376 friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
3377 const void *obj,
3378 const void *type);
3379 friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
3380 const char *buf, size_t ofs);
3381 friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
3382 friend UPB_INLINE const void* ::upb_bufhandle_objtype(
3383 const upb_bufhandle *h);
3384 friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
3385 #else
3386 struct upb_bufhandle {
3387 #endif
3388 const char *buf_;
3389 const void *obj_;
3390 const void *objtype_;
3391 size_t objofs_;
3392 };
3393
3394 #ifdef __cplusplus
3395
3396 /* A upb::Handlers object represents the set of handlers associated with a
3397 * message in the graph of messages. You can think of it as a big virtual
3398 * table with functions corresponding to all the events that can fire while
3399 * parsing or visiting a message of a specific type.
3400 *
3401 * Any handlers that are not set behave as if they had successfully consumed
3402 * the value. Any unset Start* handlers will propagate their closure to the
3403 * inner frame.
3404 *
3405 * The easiest way to create the *Handler objects needed by the Set* methods is
3406 * with the UpbBind() and UpbMakeHandler() macros; see below. */
3407 class upb::Handlers {
3408 public:
3409 typedef upb_selector_t Selector;
3410 typedef upb_handlertype_t Type;
3411
3412 typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
3413 typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
3414 typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
3415 typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
3416 typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
3417 typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
3418 const BufferHandle *)> StringHandler;
3419
3420 template <class T> struct ValueHandler {
3421 typedef Handler<bool(*)(void *, const void *, T)> H;
3422 };
3423
3424 typedef ValueHandler<int32_t>::H Int32Handler;
3425 typedef ValueHandler<int64_t>::H Int64Handler;
3426 typedef ValueHandler<uint32_t>::H UInt32Handler;
3427 typedef ValueHandler<uint64_t>::H UInt64Handler;
3428 typedef ValueHandler<float>::H FloatHandler;
3429 typedef ValueHandler<double>::H DoubleHandler;
3430 typedef ValueHandler<bool>::H BoolHandler;
3431
3432 /* Any function pointer can be converted to this and converted back to its
3433 * correct type. */
3434 typedef void GenericFunction();
3435
3436 typedef void HandlersCallback(const void *closure, upb_handlers *h);
3437
3438 /* Returns a new handlers object for the given frozen msgdef.
3439 * Returns NULL if memory allocation failed. */
3440 static reffed_ptr<Handlers> New(const MessageDef *m);
3441
3442 /* Convenience function for registering a graph of handlers that mirrors the
3443 * graph of msgdefs for some message. For "m" and all its children a new set
3444 * of handlers will be created and the given callback will be invoked,
3445 * allowing the client to register handlers for this message. Note that any
3446 * subhandlers set by the callback will be overwritten. */
3447 static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
3448 HandlersCallback *callback,
3449 const void *closure);
3450
3451 /* Functionality from upb::RefCounted. */
3452 UPB_REFCOUNTED_CPPMETHODS
3453
3454 /* All handler registration functions return bool to indicate success or
3455 * failure; details about failures are stored in this status object. If a
3456 * failure does occur, it must be cleared before the Handlers are frozen,
3457 * otherwise the freeze() operation will fail. The functions may *only* be
3458 * used while the Handlers are mutable. */
3459 const Status* status();
3460 void ClearError();
3461
3462 /* Call to freeze these Handlers. Requires that any SubHandlers are already
3463 * frozen. For cycles, you must use the static version below and freeze the
3464 * whole graph at once. */
3465 bool Freeze(Status* s);
3466
3467 /* Freezes the given set of handlers. You may not freeze a handler without
3468 * also freezing any handlers they point to. */
3469 static bool Freeze(Handlers*const* handlers, int n, Status* s);
3470 static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
3471
3472 /* Returns the msgdef associated with this handlers object. */
3473 const MessageDef* message_def() const;
3474
3475 /* Adds the given pointer and function to the list of cleanup functions that
3476 * will be run when these handlers are freed. If this pointer has previously
3477 * been registered, the function returns false and does nothing. */
3478 bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
3479
3480 /* Sets the startmsg handler for the message, which is defined as follows:
3481 *
3482 * bool startmsg(MyType* closure) {
3483 * // Called when the message begins. Returns true if processing should
3484 * // continue.
3485 * return true;
3486 * }
3487 */
3488 bool SetStartMessageHandler(const StartMessageHandler& handler);
3489
3490 /* Sets the endmsg handler for the message, which is defined as follows:
3491 *
3492 * bool endmsg(MyType* closure, upb_status *status) {
3493 * // Called when processing of this message ends, whether in success or
3494 * // failure. "status" indicates the final status of processing, and
3495 * // can also be modified in-place to update the final status.
3496 * }
3497 */
3498 bool SetEndMessageHandler(const EndMessageHandler& handler);
3499
3500 /* Sets the value handler for the given field, which is defined as follows
3501 * (this is for an int32 field; other field types will pass their native
3502 * C/C++ type for "val"):
3503 *
3504 * bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
3505 * // Called when the field's value is encountered. "d" contains
3506 * // whatever data was bound to this field when it was registered.
3507 * // Returns true if processing should continue.
3508 * return true;
3509 * }
3510 *
3511 * handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
3512 *
3513 * The value type must exactly match f->type().
3514 * For example, a handler that takes an int32_t parameter may only be used for
3515 * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
3516 *
3517 * Returns false if the handler failed to register; in this case the cleanup
3518 * handler (if any) will be called immediately.
3519 */
3520 bool SetInt32Handler (const FieldDef* f, const Int32Handler& h);
3521 bool SetInt64Handler (const FieldDef* f, const Int64Handler& h);
3522 bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
3523 bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
3524 bool SetFloatHandler (const FieldDef* f, const FloatHandler& h);
3525 bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
3526 bool SetBoolHandler (const FieldDef* f, const BoolHandler& h);
3527
3528 /* Like the previous, but templated on the type on the value (ie. int32).
3529 * This is mostly useful to call from other templates. To call this you must
3530 * specify the template parameter explicitly, ie:
3531 * h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
3532 template <class T>
3533 bool SetValueHandler(
3534 const FieldDef *f,
3535 const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
3536
3537 /* Sets handlers for a string field, which are defined as follows:
3538 *
3539 * MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
3540 * size_t size_hint) {
3541 * // Called when a string value begins. The return value indicates the
3542 * // closure for the string. "size_hint" indicates the size of the
3543 * // string if it is known, however if the string is length-delimited
3544 * // and the end-of-string is not available size_hint will be zero.
3545 * // This case is indistinguishable from the case where the size is
3546 * // known to be zero.
3547 * //
3548 * // TODO(haberman): is it important to distinguish these cases?
3549 * // If we had ssize_t as a type we could make -1 "unknown", but
3550 * // ssize_t is POSIX (not ANSI) and therefore less portable.
3551 * // In practice I suspect it won't be important to distinguish.
3552 * return closure;
3553 * }
3554 *
3555 * size_t str(MyClosure* closure, const MyHandlerData* d,
3556 * const char *str, size_t len) {
3557 * // Called for each buffer of string data; the multiple physical buffers
3558 * // are all part of the same logical string. The return value indicates
3559 * // how many bytes were consumed. If this number is less than "len",
3560 * // this will also indicate that processing should be halted for now,
3561 * // like returning false or UPB_BREAK from any other callback. If
3562 * // number is greater than "len", the excess bytes will be skipped over
3563 * // and not passed to the callback.
3564 * return len;
3565 * }
3566 *
3567 * bool endstr(MyClosure* c, const MyHandlerData* d) {
3568 * // Called when a string value ends. Return value indicates whether
3569 * // processing should continue.
3570 * return true;
3571 * }
3572 */
3573 bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
3574 bool SetStringHandler(const FieldDef* f, const StringHandler& h);
3575 bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
3576
3577 /* Sets the startseq handler, which is defined as follows:
3578 *
3579 * MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
3580 * // Called when a sequence (repeated field) begins. The returned
3581 * // pointer indicates the closure for the sequence (or UPB_BREAK
3582 * // to interrupt processing).
3583 * return closure;
3584 * }
3585 *
3586 * h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
3587 *
3588 * Returns "false" if "f" does not belong to this message or is not a
3589 * repeated field.
3590 */
3591 bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
3592
3593 /* Sets the startsubmsg handler for the given field, which is defined as
3594 * follows:
3595 *
3596 * MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
3597 * // Called when a submessage begins. The returned pointer indicates the
3598 * // closure for the sequence (or UPB_BREAK to interrupt processing).
3599 * return closure;
3600 * }
3601 *
3602 * h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
3603 * new MyHandlerData(...)));
3604 *
3605 * Returns "false" if "f" does not belong to this message or is not a
3606 * submessage/group field.
3607 */
3608 bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
3609
3610 /* Sets the endsubmsg handler for the given field, which is defined as
3611 * follows:
3612 *
3613 * bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
3614 * // Called when a submessage ends. Returns true to continue processing.
3615 * return true;
3616 * }
3617 *
3618 * Returns "false" if "f" does not belong to this message or is not a
3619 * submessage/group field.
3620 */
3621 bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
3622
3623 /* Starts the endsubseq handler for the given field, which is defined as
3624 * follows:
3625 *
3626 * bool endseq(MyClosure* c, const MyHandlerData* d) {
3627 * // Called when a sequence ends. Returns true continue processing.
3628 * return true;
3629 * }
3630 *
3631 * Returns "false" if "f" does not belong to this message or is not a
3632 * repeated field.
3633 */
3634 bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
3635
3636 /* Sets or gets the object that specifies handlers for the given field, which
3637 * must be a submessage or group. Returns NULL if no handlers are set. */
3638 bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
3639 const Handlers* GetSubHandlers(const FieldDef* f) const;
3640
3641 /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
3642 * field. */
3643 const Handlers* GetSubHandlers(Selector startsubmsg) const;
3644
3645 /* A selector refers to a specific field handler in the Handlers object
3646 * (for example: the STARTSUBMSG handler for field "field15").
3647 * On success, returns true and stores the selector in "s".
3648 * If the FieldDef or Type are invalid, returns false.
3649 * The returned selector is ONLY valid for Handlers whose MessageDef
3650 * contains this FieldDef. */
3651 static bool GetSelector(const FieldDef* f, Type type, Selector* s);
3652
3653 /* Given a START selector of any kind, returns the corresponding END selector. */
3654 static Selector GetEndSelector(Selector start_selector);
3655
3656 /* Returns the function pointer for this handler. It is the client's
3657 * responsibility to cast to the correct function type before calling it. */
3658 GenericFunction* GetHandler(Selector selector);
3659
3660 /* Sets the given attributes to the attributes for this selector. */
3661 bool GetAttributes(Selector selector, HandlerAttributes* attr);
3662
3663 /* Returns the handler data that was registered with this handler. */
3664 const void* GetHandlerData(Selector selector);
3665
3666 /* Could add any of the following functions as-needed, with some minor
3667 * implementation changes:
3668 *
3669 * const FieldDef* GetFieldDef(Selector selector);
3670 * static bool IsSequence(Selector selector); */
3671
3672 private:
3673 UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
3674
3675 friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
3676 const upb_handlers *h, upb_selector_t s);
3677 friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
3678 const upb_handlers *h, upb_selector_t s);
3679 #else
3680 struct upb_handlers {
3681 #endif
3682 upb_refcounted base;
3683
3684 const upb_msgdef *msg;
3685 const upb_handlers **sub;
3686 const void *top_closure_type;
3687 upb_inttable cleanup_;
3688 upb_status status_; /* Used only when mutable. */
3689 upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */
3690 };
3691
3692 #ifdef __cplusplus
3693
3694 namespace upb {
3695
3696 /* Convenience macros for creating a Handler object that is wrapped with a
3697 * type-safe wrapper function that converts the "void*" parameters/returns
3698 * of the underlying C API into nice C++ function.
3699 *
3700 * Sample usage:
3701 * void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
3702 * // do stuff ...
3703 * }
3704 *
3705 * // Handler that doesn't need any data bound to it.
3706 * void OnValue2(MyClosure* c, int32_t val) {
3707 * // do stuff ...
3708 * }
3709 *
3710 * // Handler that returns bool so it can return failure if necessary.
3711 * bool OnValue3(MyClosure* c, int32_t val) {
3712 * // do stuff ...
3713 * return ok;
3714 * }
3715 *
3716 * // Member function handler.
3717 * class MyClosure {
3718 * public:
3719 * void OnValue(int32_t val) {
3720 * // do stuff ...
3721 * }
3722 * };
3723 *
3724 * // Takes ownership of the MyHandlerData.
3725 * handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
3726 * handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
3727 * handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
3728 * handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
3729 */
3730
3731 #ifdef UPB_CXX11
3732
3733 /* In C++11, the "template" disambiguator can appear even outside templates,
3734 * so all calls can safely use this pair of macros. */
3735
3736 #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
3737
3738 /* We have to be careful to only evaluate "d" once. */
3739 #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
3740
3741 #else
3742
3743 /* Prior to C++11, the "template" disambiguator may only appear inside a
3744 * template, so the regular macro must not use "template" */
3745
3746 #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
3747
3748 #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
3749
3750 #endif /* UPB_CXX11 */
3751
3752 /* This macro must be used in C++98 for calls from inside a template. But we
3753 * define this variant in all cases; code that wants to be compatible with both
3754 * C++98 and C++11 should always use this macro when calling from a template. */
3755 #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
3756
3757 /* We have to be careful to only evaluate "d" once. */
3758 #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
3759
3760 /* Handler: a struct that contains the (handler, data, deleter) tuple that is
3761 * used to register all handlers. Users can Make() these directly but it's
3762 * more convenient to use the UpbMakeHandler/UpbBind macros above. */
3763 template <class T> class Handler {
3764 public:
3765 /* The underlying, handler function signature that upb uses internally. */
3766 typedef T FuncPtr;
3767
3768 /* Intentionally implicit. */
3769 template <class F> Handler(F func);
3770 ~Handler();
3771
3772 private:
3773 void AddCleanup(Handlers* h) const {
3774 if (cleanup_func_) {
3775 bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
3776 UPB_ASSERT_VAR(ok, ok);
3777 }
3778 }
3779
3780 UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
3781 friend class Handlers;
3782 FuncPtr handler_;
3783 mutable HandlerAttributes attr_;
3784 mutable bool registered_;
3785 void *cleanup_data_;
3786 upb_handlerfree *cleanup_func_;
3787 };
3788
3789 } /* namespace upb */
3790
3791 #endif /* __cplusplus */
3792
3793 UPB_BEGIN_EXTERN_C
3794
3795 /* Native C API. */
3796
3797 /* Handler function typedefs. */
3798 typedef bool upb_startmsg_handlerfunc(void *c, const void*);
3799 typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
3800 typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
3801 typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
3802 typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
3803 typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
3804 typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
3805 typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
3806 typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
3807 typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
3808 typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
3809 typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
3810 size_t size_hint);
3811 typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
3812 size_t n, const upb_bufhandle* handle);
3813
3814 /* upb_bufhandle */
3815 size_t upb_bufhandle_objofs(const upb_bufhandle *h);
3816
3817 /* upb_handlerattr */
3818 void upb_handlerattr_init(upb_handlerattr *attr);
3819 void upb_handlerattr_uninit(upb_handlerattr *attr);
3820
3821 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
3822 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
3823 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
3824 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
3825 const void *type);
3826 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
3827 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
3828 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
3829
3830 UPB_INLINE const void *upb_handlerattr_handlerdata(
3831 const upb_handlerattr *attr) {
3832 return attr->handler_data_;
3833 }
3834
3835 /* upb_handlers */
3836 typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
3837 upb_handlers *upb_handlers_new(const upb_msgdef *m,
3838 const void *owner);
3839 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
3840 const void *owner,
3841 upb_handlers_callback *callback,
3842 const void *closure);
3843
3844 /* Include refcounted methods like upb_handlers_ref(). */
3845 UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
3846
3847 const upb_status *upb_handlers_status(upb_handlers *h);
3848 void upb_handlers_clearerr(upb_handlers *h);
3849 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
3850 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
3851
3852 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
3853 upb_handlerattr *attr);
3854 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
3855 upb_handlerattr *attr);
3856 bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
3857 upb_int32_handlerfunc *func, upb_handlerattr *attr);
3858 bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
3859 upb_int64_handlerfunc *func, upb_handlerattr *attr);
3860 bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
3861 upb_uint32_handlerfunc *func,
3862 upb_handlerattr *attr);
3863 bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
3864 upb_uint64_handlerfunc *func,
3865 upb_handlerattr *attr);
3866 bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
3867 upb_float_handlerfunc *func, upb_handlerattr *attr);
3868 bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
3869 upb_double_handlerfunc *func,
3870 upb_handlerattr *attr);
3871 bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
3872 upb_bool_handlerfunc *func,
3873 upb_handlerattr *attr);
3874 bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
3875 upb_startstr_handlerfunc *func,
3876 upb_handlerattr *attr);
3877 bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
3878 upb_string_handlerfunc *func,
3879 upb_handlerattr *attr);
3880 bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
3881 upb_endfield_handlerfunc *func,
3882 upb_handlerattr *attr);
3883 bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
3884 upb_startfield_handlerfunc *func,
3885 upb_handlerattr *attr);
3886 bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
3887 upb_startfield_handlerfunc *func,
3888 upb_handlerattr *attr);
3889 bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
3890 upb_endfield_handlerfunc *func,
3891 upb_handlerattr *attr);
3892 bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
3893 upb_endfield_handlerfunc *func,
3894 upb_handlerattr *attr);
3895
3896 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
3897 const upb_handlers *sub);
3898 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
3899 const upb_fielddef *f);
3900 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
3901 upb_selector_t sel);
3902
3903 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
3904 upb_selector_t s) {
3905 return (upb_func *)h->table[s].func;
3906 }
3907
3908 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
3909 upb_handlerattr *attr);
3910
3911 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
3912 upb_selector_t s) {
3913 return upb_handlerattr_handlerdata(&h->table[s].attr);
3914 }
3915
3916 #ifdef __cplusplus
3917
3918 /* Handler types for single fields.
3919 * Right now we only have one for TYPE_BYTES but ones for other types
3920 * should follow.
3921 *
3922 * These follow the same handlers protocol for fields of a message. */
3923 class upb::BytesHandler {
3924 public:
3925 BytesHandler();
3926 ~BytesHandler();
3927 #else
3928 struct upb_byteshandler {
3929 #endif
3930 upb_handlers_tabent table[3];
3931 };
3932
3933 void upb_byteshandler_init(upb_byteshandler *h);
3934
3935 /* Caller must ensure that "d" outlives the handlers.
3936 * TODO(haberman): should this have a "freeze" operation? It's not necessary
3937 * for memory management, but could be useful to force immutability and provide
3938 * a convenient moment to verify that all registration succeeded. */
3939 bool upb_byteshandler_setstartstr(upb_byteshandler *h,
3940 upb_startstr_handlerfunc *func, void *d);
3941 bool upb_byteshandler_setstring(upb_byteshandler *h,
3942 upb_string_handlerfunc *func, void *d);
3943 bool upb_byteshandler_setendstr(upb_byteshandler *h,
3944 upb_endfield_handlerfunc *func, void *d);
3945
3946 /* "Static" methods */
3947 bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
3948 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
3949 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
3950 upb_selector_t *s);
3951 UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
3952 return start + 1;
3953 }
3954
3955 /* Internal-only. */
3956 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
3957 uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
3958
3959 UPB_END_EXTERN_C
3960
3961 /*
3962 ** Inline definitions for handlers.h, which are particularly long and a bit
3963 ** tricky.
3964 */
3965
3966 #ifndef UPB_HANDLERS_INL_H_
3967 #define UPB_HANDLERS_INL_H_
3968
3969 #include <limits.h>
3970
3971 /* C inline methods. */
3972
3973 /* upb_bufhandle */
3974 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
3975 h->obj_ = NULL;
3976 h->objtype_ = NULL;
3977 h->buf_ = NULL;
3978 h->objofs_ = 0;
3979 }
3980 UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
3981 UPB_UNUSED(h);
3982 }
3983 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
3984 const void *type) {
3985 h->obj_ = obj;
3986 h->objtype_ = type;
3987 }
3988 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
3989 size_t ofs) {
3990 h->buf_ = buf;
3991 h->objofs_ = ofs;
3992 }
3993 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
3994 return h->obj_;
3995 }
3996 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
3997 return h->objtype_;
3998 }
3999 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
4000 return h->buf_;
4001 }
4002
4003
4004 #ifdef __cplusplus
4005
4006 /* Type detection and typedefs for integer types.
4007 * For platforms where there are multiple 32-bit or 64-bit types, we need to be
4008 * able to enumerate them so we can properly create overloads for all variants.
4009 *
4010 * If any platform existed where there were three integer types with the same
4011 * size, this would have to become more complicated. For example, short, int,
4012 * and long could all be 32-bits. Even more diabolically, short, int, long,
4013 * and long long could all be 64 bits and still be standard-compliant.
4014 * However, few platforms are this strange, and it's unlikely that upb will be
4015 * used on the strangest ones. */
4016
4017 /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
4018 * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
4019 * of stdint.h. We can't guarantee that someone else didn't include these first
4020 * without defining __STDC_LIMIT_MACROS. */
4021 #define UPB_INT32_MAX 0x7fffffffLL
4022 #define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
4023 #define UPB_INT64_MAX 0x7fffffffffffffffLL
4024 #define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
4025
4026 #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
4027 #define UPB_INT_IS_32BITS 1
4028 #endif
4029
4030 #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
4031 #define UPB_LONG_IS_32BITS 1
4032 #endif
4033
4034 #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
4035 #define UPB_LONG_IS_64BITS 1
4036 #endif
4037
4038 #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
4039 #define UPB_LLONG_IS_64BITS 1
4040 #endif
4041
4042 /* We use macros instead of typedefs so we can undefine them later and avoid
4043 * leaking them outside this header file. */
4044 #if UPB_INT_IS_32BITS
4045 #define UPB_INT32_T int
4046 #define UPB_UINT32_T unsigned int
4047
4048 #if UPB_LONG_IS_32BITS
4049 #define UPB_TWO_32BIT_TYPES 1
4050 #define UPB_INT32ALT_T long
4051 #define UPB_UINT32ALT_T unsigned long
4052 #endif /* UPB_LONG_IS_32BITS */
4053
4054 #elif UPB_LONG_IS_32BITS /* && !UPB_INT_IS_32BITS */
4055 #define UPB_INT32_T long
4056 #define UPB_UINT32_T unsigned long
4057 #endif /* UPB_INT_IS_32BITS */
4058
4059
4060 #if UPB_LONG_IS_64BITS
4061 #define UPB_INT64_T long
4062 #define UPB_UINT64_T unsigned long
4063
4064 #if UPB_LLONG_IS_64BITS
4065 #define UPB_TWO_64BIT_TYPES 1
4066 #define UPB_INT64ALT_T long long
4067 #define UPB_UINT64ALT_T unsigned long long
4068 #endif /* UPB_LLONG_IS_64BITS */
4069
4070 #elif UPB_LLONG_IS_64BITS /* && !UPB_LONG_IS_64BITS */
4071 #define UPB_INT64_T long long
4072 #define UPB_UINT64_T unsigned long long
4073 #endif /* UPB_LONG_IS_64BITS */
4074
4075 #undef UPB_INT32_MAX
4076 #undef UPB_INT32_MIN
4077 #undef UPB_INT64_MAX
4078 #undef UPB_INT64_MIN
4079 #undef UPB_INT_IS_32BITS
4080 #undef UPB_LONG_IS_32BITS
4081 #undef UPB_LONG_IS_64BITS
4082 #undef UPB_LLONG_IS_64BITS
4083
4084
4085 namespace upb {
4086
4087 typedef void CleanupFunc(void *ptr);
4088
4089 /* Template to remove "const" from "const T*" and just return "T*".
4090 *
4091 * We define a nonsense default because otherwise it will fail to instantiate as
4092 * a function parameter type even in cases where we don't expect any caller to
4093 * actually match the overload. */
4094 class CouldntRemoveConst {};
4095 template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
4096 template <class T> struct remove_constptr<const T *> { typedef T *type; };
4097
4098 /* Template that we use below to remove a template specialization from
4099 * consideration if it matches a specific type. */
4100 template <class T, class U> struct disable_if_same { typedef void Type; };
4101 template <class T> struct disable_if_same<T, T> {};
4102
4103 template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
4104
4105 template <class T1, class T2>
4106 struct FirstUnlessVoidOrBool {
4107 typedef T1 value;
4108 };
4109
4110 template <class T2>
4111 struct FirstUnlessVoidOrBool<void, T2> {
4112 typedef T2 value;
4113 };
4114
4115 template <class T2>
4116 struct FirstUnlessVoidOrBool<bool, T2> {
4117 typedef T2 value;
4118 };
4119
4120 template<class T, class U>
4121 struct is_same {
4122 static bool value;
4123 };
4124
4125 template<class T>
4126 struct is_same<T, T> {
4127 static bool value;
4128 };
4129
4130 template<class T, class U>
4131 bool is_same<T, U>::value = false;
4132
4133 template<class T>
4134 bool is_same<T, T>::value = true;
4135
4136 /* FuncInfo *******************************************************************/
4137
4138 /* Info about the user's original, pre-wrapped function. */
4139 template <class C, class R = void>
4140 struct FuncInfo {
4141 /* The type of the closure that the function takes (its first param). */
4142 typedef C Closure;
4143
4144 /* The return type. */
4145 typedef R Return;
4146 };
4147
4148 /* Func ***********************************************************************/
4149
4150 /* Func1, Func2, Func3: Template classes representing a function and its
4151 * signature.
4152 *
4153 * Since the function is a template parameter, calling the function can be
4154 * inlined at compile-time and does not require a function pointer at runtime.
4155 * These functions are not bound to a handler data so have no data or cleanup
4156 * handler. */
4157 struct UnboundFunc {
4158 CleanupFunc *GetCleanup() { return NULL; }
4159 void *GetData() { return NULL; }
4160 };
4161
4162 template <class R, class P1, R F(P1), class I>
4163 struct Func1 : public UnboundFunc {
4164 typedef R Return;
4165 typedef I FuncInfo;
4166 static R Call(P1 p1) { return F(p1); }
4167 };
4168
4169 template <class R, class P1, class P2, R F(P1, P2), class I>
4170 struct Func2 : public UnboundFunc {
4171 typedef R Return;
4172 typedef I FuncInfo;
4173 static R Call(P1 p1, P2 p2) { return F(p1, p2); }
4174 };
4175
4176 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4177 struct Func3 : public UnboundFunc {
4178 typedef R Return;
4179 typedef I FuncInfo;
4180 static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
4181 };
4182
4183 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4184 class I>
4185 struct Func4 : public UnboundFunc {
4186 typedef R Return;
4187 typedef I FuncInfo;
4188 static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
4189 };
4190
4191 template <class R, class P1, class P2, class P3, class P4, class P5,
4192 R F(P1, P2, P3, P4, P5), class I>
4193 struct Func5 : public UnboundFunc {
4194 typedef R Return;
4195 typedef I FuncInfo;
4196 static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
4197 return F(p1, p2, p3, p4, p5);
4198 }
4199 };
4200
4201 /* BoundFunc ******************************************************************/
4202
4203 /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
4204 * shall be bound to the function's second parameter.
4205 *
4206 * Note that the second parameter is a const pointer, but our stored bound value
4207 * is non-const so we can free it when the handlers are destroyed. */
4208 template <class T>
4209 struct BoundFunc {
4210 typedef typename remove_constptr<T>::type MutableP2;
4211 explicit BoundFunc(MutableP2 data_) : data(data_) {}
4212 CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
4213 MutableP2 GetData() { return data; }
4214 MutableP2 data;
4215 };
4216
4217 template <class R, class P1, class P2, R F(P1, P2), class I>
4218 struct BoundFunc2 : public BoundFunc<P2> {
4219 typedef BoundFunc<P2> Base;
4220 typedef I FuncInfo;
4221 explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
4222 };
4223
4224 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4225 struct BoundFunc3 : public BoundFunc<P2> {
4226 typedef BoundFunc<P2> Base;
4227 typedef I FuncInfo;
4228 explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
4229 };
4230
4231 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4232 class I>
4233 struct BoundFunc4 : public BoundFunc<P2> {
4234 typedef BoundFunc<P2> Base;
4235 typedef I FuncInfo;
4236 explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
4237 };
4238
4239 template <class R, class P1, class P2, class P3, class P4, class P5,
4240 R F(P1, P2, P3, P4, P5), class I>
4241 struct BoundFunc5 : public BoundFunc<P2> {
4242 typedef BoundFunc<P2> Base;
4243 typedef I FuncInfo;
4244 explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
4245 };
4246
4247 /* FuncSig ********************************************************************/
4248
4249 /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
4250 * *signature*, but without a specific function attached.
4251 *
4252 * These classes contain member functions that can be invoked with a
4253 * specific function to return a Func/BoundFunc class. */
4254 template <class R, class P1>
4255 struct FuncSig1 {
4256 template <R F(P1)>
4257 Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
4258 return Func1<R, P1, F, FuncInfo<P1, R> >();
4259 }
4260 };
4261
4262 template <class R, class P1, class P2>
4263 struct FuncSig2 {
4264 template <R F(P1, P2)>
4265 Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
4266 return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
4267 }
4268
4269 template <R F(P1, P2)>
4270 BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
4271 typename remove_constptr<P2>::type param2) {
4272 return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
4273 }
4274 };
4275
4276 template <class R, class P1, class P2, class P3>
4277 struct FuncSig3 {
4278 template <R F(P1, P2, P3)>
4279 Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
4280 return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
4281 }
4282
4283 template <R F(P1, P2, P3)>
4284 BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
4285 typename remove_constptr<P2>::type param2) {
4286 return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
4287 }
4288 };
4289
4290 template <class R, class P1, class P2, class P3, class P4>
4291 struct FuncSig4 {
4292 template <R F(P1, P2, P3, P4)>
4293 Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
4294 return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
4295 }
4296
4297 template <R F(P1, P2, P3, P4)>
4298 BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
4299 typename remove_constptr<P2>::type param2) {
4300 return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
4301 }
4302 };
4303
4304 template <class R, class P1, class P2, class P3, class P4, class P5>
4305 struct FuncSig5 {
4306 template <R F(P1, P2, P3, P4, P5)>
4307 Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
4308 return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
4309 }
4310
4311 template <R F(P1, P2, P3, P4, P5)>
4312 BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
4313 typename remove_constptr<P2>::type param2) {
4314 return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
4315 }
4316 };
4317
4318 /* Overloaded template function that can construct the appropriate FuncSig*
4319 * class given a function pointer by deducing the template parameters. */
4320 template <class R, class P1>
4321 inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
4322 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4323 return FuncSig1<R, P1>();
4324 }
4325
4326 template <class R, class P1, class P2>
4327 inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
4328 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4329 return FuncSig2<R, P1, P2>();
4330 }
4331
4332 template <class R, class P1, class P2, class P3>
4333 inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
4334 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4335 return FuncSig3<R, P1, P2, P3>();
4336 }
4337
4338 template <class R, class P1, class P2, class P3, class P4>
4339 inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
4340 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4341 return FuncSig4<R, P1, P2, P3, P4>();
4342 }
4343
4344 template <class R, class P1, class P2, class P3, class P4, class P5>
4345 inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
4346 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4347 return FuncSig5<R, P1, P2, P3, P4, P5>();
4348 }
4349
4350 /* MethodSig ******************************************************************/
4351
4352 /* CallMethod*: a function template that calls a given method. */
4353 template <class R, class C, R (C::*F)()>
4354 R CallMethod0(C *obj) {
4355 return ((*obj).*F)();
4356 }
4357
4358 template <class R, class C, class P1, R (C::*F)(P1)>
4359 R CallMethod1(C *obj, P1 arg1) {
4360 return ((*obj).*F)(arg1);
4361 }
4362
4363 template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
4364 R CallMethod2(C *obj, P1 arg1, P2 arg2) {
4365 return ((*obj).*F)(arg1, arg2);
4366 }
4367
4368 template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
4369 R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
4370 return ((*obj).*F)(arg1, arg2, arg3);
4371 }
4372
4373 template <class R, class C, class P1, class P2, class P3, class P4,
4374 R (C::*F)(P1, P2, P3, P4)>
4375 R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
4376 return ((*obj).*F)(arg1, arg2, arg3, arg4);
4377 }
4378
4379 /* MethodSig: like FuncSig, but for member functions.
4380 *
4381 * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
4382 * more logic is required to special-case methods. */
4383 template <class R, class C>
4384 struct MethodSig0 {
4385 template <R (C::*F)()>
4386 Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
4387 return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
4388 }
4389 };
4390
4391 template <class R, class C, class P1>
4392 struct MethodSig1 {
4393 template <R (C::*F)(P1)>
4394 Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
4395 return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
4396 }
4397
4398 template <R (C::*F)(P1)>
4399 BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
4400 typename remove_constptr<P1>::type param1) {
4401 return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
4402 param1);
4403 }
4404 };
4405
4406 template <class R, class C, class P1, class P2>
4407 struct MethodSig2 {
4408 template <R (C::*F)(P1, P2)>
4409 Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
4410 GetFunc() {
4411 return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
4412 FuncInfo<C *, R> >();
4413 }
4414
4415 template <R (C::*F)(P1, P2)>
4416 BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
4417 GetFunc(typename remove_constptr<P1>::type param1) {
4418 return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
4419 FuncInfo<C *, R> >(param1);
4420 }
4421 };
4422
4423 template <class R, class C, class P1, class P2, class P3>
4424 struct MethodSig3 {
4425 template <R (C::*F)(P1, P2, P3)>
4426 Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
4427 GetFunc() {
4428 return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
4429 FuncInfo<C *, R> >();
4430 }
4431
4432 template <R (C::*F)(P1, P2, P3)>
4433 BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
4434 FuncInfo<C *, R> >
4435 GetFunc(typename remove_constptr<P1>::type param1) {
4436 return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
4437 FuncInfo<C *, R> >(param1);
4438 }
4439 };
4440
4441 template <class R, class C, class P1, class P2, class P3, class P4>
4442 struct MethodSig4 {
4443 template <R (C::*F)(P1, P2, P3, P4)>
4444 Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
4445 FuncInfo<C *, R> >
4446 GetFunc() {
4447 return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
4448 FuncInfo<C *, R> >();
4449 }
4450
4451 template <R (C::*F)(P1, P2, P3, P4)>
4452 BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
4453 FuncInfo<C *, R> >
4454 GetFunc(typename remove_constptr<P1>::type param1) {
4455 return BoundFunc5<R, C *, P1, P2, P3, P4,
4456 CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
4457 param1);
4458 }
4459 };
4460
4461 template <class R, class C>
4462 inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
4463 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4464 return MethodSig0<R, C>();
4465 }
4466
4467 template <class R, class C, class P1>
4468 inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
4469 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4470 return MethodSig1<R, C, P1>();
4471 }
4472
4473 template <class R, class C, class P1, class P2>
4474 inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
4475 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4476 return MethodSig2<R, C, P1, P2>();
4477 }
4478
4479 template <class R, class C, class P1, class P2, class P3>
4480 inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
4481 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4482 return MethodSig3<R, C, P1, P2, P3>();
4483 }
4484
4485 template <class R, class C, class P1, class P2, class P3, class P4>
4486 inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
4487 UPB_UNUSED(f); /* Only used for template parameter deduction. */
4488 return MethodSig4<R, C, P1, P2, P3, P4>();
4489 }
4490
4491 /* MaybeWrapReturn ************************************************************/
4492
4493 /* Template class that attempts to wrap the return value of the function so it
4494 * matches the expected type. There are two main adjustments it may make:
4495 *
4496 * 1. If the function returns void, make it return the expected type and with
4497 * a value that always indicates success.
4498 * 2. If the function returns bool, make it return the expected type with a
4499 * value that indicates success or failure.
4500 *
4501 * The "expected type" for return is:
4502 * 1. void* for start handlers. If the closure parameter has a different type
4503 * we will cast it to void* for the return in the success case.
4504 * 2. size_t for string buffer handlers.
4505 * 3. bool for everything else. */
4506
4507 /* Template parameters are FuncN type and desired return type. */
4508 template <class F, class R, class Enable = void>
4509 struct MaybeWrapReturn;
4510
4511 /* If the return type matches, return the given function unwrapped. */
4512 template <class F>
4513 struct MaybeWrapReturn<F, typename F::Return> {
4514 typedef F Func;
4515 };
4516
4517 /* Function wrapper that munges the return value from void to (bool)true. */
4518 template <class P1, class P2, void F(P1, P2)>
4519 bool ReturnTrue2(P1 p1, P2 p2) {
4520 F(p1, p2);
4521 return true;
4522 }
4523
4524 template <class P1, class P2, class P3, void F(P1, P2, P3)>
4525 bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
4526 F(p1, p2, p3);
4527 return true;
4528 }
4529
4530 /* Function wrapper that munges the return value from void to (void*)arg1 */
4531 template <class P1, class P2, void F(P1, P2)>
4532 void *ReturnClosure2(P1 p1, P2 p2) {
4533 F(p1, p2);
4534 return p1;
4535 }
4536
4537 template <class P1, class P2, class P3, void F(P1, P2, P3)>
4538 void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
4539 F(p1, p2, p3);
4540 return p1;
4541 }
4542
4543 /* Function wrapper that munges the return value from R to void*. */
4544 template <class R, class P1, class P2, R F(P1, P2)>
4545 void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
4546 return F(p1, p2);
4547 }
4548
4549 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
4550 void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
4551 return F(p1, p2, p3);
4552 }
4553
4554 /* Function wrapper that munges the return value from bool to void*. */
4555 template <class P1, class P2, bool F(P1, P2)>
4556 void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
4557 return F(p1, p2) ? p1 : UPB_BREAK;
4558 }
4559
4560 template <class P1, class P2, class P3, bool F(P1, P2, P3)>
4561 void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
4562 return F(p1, p2, p3) ? p1 : UPB_BREAK;
4563 }
4564
4565 /* For the string callback, which takes five params, returns the size param. */
4566 template <class P1, class P2,
4567 void F(P1, P2, const char *, size_t, const BufferHandle *)>
4568 size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
4569 const BufferHandle *p5) {
4570 F(p1, p2, p3, p4, p5);
4571 return p4;
4572 }
4573
4574 /* For the string callback, which takes five params, returns the size param or
4575 * zero. */
4576 template <class P1, class P2,
4577 bool F(P1, P2, const char *, size_t, const BufferHandle *)>
4578 size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
4579 const BufferHandle *p5) {
4580 return F(p1, p2, p3, p4, p5) ? p4 : 0;
4581 }
4582
4583 /* If we have a function returning void but want a function returning bool, wrap
4584 * it in a function that returns true. */
4585 template <class P1, class P2, void F(P1, P2), class I>
4586 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
4587 typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
4588 };
4589
4590 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
4591 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
4592 typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
4593 };
4594
4595 /* If our function returns void but we want one returning void*, wrap it in a
4596 * function that returns the first argument. */
4597 template <class P1, class P2, void F(P1, P2), class I>
4598 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
4599 typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
4600 };
4601
4602 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
4603 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
4604 typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
4605 };
4606
4607 /* If our function returns R* but we want one returning void*, wrap it in a
4608 * function that casts to void*. */
4609 template <class R, class P1, class P2, R *F(P1, P2), class I>
4610 struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
4611 typename disable_if_same<R *, void *>::Type> {
4612 typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
4613 };
4614
4615 template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
4616 struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
4617 typename disable_if_same<R *, void *>::Type> {
4618 typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
4619 Func;
4620 };
4621
4622 /* If our function returns bool but we want one returning void*, wrap it in a
4623 * function that returns either the first param or UPB_BREAK. */
4624 template <class P1, class P2, bool F(P1, P2), class I>
4625 struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
4626 typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
4627 };
4628
4629 template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
4630 struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
4631 typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
4632 Func;
4633 };
4634
4635 /* If our function returns void but we want one returning size_t, wrap it in a
4636 * function that returns the size argument. */
4637 template <class P1, class P2,
4638 void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
4639 struct MaybeWrapReturn<
4640 Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
4641 size_t> {
4642 typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
4643 ReturnStringLen<P1, P2, F>, I> Func;
4644 };
4645
4646 /* If our function returns bool but we want one returning size_t, wrap it in a
4647 * function that returns either 0 or the buf size. */
4648 template <class P1, class P2,
4649 bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
4650 struct MaybeWrapReturn<
4651 Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
4652 size_t> {
4653 typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
4654 ReturnNOr0<P1, P2, F>, I> Func;
4655 };
4656
4657 /* ConvertParams **************************************************************/
4658
4659 /* Template class that converts the function parameters if necessary, and
4660 * ignores the HandlerData parameter if appropriate.
4661 *
4662 * Template parameter is the are FuncN function type. */
4663 template <class F, class T>
4664 struct ConvertParams;
4665
4666 /* Function that discards the handler data parameter. */
4667 template <class R, class P1, R F(P1)>
4668 R IgnoreHandlerData2(void *p1, const void *hd) {
4669 UPB_UNUSED(hd);
4670 return F(static_cast<P1>(p1));
4671 }
4672
4673 template <class R, class P1, class P2Wrapper, class P2Wrapped,
4674 R F(P1, P2Wrapped)>
4675 R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
4676 UPB_UNUSED(hd);
4677 return F(static_cast<P1>(p1), p2);
4678 }
4679
4680 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
4681 R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
4682 UPB_UNUSED(hd);
4683 return F(static_cast<P1>(p1), p2, p3);
4684 }
4685
4686 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
4687 R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
4688 UPB_UNUSED(hd);
4689 return F(static_cast<P1>(p1), p2, p3, p4);
4690 }
4691
4692 template <class R, class P1, R F(P1, const char*, size_t)>
4693 R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
4694 size_t p3, const BufferHandle *handle) {
4695 UPB_UNUSED(hd);
4696 UPB_UNUSED(handle);
4697 return F(static_cast<P1>(p1), p2, p3);
4698 }
4699
4700 /* Function that casts the handler data parameter. */
4701 template <class R, class P1, class P2, R F(P1, P2)>
4702 R CastHandlerData2(void *c, const void *hd) {
4703 return F(static_cast<P1>(c), static_cast<P2>(hd));
4704 }
4705
4706 template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
4707 R F(P1, P2, P3Wrapped)>
4708 R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
4709 return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
4710 }
4711
4712 template <class R, class P1, class P2, class P3, class P4, class P5,
4713 R F(P1, P2, P3, P4, P5)>
4714 R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
4715 return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
4716 }
4717
4718 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
4719 R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
4720 size_t p4, const BufferHandle *handle) {
4721 UPB_UNUSED(handle);
4722 return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
4723 }
4724
4725 /* For unbound functions, ignore the handler data. */
4726 template <class R, class P1, R F(P1), class I, class T>
4727 struct ConvertParams<Func1<R, P1, F, I>, T> {
4728 typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
4729 };
4730
4731 template <class R, class P1, class P2, R F(P1, P2), class I,
4732 class R2, class P1_2, class P2_2, class P3_2>
4733 struct ConvertParams<Func2<R, P1, P2, F, I>,
4734 R2 (*)(P1_2, P2_2, P3_2)> {
4735 typedef Func3<R, void *, const void *, P3_2,
4736 IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
4737 };
4738
4739 /* For StringBuffer only; this ignores both the handler data and the
4740 * BufferHandle. */
4741 template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
4742 struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
4743 typedef Func5<R, void *, const void *, const char *, size_t,
4744 const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
4745 I> Func;
4746 };
4747
4748 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4749 class I, class T>
4750 struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
4751 typedef Func5<R, void *, const void *, P2, P3, P4,
4752 IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
4753 };
4754
4755 /* For bound functions, cast the handler data. */
4756 template <class R, class P1, class P2, R F(P1, P2), class I, class T>
4757 struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
4758 typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
4759 Func;
4760 };
4761
4762 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
4763 class R2, class P1_2, class P2_2, class P3_2>
4764 struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
4765 R2 (*)(P1_2, P2_2, P3_2)> {
4766 typedef Func3<R, void *, const void *, P3_2,
4767 CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
4768 };
4769
4770 /* For StringBuffer only; this ignores the BufferHandle. */
4771 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
4772 class I, class T>
4773 struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
4774 typedef Func5<R, void *, const void *, const char *, size_t,
4775 const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
4776 I> Func;
4777 };
4778
4779 template <class R, class P1, class P2, class P3, class P4, class P5,
4780 R F(P1, P2, P3, P4, P5), class I, class T>
4781 struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
4782 typedef Func5<R, void *, const void *, P3, P4, P5,
4783 CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
4784 };
4785
4786 /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
4787 * variant C type. */
4788 #define TYPE_METHODS(utype, ltype, ctype, vtype) \
4789 template <> struct CanonicalType<vtype> { \
4790 typedef ctype Type; \
4791 }; \
4792 template <> \
4793 inline bool Handlers::SetValueHandler<vtype>( \
4794 const FieldDef *f, \
4795 const Handlers::utype ## Handler& handler) { \
4796 assert(!handler.registered_); \
4797 handler.AddCleanup(this); \
4798 handler.registered_ = true; \
4799 return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
4800 } \
4801
4802 TYPE_METHODS(Double, double, double, double)
4803 TYPE_METHODS(Float, float, float, float)
4804 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
4805 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
4806 TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T)
4807 TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T)
4808 TYPE_METHODS(Bool, bool, bool, bool)
4809
4810 #ifdef UPB_TWO_32BIT_TYPES
4811 TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T)
4812 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
4813 #endif
4814
4815 #ifdef UPB_TWO_64BIT_TYPES
4816 TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T)
4817 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
4818 #endif
4819 #undef TYPE_METHODS
4820
4821 template <> struct CanonicalType<Status*> {
4822 typedef Status* Type;
4823 };
4824
4825 /* Type methods that are only one-per-canonical-type and not
4826 * one-per-cvariant. */
4827
4828 #define TYPE_METHODS(utype, ctype) \
4829 inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
4830 const utype##Handler &h) { \
4831 return SetValueHandler<ctype>(f, h); \
4832 } \
4833
4834 TYPE_METHODS(Double, double)
4835 TYPE_METHODS(Float, float)
4836 TYPE_METHODS(UInt64, uint64_t)
4837 TYPE_METHODS(UInt32, uint32_t)
4838 TYPE_METHODS(Int64, int64_t)
4839 TYPE_METHODS(Int32, int32_t)
4840 TYPE_METHODS(Bool, bool)
4841 #undef TYPE_METHODS
4842
4843 template <class F> struct ReturnOf;
4844
4845 template <class R, class P1, class P2>
4846 struct ReturnOf<R (*)(P1, P2)> {
4847 typedef R Return;
4848 };
4849
4850 template <class R, class P1, class P2, class P3>
4851 struct ReturnOf<R (*)(P1, P2, P3)> {
4852 typedef R Return;
4853 };
4854
4855 template <class R, class P1, class P2, class P3, class P4>
4856 struct ReturnOf<R (*)(P1, P2, P3, P4)> {
4857 typedef R Return;
4858 };
4859
4860 template <class R, class P1, class P2, class P3, class P4, class P5>
4861 struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
4862 typedef R Return;
4863 };
4864
4865 template<class T> const void *UniquePtrForType() {
4866 static const char ch = 0;
4867 return &ch;
4868 }
4869
4870 template <class T>
4871 template <class F>
4872 inline Handler<T>::Handler(F func)
4873 : registered_(false),
4874 cleanup_data_(func.GetData()),
4875 cleanup_func_(func.GetCleanup()) {
4876 upb_handlerattr_sethandlerdata(&attr_, func.GetData());
4877 typedef typename ReturnOf<T>::Return Return;
4878 typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
4879 typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
4880 ReturnWrappedFunc;
4881 handler_ = ReturnWrappedFunc().Call;
4882
4883 /* Set attributes based on what templates can statically tell us about the
4884 * user's function. */
4885
4886 /* If the original function returns void, then we know that we wrapped it to
4887 * always return ok. */
4888 bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
4889 attr_.SetAlwaysOk(always_ok);
4890
4891 /* Closure parameter and return type. */
4892 attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
4893
4894 /* We use the closure type (from the first parameter) if the return type is
4895 * void or bool, since these are the two cases we wrap to return the closure's
4896 * type anyway.
4897 *
4898 * This is all nonsense for non START* handlers, but it doesn't matter because
4899 * in that case the value will be ignored. */
4900 typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
4901 typename F::FuncInfo::Closure>::value
4902 EffectiveReturn;
4903 attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
4904 }
4905
4906 template <class T>
4907 inline Handler<T>::~Handler() {
4908 assert(registered_);
4909 }
4910
4911 inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
4912 inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
4913 inline bool HandlerAttributes::SetHandlerData(const void *hd) {
4914 return upb_handlerattr_sethandlerdata(this, hd);
4915 }
4916 inline const void* HandlerAttributes::handler_data() const {
4917 return upb_handlerattr_handlerdata(this);
4918 }
4919 inline bool HandlerAttributes::SetClosureType(const void *type) {
4920 return upb_handlerattr_setclosuretype(this, type);
4921 }
4922 inline const void* HandlerAttributes::closure_type() const {
4923 return upb_handlerattr_closuretype(this);
4924 }
4925 inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
4926 return upb_handlerattr_setreturnclosuretype(this, type);
4927 }
4928 inline const void* HandlerAttributes::return_closure_type() const {
4929 return upb_handlerattr_returnclosuretype(this);
4930 }
4931 inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
4932 return upb_handlerattr_setalwaysok(this, always_ok);
4933 }
4934 inline bool HandlerAttributes::always_ok() const {
4935 return upb_handlerattr_alwaysok(this);
4936 }
4937
4938 inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
4939 inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
4940 inline const char* BufferHandle::buffer() const {
4941 return upb_bufhandle_buf(this);
4942 }
4943 inline size_t BufferHandle::object_offset() const {
4944 return upb_bufhandle_objofs(this);
4945 }
4946 inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
4947 upb_bufhandle_setbuf(this, buf, ofs);
4948 }
4949 template <class T>
4950 void BufferHandle::SetAttachedObject(const T* obj) {
4951 upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
4952 }
4953 template <class T>
4954 const T* BufferHandle::GetAttachedObject() const {
4955 return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
4956 ? static_cast<const T *>(upb_bufhandle_obj(this))
4957 : NULL;
4958 }
4959
4960 inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
4961 upb_handlers *h = upb_handlers_new(m, &h);
4962 return reffed_ptr<Handlers>(h, &h);
4963 }
4964 inline reffed_ptr<const Handlers> Handlers::NewFrozen(
4965 const MessageDef *m, upb_handlers_callback *callback,
4966 const void *closure) {
4967 const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
4968 return reffed_ptr<const Handlers>(h, &h);
4969 }
4970 inline const Status* Handlers::status() {
4971 return upb_handlers_status(this);
4972 }
4973 inline void Handlers::ClearError() {
4974 return upb_handlers_clearerr(this);
4975 }
4976 inline bool Handlers::Freeze(Status *s) {
4977 upb::Handlers* h = this;
4978 return upb_handlers_freeze(&h, 1, s);
4979 }
4980 inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
4981 return upb_handlers_freeze(handlers, n, s);
4982 }
4983 inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
4984 return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
4985 }
4986 inline const MessageDef *Handlers::message_def() const {
4987 return upb_handlers_msgdef(this);
4988 }
4989 inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
4990 return upb_handlers_addcleanup(this, p, func);
4991 }
4992 inline bool Handlers::SetStartMessageHandler(
4993 const Handlers::StartMessageHandler &handler) {
4994 assert(!handler.registered_);
4995 handler.registered_ = true;
4996 handler.AddCleanup(this);
4997 return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
4998 }
4999 inline bool Handlers::SetEndMessageHandler(
5000 const Handlers::EndMessageHandler &handler) {
5001 assert(!handler.registered_);
5002 handler.registered_ = true;
5003 handler.AddCleanup(this);
5004 return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
5005 }
5006 inline bool Handlers::SetStartStringHandler(const FieldDef *f,
5007 const StartStringHandler &handler) {
5008 assert(!handler.registered_);
5009 handler.registered_ = true;
5010 handler.AddCleanup(this);
5011 return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
5012 }
5013 inline bool Handlers::SetEndStringHandler(const FieldDef *f,
5014 const EndFieldHandler &handler) {
5015 assert(!handler.registered_);
5016 handler.registered_ = true;
5017 handler.AddCleanup(this);
5018 return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
5019 }
5020 inline bool Handlers::SetStringHandler(const FieldDef *f,
5021 const StringHandler& handler) {
5022 assert(!handler.registered_);
5023 handler.registered_ = true;
5024 handler.AddCleanup(this);
5025 return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
5026 }
5027 inline bool Handlers::SetStartSequenceHandler(
5028 const FieldDef *f, const StartFieldHandler &handler) {
5029 assert(!handler.registered_);
5030 handler.registered_ = true;
5031 handler.AddCleanup(this);
5032 return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
5033 }
5034 inline bool Handlers::SetStartSubMessageHandler(
5035 const FieldDef *f, const StartFieldHandler &handler) {
5036 assert(!handler.registered_);
5037 handler.registered_ = true;
5038 handler.AddCleanup(this);
5039 return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
5040 }
5041 inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
5042 const EndFieldHandler &handler) {
5043 assert(!handler.registered_);
5044 handler.registered_ = true;
5045 handler.AddCleanup(this);
5046 return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
5047 }
5048 inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
5049 const EndFieldHandler &handler) {
5050 assert(!handler.registered_);
5051 handler.registered_ = true;
5052 handler.AddCleanup(this);
5053 return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
5054 }
5055 inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
5056 return upb_handlers_setsubhandlers(this, f, sub);
5057 }
5058 inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
5059 return upb_handlers_getsubhandlers(this, f);
5060 }
5061 inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
5062 return upb_handlers_getsubhandlers_sel(this, sel);
5063 }
5064 inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
5065 Handlers::Selector *s) {
5066 return upb_handlers_getselector(f, type, s);
5067 }
5068 inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
5069 return upb_handlers_getendselector(start);
5070 }
5071 inline Handlers::GenericFunction *Handlers::GetHandler(
5072 Handlers::Selector selector) {
5073 return upb_handlers_gethandler(this, selector);
5074 }
5075 inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
5076 return upb_handlers_gethandlerdata(this, selector);
5077 }
5078
5079 inline BytesHandler::BytesHandler() {
5080 upb_byteshandler_init(this);
5081 }
5082
5083 inline BytesHandler::~BytesHandler() {}
5084
5085 } /* namespace upb */
5086
5087 #endif /* __cplusplus */
5088
5089
5090 #undef UPB_TWO_32BIT_TYPES
5091 #undef UPB_TWO_64BIT_TYPES
5092 #undef UPB_INT32_T
5093 #undef UPB_UINT32_T
5094 #undef UPB_INT32ALT_T
5095 #undef UPB_UINT32ALT_T
5096 #undef UPB_INT64_T
5097 #undef UPB_UINT64_T
5098 #undef UPB_INT64ALT_T
5099 #undef UPB_UINT64ALT_T
5100
5101 #endif /* UPB_HANDLERS_INL_H_ */
5102
5103 #endif /* UPB_HANDLERS_H */
5104 /*
5105 ** upb::Environment (upb_env)
5106 **
5107 ** A upb::Environment provides a means for injecting malloc and an
5108 ** error-reporting callback into encoders/decoders. This allows them to be
5109 ** independent of nearly all assumptions about their actual environment.
5110 **
5111 ** It is also a container for allocating the encoders/decoders themselves that
5112 ** insulates clients from knowing their actual size. This provides ABI
5113 ** compatibility even if the size of the objects change. And this allows the
5114 ** structure definitions to be in the .c files instead of the .h files, making
5115 ** the .h files smaller and more readable.
5116 */
5117
5118
5119 #ifndef UPB_ENV_H_
5120 #define UPB_ENV_H_
5121
5122 #ifdef __cplusplus
5123 namespace upb {
5124 class Environment;
5125 class SeededAllocator;
5126 }
5127 #endif
5128
5129 UPB_DECLARE_TYPE(upb::Environment, upb_env)
5130 UPB_DECLARE_TYPE(upb::SeededAllocator, upb_seededalloc)
5131
5132 typedef void *upb_alloc_func(void *ud, void *ptr, size_t oldsize, size_t size);
5133 typedef void upb_cleanup_func(void *ud);
5134 typedef bool upb_error_func(void *ud, const upb_status *status);
5135
5136 #ifdef __cplusplus
5137
5138 /* An environment is *not* thread-safe. */
5139 class upb::Environment {
5140 public:
5141 Environment();
5142 ~Environment();
5143
5144 /* Set a custom memory allocation function for the environment. May ONLY
5145 * be called before any calls to Malloc()/Realloc()/AddCleanup() below.
5146 * If this is not called, the system realloc() function will be used.
5147 * The given user pointer "ud" will be passed to the allocation function.
5148 *
5149 * The allocation function will not receive corresponding "free" calls. it
5150 * must ensure that the memory is valid for the lifetime of the Environment,
5151 * but it may be reclaimed any time thereafter. The likely usage is that
5152 * "ud" points to a stateful allocator, and that the allocator frees all
5153 * memory, arena-style, when it is destroyed. In this case the allocator must
5154 * outlive the Environment. Another possibility is that the allocation
5155 * function returns GC-able memory that is guaranteed to be GC-rooted for the
5156 * life of the Environment. */
5157 void SetAllocationFunction(upb_alloc_func* alloc, void* ud);
5158
5159 template<class T>
5160 void SetAllocator(T* allocator) {
5161 SetAllocationFunction(allocator->GetAllocationFunction(), allocator);
5162 }
5163
5164 /* Set a custom error reporting function. */
5165 void SetErrorFunction(upb_error_func* func, void* ud);
5166
5167 /* Set the error reporting function to simply copy the status to the given
5168 * status and abort. */
5169 void ReportErrorsTo(Status* status);
5170
5171 /* Returns true if all allocations and AddCleanup() calls have succeeded,
5172 * and no errors were reported with ReportError() (except ones that recovered
5173 * successfully). */
5174 bool ok() const;
5175
5176 /* Functions for use by encoders/decoders. **********************************/
5177
5178 /* Reports an error to this environment's callback, returning true if
5179 * the caller should try to recover. */
5180 bool ReportError(const Status* status);
5181
5182 /* Allocate memory. Uses the environment's allocation function.
5183 *
5184 * There is no need to free(). All memory will be freed automatically, but is
5185 * guaranteed to outlive the Environment. */
5186 void* Malloc(size_t size);
5187
5188 /* Reallocate memory. Preserves "oldsize" bytes from the existing buffer
5189 * Requires: oldsize <= existing_size.
5190 *
5191 * TODO(haberman): should we also enforce that oldsize <= size? */
5192 void* Realloc(void* ptr, size_t oldsize, size_t size);
5193
5194 /* Add a cleanup function to run when the environment is destroyed.
5195 * Returns false on out-of-memory.
5196 *
5197 * The first call to AddCleanup() after SetAllocationFunction() is guaranteed
5198 * to return true -- this makes it possible to robustly set a cleanup handler
5199 * for a custom allocation function. */
5200 bool AddCleanup(upb_cleanup_func* func, void* ud);
5201
5202 /* Total number of bytes that have been allocated. It is undefined what
5203 * Realloc() does to this counter. */
5204 size_t BytesAllocated() const;
5205
5206 private:
5207 UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
5208
5209 #else
5210 struct upb_env {
5211 #endif /* __cplusplus */
5212
5213 bool ok_;
5214 size_t bytes_allocated;
5215
5216 /* Alloc function. */
5217 upb_alloc_func *alloc;
5218 void *alloc_ud;
5219
5220 /* Error-reporting function. */
5221 upb_error_func *err;
5222 void *err_ud;
5223
5224 /* Userdata for default alloc func. */
5225 void *default_alloc_ud;
5226
5227 /* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */
5228 void *cleanup_head;
5229
5230 /* For future expansion, since the size of this struct is exposed to users. */
5231 void *future1;
5232 void *future2;
5233 };
5234
5235 UPB_BEGIN_EXTERN_C
5236
5237 void upb_env_init(upb_env *e);
5238 void upb_env_uninit(upb_env *e);
5239 void upb_env_setallocfunc(upb_env *e, upb_alloc_func *func, void *ud);
5240 void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
5241 void upb_env_reporterrorsto(upb_env *e, upb_status *status);
5242 bool upb_env_ok(const upb_env *e);
5243 bool upb_env_reporterror(upb_env *e, const upb_status *status);
5244 void *upb_env_malloc(upb_env *e, size_t size);
5245 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
5246 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
5247 size_t upb_env_bytesallocated(const upb_env *e);
5248
5249 UPB_END_EXTERN_C
5250
5251 #ifdef __cplusplus
5252
5253 /* An allocator that allocates from an initial memory region (likely the stack)
5254 * before falling back to another allocator. */
5255 class upb::SeededAllocator {
5256 public:
5257 SeededAllocator(void *mem, size_t len);
5258 ~SeededAllocator();
5259
5260 /* Set a custom fallback memory allocation function for the allocator, to use
5261 * once the initial region runs out.
5262 *
5263 * May ONLY be called before GetAllocationFunction(). If this is not
5264 * called, the system realloc() will be the fallback allocator. */
5265 void SetFallbackAllocator(upb_alloc_func *alloc, void *ud);
5266
5267 /* Gets the allocation function for this allocator. */
5268 upb_alloc_func* GetAllocationFunction();
5269
5270 private:
5271 UPB_DISALLOW_COPY_AND_ASSIGN(SeededAllocator)
5272
5273 #else
5274 struct upb_seededalloc {
5275 #endif /* __cplusplus */
5276
5277 /* Fallback alloc function. */
5278 upb_alloc_func *alloc;
5279 upb_cleanup_func *alloc_cleanup;
5280 void *alloc_ud;
5281 bool need_cleanup;
5282 bool returned_allocfunc;
5283
5284 /* Userdata for default alloc func. */
5285 void *default_alloc_ud;
5286
5287 /* Pointers for the initial memory region. */
5288 char *mem_base;
5289 char *mem_ptr;
5290 char *mem_limit;
5291
5292 /* For future expansion, since the size of this struct is exposed to users. */
5293 void *future1;
5294 void *future2;
5295 };
5296
5297 UPB_BEGIN_EXTERN_C
5298
5299 void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len);
5300 void upb_seededalloc_uninit(upb_seededalloc *a);
5301 void upb_seededalloc_setfallbackalloc(upb_seededalloc *a, upb_alloc_func *func,
5302 void *ud);
5303 upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a);
5304
5305 UPB_END_EXTERN_C
5306
5307 #ifdef __cplusplus
5308
5309 namespace upb {
5310
5311 inline Environment::Environment() {
5312 upb_env_init(this);
5313 }
5314 inline Environment::~Environment() {
5315 upb_env_uninit(this);
5316 }
5317 inline void Environment::SetAllocationFunction(upb_alloc_func *alloc,
5318 void *ud) {
5319 upb_env_setallocfunc(this, alloc, ud);
5320 }
5321 inline void Environment::SetErrorFunction(upb_error_func *func, void *ud) {
5322 upb_env_seterrorfunc(this, func, ud);
5323 }
5324 inline void Environment::ReportErrorsTo(Status* status) {
5325 upb_env_reporterrorsto(this, status);
5326 }
5327 inline bool Environment::ok() const {
5328 return upb_env_ok(this);
5329 }
5330 inline bool Environment::ReportError(const Status* status) {
5331 return upb_env_reporterror(this, status);
5332 }
5333 inline void *Environment::Malloc(size_t size) {
5334 return upb_env_malloc(this, size);
5335 }
5336 inline void *Environment::Realloc(void *ptr, size_t oldsize, size_t size) {
5337 return upb_env_realloc(this, ptr, oldsize, size);
5338 }
5339 inline bool Environment::AddCleanup(upb_cleanup_func *func, void *ud) {
5340 return upb_env_addcleanup(this, func, ud);
5341 }
5342 inline size_t Environment::BytesAllocated() const {
5343 return upb_env_bytesallocated(this);
5344 }
5345
5346 inline SeededAllocator::SeededAllocator(void *mem, size_t len) {
5347 upb_seededalloc_init(this, mem, len);
5348 }
5349 inline SeededAllocator::~SeededAllocator() {
5350 upb_seededalloc_uninit(this);
5351 }
5352 inline void SeededAllocator::SetFallbackAllocator(upb_alloc_func *alloc,
5353 void *ud) {
5354 upb_seededalloc_setfallbackalloc(this, alloc, ud);
5355 }
5356 inline upb_alloc_func *SeededAllocator::GetAllocationFunction() {
5357 return upb_seededalloc_getallocfunc(this);
5358 }
5359
5360 } /* namespace upb */
5361
5362 #endif /* __cplusplus */
5363
5364 #endif /* UPB_ENV_H_ */
5365 /*
5366 ** upb::Sink (upb_sink)
5367 ** upb::BytesSink (upb_bytessink)
5368 **
5369 ** A upb_sink is an object that binds a upb_handlers object to some runtime
5370 ** state. It is the object that can actually receive data via the upb_handlers
5371 ** interface.
5372 **
5373 ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
5374 ** thread-safe. You can create as many of them as you want, but each one may
5375 ** only be used in a single thread at a time.
5376 **
5377 ** If we compare with class-based OOP, a you can think of a upb_def as an
5378 ** abstract base class, a upb_handlers as a concrete derived class, and a
5379 ** upb_sink as an object (class instance).
5380 */
5381
5382 #ifndef UPB_SINK_H
5383 #define UPB_SINK_H
5384
5385
5386 #ifdef __cplusplus
5387 namespace upb {
5388 class BufferSource;
5389 class BytesSink;
5390 class Sink;
5391 }
5392 #endif
5393
5394 UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
5395 UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
5396 UPB_DECLARE_TYPE(upb::Sink, upb_sink)
5397
5398 #ifdef __cplusplus
5399
5400 /* A upb::Sink is an object that binds a upb::Handlers object to some runtime
5401 * state. It represents an endpoint to which data can be sent.
5402 *
5403 * TODO(haberman): right now all of these functions take selectors. Should they
5404 * take selectorbase instead?
5405 *
5406 * ie. instead of calling:
5407 * sink->StartString(FOO_FIELD_START_STRING, ...)
5408 * a selector base would let you say:
5409 * sink->StartString(FOO_FIELD, ...)
5410 *
5411 * This would make call sites a little nicer and require emitting fewer selector
5412 * definitions in .h files.
5413 *
5414 * But the current scheme has the benefit that you can retrieve a function
5415 * pointer for any handler with handlers->GetHandler(selector), without having
5416 * to have a separate GetHandler() function for each handler type. The JIT
5417 * compiler uses this. To accommodate we'd have to expose a separate
5418 * GetHandler() for every handler type.
5419 *
5420 * Also to ponder: selectors right now are independent of a specific Handlers
5421 * instance. In other words, they allocate a number to every possible handler
5422 * that *could* be registered, without knowing anything about what handlers
5423 * *are* registered. That means that using selectors as table offsets prohibits
5424 * us from compacting the handler table at Freeze() time. If the table is very
5425 * sparse, this could be wasteful.
5426 *
5427 * Having another selector-like thing that is specific to a Handlers instance
5428 * would allow this compacting, but then it would be impossible to write code
5429 * ahead-of-time that can be bound to any Handlers instance at runtime. For
5430 * example, a .proto file parser written as straight C will not know what
5431 * Handlers it will be bound to, so when it calls sink->StartString() what
5432 * selector will it pass? It needs a selector like we have today, that is
5433 * independent of any particular upb::Handlers.
5434 *
5435 * Is there a way then to allow Handlers table compaction? */
5436 class upb::Sink {
5437 public:
5438 /* Constructor with no initialization; must be Reset() before use. */
5439 Sink() {}
5440
5441 /* Constructs a new sink for the given frozen handlers and closure.
5442 *
5443 * TODO: once the Handlers know the expected closure type, verify that T
5444 * matches it. */
5445 template <class T> Sink(const Handlers* handlers, T* closure);
5446
5447 /* Resets the value of the sink. */
5448 template <class T> void Reset(const Handlers* handlers, T* closure);
5449
5450 /* Returns the top-level object that is bound to this sink.
5451 *
5452 * TODO: once the Handlers know the expected closure type, verify that T
5453 * matches it. */
5454 template <class T> T* GetObject() const;
5455
5456 /* Functions for pushing data into the sink.
5457 *
5458 * These return false if processing should stop (either due to error or just
5459 * to suspend).
5460 *
5461 * These may not be called from within one of the same sink's handlers (in
5462 * other words, handlers are not re-entrant). */
5463
5464 /* Should be called at the start and end of every message; both the top-level
5465 * message and submessages. This means that submessages should use the
5466 * following sequence:
5467 * sink->StartSubMessage(startsubmsg_selector);
5468 * sink->StartMessage();
5469 * // ...
5470 * sink->EndMessage(&status);
5471 * sink->EndSubMessage(endsubmsg_selector); */
5472 bool StartMessage();
5473 bool EndMessage(Status* status);
5474
5475 /* Putting of individual values. These work for both repeated and
5476 * non-repeated fields, but for repeated fields you must wrap them in
5477 * calls to StartSequence()/EndSequence(). */
5478 bool PutInt32(Handlers::Selector s, int32_t val);
5479 bool PutInt64(Handlers::Selector s, int64_t val);
5480 bool PutUInt32(Handlers::Selector s, uint32_t val);
5481 bool PutUInt64(Handlers::Selector s, uint64_t val);
5482 bool PutFloat(Handlers::Selector s, float val);
5483 bool PutDouble(Handlers::Selector s, double val);
5484 bool PutBool(Handlers::Selector s, bool val);
5485
5486 /* Putting of string/bytes values. Each string can consist of zero or more
5487 * non-contiguous buffers of data.
5488 *
5489 * For StartString(), the function will write a sink for the string to "sub."
5490 * The sub-sink must be used for any/all PutStringBuffer() calls. */
5491 bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
5492 size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
5493 const BufferHandle *handle);
5494 bool EndString(Handlers::Selector s);
5495
5496 /* For submessage fields.
5497 *
5498 * For StartSubMessage(), the function will write a sink for the string to
5499 * "sub." The sub-sink must be used for any/all handlers called within the
5500 * submessage. */
5501 bool StartSubMessage(Handlers::Selector s, Sink* sub);
5502 bool EndSubMessage(Handlers::Selector s);
5503
5504 /* For repeated fields of any type, the sequence of values must be wrapped in
5505 * these calls.
5506 *
5507 * For StartSequence(), the function will write a sink for the string to
5508 * "sub." The sub-sink must be used for any/all handlers called within the
5509 * sequence. */
5510 bool StartSequence(Handlers::Selector s, Sink* sub);
5511 bool EndSequence(Handlers::Selector s);
5512
5513 /* Copy and assign specifically allowed.
5514 * We don't even bother making these members private because so many
5515 * functions need them and this is mainly just a dumb data container anyway.
5516 */
5517 #else
5518 struct upb_sink {
5519 #endif
5520 const upb_handlers *handlers;
5521 void *closure;
5522 };
5523
5524 #ifdef __cplusplus
5525 class upb::BytesSink {
5526 public:
5527 BytesSink() {}
5528
5529 /* Constructs a new sink for the given frozen handlers and closure.
5530 *
5531 * TODO(haberman): once the Handlers know the expected closure type, verify
5532 * that T matches it. */
5533 template <class T> BytesSink(const BytesHandler* handler, T* closure);
5534
5535 /* Resets the value of the sink. */
5536 template <class T> void Reset(const BytesHandler* handler, T* closure);
5537
5538 bool Start(size_t size_hint, void **subc);
5539 size_t PutBuffer(void *subc, const char *buf, size_t len,
5540 const BufferHandle *handle);
5541 bool End();
5542 #else
5543 struct upb_bytessink {
5544 #endif
5545 const upb_byteshandler *handler;
5546 void *closure;
5547 };
5548
5549 #ifdef __cplusplus
5550
5551 /* A class for pushing a flat buffer of data to a BytesSink.
5552 * You can construct an instance of this to get a resumable source,
5553 * or just call the static PutBuffer() to do a non-resumable push all in one
5554 * go. */
5555 class upb::BufferSource {
5556 public:
5557 BufferSource();
5558 BufferSource(const char* buf, size_t len, BytesSink* sink);
5559
5560 /* Returns true if the entire buffer was pushed successfully. Otherwise the
5561 * next call to PutNext() will resume where the previous one left off.
5562 * TODO(haberman): implement this. */
5563 bool PutNext();
5564
5565 /* A static version; with this version is it not possible to resume in the
5566 * case of failure or a partially-consumed buffer. */
5567 static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
5568
5569 template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
5570 return PutBuffer(str.c_str(), str.size(), sink);
5571 }
5572 #else
5573 struct upb_bufsrc {
5574 char dummy;
5575 #endif
5576 };
5577
5578 UPB_BEGIN_EXTERN_C
5579
5580 /* Inline definitions. */
5581
5582 UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
5583 void *closure) {
5584 s->handler = h;
5585 s->closure = closure;
5586 }
5587
5588 UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
5589 void **subc) {
5590 typedef upb_startstr_handlerfunc func;
5591 func *start;
5592 *subc = s->closure;
5593 if (!s->handler) return true;
5594 start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
5595
5596 if (!start) return true;
5597 *subc = start(s->closure, upb_handlerattr_handlerdata(
5598 &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
5599 size_hint);
5600 return *subc != NULL;
5601 }
5602
5603 UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
5604 const char *buf, size_t size,
5605 const upb_bufhandle* handle) {
5606 typedef upb_string_handlerfunc func;
5607 func *putbuf;
5608 if (!s->handler) return true;
5609 putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
5610
5611 if (!putbuf) return true;
5612 return putbuf(subc, upb_handlerattr_handlerdata(
5613 &s->handler->table[UPB_STRING_SELECTOR].attr),
5614 buf, size, handle);
5615 }
5616
5617 UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
5618 typedef upb_endfield_handlerfunc func;
5619 func *end;
5620 if (!s->handler) return true;
5621 end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
5622
5623 if (!end) return true;
5624 return end(s->closure,
5625 upb_handlerattr_handlerdata(
5626 &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
5627 }
5628
5629 UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
5630 upb_bytessink *sink) {
5631 void *subc;
5632 bool ret;
5633 upb_bufhandle handle;
5634 upb_bufhandle_init(&handle);
5635 upb_bufhandle_setbuf(&handle, buf, 0);
5636 ret = upb_bytessink_start(sink, len, &subc);
5637 if (ret && len != 0) {
5638 ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
5639 }
5640 if (ret) {
5641 ret = upb_bytessink_end(sink);
5642 }
5643 upb_bufhandle_uninit(&handle);
5644 return ret;
5645 }
5646
5647 #define PUTVAL(type, ctype) \
5648 UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \
5649 ctype val) { \
5650 typedef upb_##type##_handlerfunc functype; \
5651 functype *func; \
5652 const void *hd; \
5653 if (!s->handlers) return true; \
5654 func = (functype *)upb_handlers_gethandler(s->handlers, sel); \
5655 if (!func) return true; \
5656 hd = upb_handlers_gethandlerdata(s->handlers, sel); \
5657 return func(s->closure, hd, val); \
5658 }
5659
5660 PUTVAL(int32, int32_t)
5661 PUTVAL(int64, int64_t)
5662 PUTVAL(uint32, uint32_t)
5663 PUTVAL(uint64, uint64_t)
5664 PUTVAL(float, float)
5665 PUTVAL(double, double)
5666 PUTVAL(bool, bool)
5667 #undef PUTVAL
5668
5669 UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
5670 s->handlers = h;
5671 s->closure = c;
5672 }
5673
5674 UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
5675 const char *buf, size_t n,
5676 const upb_bufhandle *handle) {
5677 typedef upb_string_handlerfunc func;
5678 func *handler;
5679 const void *hd;
5680 if (!s->handlers) return n;
5681 handler = (func *)upb_handlers_gethandler(s->handlers, sel);
5682
5683 if (!handler) return n;
5684 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5685 return handler(s->closure, hd, buf, n, handle);
5686 }
5687
5688 UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
5689 typedef upb_startmsg_handlerfunc func;
5690 func *startmsg;
5691 const void *hd;
5692 if (!s->handlers) return true;
5693 startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
5694
5695 if (!startmsg) return true;
5696 hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
5697 return startmsg(s->closure, hd);
5698 }
5699
5700 UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
5701 typedef upb_endmsg_handlerfunc func;
5702 func *endmsg;
5703 const void *hd;
5704 if (!s->handlers) return true;
5705 endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
5706
5707 if (!endmsg) return true;
5708 hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
5709 return endmsg(s->closure, hd, status);
5710 }
5711
5712 UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
5713 upb_sink *sub) {
5714 typedef upb_startfield_handlerfunc func;
5715 func *startseq;
5716 const void *hd;
5717 sub->closure = s->closure;
5718 sub->handlers = s->handlers;
5719 if (!s->handlers) return true;
5720 startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
5721
5722 if (!startseq) return true;
5723 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5724 sub->closure = startseq(s->closure, hd);
5725 return sub->closure ? true : false;
5726 }
5727
5728 UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
5729 typedef upb_endfield_handlerfunc func;
5730 func *endseq;
5731 const void *hd;
5732 if (!s->handlers) return true;
5733 endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
5734
5735 if (!endseq) return true;
5736 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5737 return endseq(s->closure, hd);
5738 }
5739
5740 UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
5741 size_t size_hint, upb_sink *sub) {
5742 typedef upb_startstr_handlerfunc func;
5743 func *startstr;
5744 const void *hd;
5745 sub->closure = s->closure;
5746 sub->handlers = s->handlers;
5747 if (!s->handlers) return true;
5748 startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
5749
5750 if (!startstr) return true;
5751 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5752 sub->closure = startstr(s->closure, hd, size_hint);
5753 return sub->closure ? true : false;
5754 }
5755
5756 UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
5757 typedef upb_endfield_handlerfunc func;
5758 func *endstr;
5759 const void *hd;
5760 if (!s->handlers) return true;
5761 endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
5762
5763 if (!endstr) return true;
5764 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5765 return endstr(s->closure, hd);
5766 }
5767
5768 UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
5769 upb_sink *sub) {
5770 typedef upb_startfield_handlerfunc func;
5771 func *startsubmsg;
5772 const void *hd;
5773 sub->closure = s->closure;
5774 if (!s->handlers) {
5775 sub->handlers = NULL;
5776 return true;
5777 }
5778 sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
5779 startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
5780
5781 if (!startsubmsg) return true;
5782 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5783 sub->closure = startsubmsg(s->closure, hd);
5784 return sub->closure ? true : false;
5785 }
5786
5787 UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
5788 typedef upb_endfield_handlerfunc func;
5789 func *endsubmsg;
5790 const void *hd;
5791 if (!s->handlers) return true;
5792 endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
5793
5794 if (!endsubmsg) return s->closure;
5795 hd = upb_handlers_gethandlerdata(s->handlers, sel);
5796 return endsubmsg(s->closure, hd);
5797 }
5798
5799 UPB_END_EXTERN_C
5800
5801 #ifdef __cplusplus
5802
5803 namespace upb {
5804
5805 template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
5806 upb_sink_reset(this, handlers, closure);
5807 }
5808 template <class T>
5809 inline void Sink::Reset(const Handlers* handlers, T* closure) {
5810 upb_sink_reset(this, handlers, closure);
5811 }
5812 inline bool Sink::StartMessage() {
5813 return upb_sink_startmsg(this);
5814 }
5815 inline bool Sink::EndMessage(Status* status) {
5816 return upb_sink_endmsg(this, status);
5817 }
5818 inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
5819 return upb_sink_putint32(this, sel, val);
5820 }
5821 inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
5822 return upb_sink_putint64(this, sel, val);
5823 }
5824 inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
5825 return upb_sink_putuint32(this, sel, val);
5826 }
5827 inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
5828 return upb_sink_putuint64(this, sel, val);
5829 }
5830 inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
5831 return upb_sink_putfloat(this, sel, val);
5832 }
5833 inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
5834 return upb_sink_putdouble(this, sel, val);
5835 }
5836 inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
5837 return upb_sink_putbool(this, sel, val);
5838 }
5839 inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
5840 Sink *sub) {
5841 return upb_sink_startstr(this, sel, size_hint, sub);
5842 }
5843 inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
5844 size_t len, const BufferHandle* handle) {
5845 return upb_sink_putstring(this, sel, buf, len, handle);
5846 }
5847 inline bool Sink::EndString(Handlers::Selector sel) {
5848 return upb_sink_endstr(this, sel);
5849 }
5850 inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
5851 return upb_sink_startsubmsg(this, sel, sub);
5852 }
5853 inline bool Sink::EndSubMessage(Handlers::Selector sel) {
5854 return upb_sink_endsubmsg(this, sel);
5855 }
5856 inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
5857 return upb_sink_startseq(this, sel, sub);
5858 }
5859 inline bool Sink::EndSequence(Handlers::Selector sel) {
5860 return upb_sink_endseq(this, sel);
5861 }
5862
5863 template <class T>
5864 BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
5865 Reset(handler, closure);
5866 }
5867
5868 template <class T>
5869 void BytesSink::Reset(const BytesHandler *handler, T *closure) {
5870 upb_bytessink_reset(this, handler, closure);
5871 }
5872 inline bool BytesSink::Start(size_t size_hint, void **subc) {
5873 return upb_bytessink_start(this, size_hint, subc);
5874 }
5875 inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
5876 const BufferHandle *handle) {
5877 return upb_bytessink_putbuf(this, subc, buf, len, handle);
5878 }
5879 inline bool BytesSink::End() {
5880 return upb_bytessink_end(this);
5881 }
5882
5883 inline bool BufferSource::PutBuffer(const char *buf, size_t len,
5884 BytesSink *sink) {
5885 return upb_bufsrc_putbuf(buf, len, sink);
5886 }
5887
5888 } /* namespace upb */
5889 #endif
5890
5891 #endif
5892 /*
5893 ** For handlers that do very tiny, very simple operations, the function call
5894 ** overhead of calling a handler can be significant. This file allows the
5895 ** user to define handlers that do something very simple like store the value
5896 ** to memory and/or set a hasbit. JIT compilers can then special-case these
5897 ** handlers and emit specialized code for them instead of actually calling the
5898 ** handler.
5899 **
5900 ** The functionality is very simple/limited right now but may expand to be able
5901 ** to call another function.
5902 */
5903
5904 #ifndef UPB_SHIM_H
5905 #define UPB_SHIM_H
5906
5907
5908 typedef struct {
5909 size_t offset;
5910 int32_t hasbit;
5911 } upb_shim_data;
5912
5913 #ifdef __cplusplus
5914
5915 namespace upb {
5916
5917 struct Shim {
5918 typedef upb_shim_data Data;
5919
5920 /* Sets a handler for the given field that writes the value to the given
5921 * offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns
5922 * true if the handler was set successfully. */
5923 static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
5924
5925 /* If this handler is a shim, returns the corresponding upb::Shim::Data and
5926 * stores the type in "type". Otherwise returns NULL. */
5927 static const Data* GetData(const Handlers* h, Handlers::Selector s,
5928 FieldDef::Type* type);
5929 };
5930
5931 } /* namespace upb */
5932
5933 #endif
5934
5935 UPB_BEGIN_EXTERN_C
5936
5937 /* C API. */
5938 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
5939 int32_t hasbit);
5940 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
5941 upb_fieldtype_t *type);
5942
5943 UPB_END_EXTERN_C
5944
5945 #ifdef __cplusplus
5946 /* C++ Wrappers. */
5947 namespace upb {
5948 inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
5949 int32_t hasbit) {
5950 return upb_shim_set(h, f, ofs, hasbit);
5951 }
5952 inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
5953 FieldDef::Type* type) {
5954 return upb_shim_getdata(h, s, type);
5955 }
5956 } /* namespace upb */
5957 #endif
5958
5959 #endif /* UPB_SHIM_H */
5960 /*
5961 ** upb::SymbolTable (upb_symtab)
5962 **
5963 ** A symtab (symbol table) stores a name->def map of upb_defs. Clients could
5964 ** always create such tables themselves, but upb_symtab has logic for resolving
5965 ** symbolic references, and in particular, for keeping a whole set of consistent
5966 ** defs when replacing some subset of those defs. This logic is nontrivial.
5967 **
5968 ** This is a mixed C/C++ interface that offers a full API to both languages.
5969 ** See the top-level README for more information.
5970 */
5971
5972 #ifndef UPB_SYMTAB_H_
5973 #define UPB_SYMTAB_H_
5974
5975
5976 #ifdef __cplusplus
5977 #include <vector>
5978 namespace upb { class SymbolTable; }
5979 #endif
5980
5981 UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
5982 upb_symtab, upb_refcounted)
5983
5984 typedef struct {
5985 UPB_PRIVATE_FOR_CPP
5986 upb_strtable_iter iter;
5987 upb_deftype_t type;
5988 } upb_symtab_iter;
5989
5990 #ifdef __cplusplus
5991
5992 /* Non-const methods in upb::SymbolTable are NOT thread-safe. */
5993 class upb::SymbolTable {
5994 public:
5995 /* Returns a new symbol table with a single ref owned by "owner."
5996 * Returns NULL if memory allocation failed. */
5997 static reffed_ptr<SymbolTable> New();
5998
5999 /* Include RefCounted base methods. */
6000 UPB_REFCOUNTED_CPPMETHODS
6001
6002 /* For all lookup functions, the returned pointer is not owned by the
6003 * caller; it may be invalidated by any non-const call or unref of the
6004 * SymbolTable! To protect against this, take a ref if desired. */
6005
6006 /* Freezes the symbol table: prevents further modification of it.
6007 * After the Freeze() operation is successful, the SymbolTable must only be
6008 * accessed via a const pointer.
6009 *
6010 * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
6011 * a necessary step in using a SymbolTable. If you have no need for it to be
6012 * immutable, there is no need to freeze it ever. However sometimes it is
6013 * useful, and SymbolTables that are statically compiled into the binary are
6014 * always frozen by nature. */
6015 void Freeze();
6016
6017 /* Resolves the given symbol using the rules described in descriptor.proto,
6018 * namely:
6019 *
6020 * If the name starts with a '.', it is fully-qualified. Otherwise,
6021 * C++-like scoping rules are used to find the type (i.e. first the nested
6022 * types within this message are searched, then within the parent, on up
6023 * to the root namespace).
6024 *
6025 * If not found, returns NULL. */
6026 const Def* Resolve(const char* base, const char* sym) const;
6027
6028 /* Finds an entry in the symbol table with this exact name. If not found,
6029 * returns NULL. */
6030 const Def* Lookup(const char *sym) const;
6031 const MessageDef* LookupMessage(const char *sym) const;
6032 const EnumDef* LookupEnum(const char *sym) const;
6033
6034 /* TODO: introduce a C++ iterator, but make it nice and templated so that if
6035 * you ask for an iterator of MessageDef the iterated elements are strongly
6036 * typed as MessageDef*. */
6037
6038 /* Adds the given mutable defs to the symtab, resolving all symbols
6039 * (including enum default values) and finalizing the defs. Only one def per
6040 * name may be in the list, but defs can replace existing defs in the symtab.
6041 * All defs must have a name -- anonymous defs are not allowed. Anonymous
6042 * defs can still be frozen by calling upb_def_freeze() directly.
6043 *
6044 * Any existing defs that can reach defs that are being replaced will
6045 * themselves be replaced also, so that the resulting set of defs is fully
6046 * consistent.
6047 *
6048 * This logic implemented in this method is a convenience; ultimately it
6049 * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
6050 * upb_freeze(), any of which the client could call themself. However, since
6051 * the logic for doing so is nontrivial, we provide it here.
6052 *
6053 * The entire operation either succeeds or fails. If the operation fails,
6054 * the symtab is unchanged, false is returned, and status indicates the
6055 * error. The caller passes a ref on all defs to the symtab (even if the
6056 * operation fails).
6057 *
6058 * TODO(haberman): currently failure will leave the symtab unchanged, but may
6059 * leave the defs themselves partially resolved. Does this matter? If so we
6060 * could do a prepass that ensures that all symbols are resolvable and bail
6061 * if not, so we don't mutate anything until we know the operation will
6062 * succeed.
6063 *
6064 * TODO(haberman): since the defs must be mutable, refining a frozen def
6065 * requires making mutable copies of the entire tree. This is wasteful if
6066 * only a few messages are changing. We may want to add a way of adding a
6067 * tree of frozen defs to the symtab (perhaps an alternate constructor where
6068 * you pass the root of the tree?) */
6069 bool Add(Def*const* defs, int n, void* ref_donor, upb_status* status);
6070
6071 bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
6072 return Add((Def*const*)&defs[0], defs.size(), owner, status);
6073 }
6074
6075 private:
6076 UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
6077 };
6078
6079 #endif /* __cplusplus */
6080
6081 UPB_BEGIN_EXTERN_C
6082
6083 /* Native C API. */
6084
6085 /* Include refcounted methods like upb_symtab_ref(). */
6086 UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
6087
6088 upb_symtab *upb_symtab_new(const void *owner);
6089 void upb_symtab_freeze(upb_symtab *s);
6090 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
6091 const char *sym);
6092 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
6093 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
6094 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
6095 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
6096 upb_status *status);
6097
6098 /* upb_symtab_iter i;
6099 * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
6100 * upb_symtab_next(&i)) {
6101 * const upb_def *def = upb_symtab_iter_def(&i);
6102 * // ...
6103 * }
6104 *
6105 * For C we don't have separate iterators for const and non-const.
6106 * It is the caller's responsibility to cast the upb_fielddef* to
6107 * const if the upb_msgdef* is const. */
6108 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
6109 upb_deftype_t type);
6110 void upb_symtab_next(upb_symtab_iter *iter);
6111 bool upb_symtab_done(const upb_symtab_iter *iter);
6112 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
6113
6114 UPB_END_EXTERN_C
6115
6116 #ifdef __cplusplus
6117 /* C++ inline wrappers. */
6118 namespace upb {
6119 inline reffed_ptr<SymbolTable> SymbolTable::New() {
6120 upb_symtab *s = upb_symtab_new(&s);
6121 return reffed_ptr<SymbolTable>(s, &s);
6122 }
6123
6124 inline void SymbolTable::Freeze() {
6125 return upb_symtab_freeze(this);
6126 }
6127 inline const Def *SymbolTable::Resolve(const char *base,
6128 const char *sym) const {
6129 return upb_symtab_resolve(this, base, sym);
6130 }
6131 inline const Def* SymbolTable::Lookup(const char *sym) const {
6132 return upb_symtab_lookup(this, sym);
6133 }
6134 inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
6135 return upb_symtab_lookupmsg(this, sym);
6136 }
6137 inline bool SymbolTable::Add(
6138 Def*const* defs, int n, void* ref_donor, upb_status* status) {
6139 return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
6140 }
6141 } /* namespace upb */
6142 #endif
6143
6144 #endif /* UPB_SYMTAB_H_ */
6145 /*
6146 ** upb::descriptor::Reader (upb_descreader)
6147 **
6148 ** Provides a way of building upb::Defs from data in descriptor.proto format.
6149 */
6150
6151 #ifndef UPB_DESCRIPTOR_H
6152 #define UPB_DESCRIPTOR_H
6153
6154
6155 #ifdef __cplusplus
6156 namespace upb {
6157 namespace descriptor {
6158 class Reader;
6159 } /* namespace descriptor */
6160 } /* namespace upb */
6161 #endif
6162
6163 UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
6164
6165 #ifdef __cplusplus
6166
6167 /* Class that receives descriptor data according to the descriptor.proto schema
6168 * and use it to build upb::Defs corresponding to that schema. */
6169 class upb::descriptor::Reader {
6170 public:
6171 /* These handlers must have come from NewHandlers() and must outlive the
6172 * Reader.
6173 *
6174 * TODO: generate the handlers statically (like we do with the
6175 * descriptor.proto defs) so that there is no need to pass this parameter (or
6176 * to build/memory-manage the handlers at runtime at all). Unfortunately this
6177 * is a bit tricky to implement for Handlers, but necessary to simplify this
6178 * interface. */
6179 static Reader* Create(Environment* env, const Handlers* handlers);
6180
6181 /* The reader's input; this is where descriptor.proto data should be sent. */
6182 Sink* input();
6183
6184 /* Returns an array of all defs that have been parsed, and transfers ownership
6185 * of them to "owner". The number of defs is stored in *n. Ownership of the
6186 * returned array is retained and is invalidated by any other call into
6187 * Reader.
6188 *
6189 * These defs are not frozen or resolved; they are ready to be added to a
6190 * symtab. */
6191 upb::Def** GetDefs(void* owner, int* n);
6192
6193 /* Builds and returns handlers for the reader, owned by "owner." */
6194 static Handlers* NewHandlers(const void* owner);
6195
6196 private:
6197 UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
6198 };
6199
6200 #endif
6201
6202 UPB_BEGIN_EXTERN_C
6203
6204 /* C API. */
6205 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
6206 upb_sink *upb_descreader_input(upb_descreader *r);
6207 upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n);
6208 const upb_handlers *upb_descreader_newhandlers(const void *owner);
6209
6210 UPB_END_EXTERN_C
6211
6212 #ifdef __cplusplus
6213 /* C++ implementation details. ************************************************/
6214 namespace upb {
6215 namespace descriptor {
6216 inline Reader* Reader::Create(Environment* e, const Handlers *h) {
6217 return upb_descreader_create(e, h);
6218 }
6219 inline Sink* Reader::input() { return upb_descreader_input(this); }
6220 inline upb::Def** Reader::GetDefs(void* owner, int* n) {
6221 return upb_descreader_getdefs(this, owner, n);
6222 }
6223 } /* namespace descriptor */
6224 } /* namespace upb */
6225 #endif
6226
6227 #endif /* UPB_DESCRIPTOR_H */
6228 /* This file contains accessors for a set of compiled-in defs.
6229 * Note that unlike Google's protobuf, it does *not* define
6230 * generated classes or any other kind of data structure for
6231 * actually storing protobufs. It only contains *defs* which
6232 * let you reflect over a protobuf *schema*.
6233 */
6234 /* This file was generated by upbc (the upb compiler).
6235 * Do not edit -- your changes will be discarded when the file is
6236 * regenerated. */
6237
6238 #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
6239 #define GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
6240
6241
6242 #ifdef __cplusplus
6243 UPB_BEGIN_EXTERN_C
6244 #endif
6245
6246 /* Enums */
6247
6248 typedef enum {
6249 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_OPTIONAL = 1,
6250 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REQUIRED = 2,
6251 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REPEATED = 3
6252 } google_protobuf_FieldDescriptorProto_Label;
6253
6254 typedef enum {
6255 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_DOUBLE = 1,
6256 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FLOAT = 2,
6257 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT64 = 3,
6258 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT64 = 4,
6259 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 = 5,
6260 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED64 = 6,
6261 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED32 = 7,
6262 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BOOL = 8,
6263 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_STRING = 9,
6264 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_GROUP = 10,
6265 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_MESSAGE = 11,
6266 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BYTES = 12,
6267 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT32 = 13,
6268 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_ENUM = 14,
6269 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED32 = 15,
6270 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED64 = 16,
6271 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT32 = 17,
6272 GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT64 = 18
6273 } google_protobuf_FieldDescriptorProto_Type;
6274
6275 typedef enum {
6276 GOOGLE_PROTOBUF_FIELDOPTIONS_STRING = 0,
6277 GOOGLE_PROTOBUF_FIELDOPTIONS_CORD = 1,
6278 GOOGLE_PROTOBUF_FIELDOPTIONS_STRING_PIECE = 2
6279 } google_protobuf_FieldOptions_CType;
6280
6281 typedef enum {
6282 GOOGLE_PROTOBUF_FILEOPTIONS_SPEED = 1,
6283 GOOGLE_PROTOBUF_FILEOPTIONS_CODE_SIZE = 2,
6284 GOOGLE_PROTOBUF_FILEOPTIONS_LITE_RUNTIME = 3
6285 } google_protobuf_FileOptions_OptimizeMode;
6286
6287 /* Selectors */
6288
6289 /* google.protobuf.DescriptorProto */
6290 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSUBMSG 2
6291 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSUBMSG 3
6292 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 4
6293 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSUBMSG 5
6294 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSUBMSG 6
6295 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_STARTSUBMSG 7
6296 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSEQ 8
6297 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSEQ 9
6298 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSUBMSG 10
6299 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSEQ 11
6300 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSEQ 12
6301 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSUBMSG 13
6302 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 14
6303 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 15
6304 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 16
6305 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSEQ 17
6306 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSEQ 18
6307 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSUBMSG 19
6308 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSEQ 20
6309 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSEQ 21
6310 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSUBMSG 22
6311 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_ENDSUBMSG 23
6312 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STRING 24
6313 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STARTSTR 25
6314 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_ENDSTR 26
6315
6316 /* google.protobuf.DescriptorProto.ExtensionRange */
6317 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_START_INT32 2
6318 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_END_INT32 3
6319
6320 /* google.protobuf.EnumDescriptorProto */
6321 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSUBMSG 2
6322 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
6323 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSEQ 4
6324 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSEQ 5
6325 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSUBMSG 6
6326 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
6327 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STRING 8
6328 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STARTSTR 9
6329 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_ENDSTR 10
6330
6331 /* google.protobuf.EnumOptions */
6332 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6333 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6334 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6335 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6336 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_ALLOW_ALIAS_BOOL 6
6337
6338 /* google.protobuf.EnumValueDescriptorProto */
6339 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
6340 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
6341 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STRING 4
6342 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STARTSTR 5
6343 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_ENDSTR 6
6344 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NUMBER_INT32 7
6345
6346 /* google.protobuf.EnumValueOptions */
6347 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6348 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6349 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6350 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6351
6352 /* google.protobuf.FieldDescriptorProto */
6353 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
6354 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
6355 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STRING 4
6356 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STARTSTR 5
6357 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_ENDSTR 6
6358 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STRING 7
6359 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STARTSTR 8
6360 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_ENDSTR 9
6361 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NUMBER_INT32 10
6362 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_INT32 11
6363 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 12
6364 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STRING 13
6365 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STARTSTR 14
6366 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_ENDSTR 15
6367 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STRING 16
6368 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STARTSTR 17
6369 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_ENDSTR 18
6370
6371 /* google.protobuf.FieldOptions */
6372 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6373 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6374 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6375 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6376 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_CTYPE_INT32 6
6377 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_PACKED_BOOL 7
6378 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_DEPRECATED_BOOL 8
6379 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_LAZY_BOOL 9
6380 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STRING 10
6381 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STARTSTR 11
6382 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_ENDSTR 12
6383 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_WEAK_BOOL 13
6384
6385 /* google.protobuf.FileDescriptorProto */
6386 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSUBMSG 2
6387 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 3
6388 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSUBMSG 4
6389 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSUBMSG 5
6390 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 6
6391 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_STARTSUBMSG 7
6392 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSEQ 8
6393 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSEQ 9
6394 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSUBMSG 10
6395 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 11
6396 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 12
6397 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 13
6398 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSEQ 14
6399 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSEQ 15
6400 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSUBMSG 16
6401 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSEQ 17
6402 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSEQ 18
6403 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSUBMSG 19
6404 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 20
6405 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_ENDSUBMSG 21
6406 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STRING 22
6407 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STARTSTR 23
6408 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_ENDSTR 24
6409 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STRING 25
6410 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STARTSTR 26
6411 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_ENDSTR 27
6412 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSEQ 28
6413 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSEQ 29
6414 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STRING 30
6415 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSTR 31
6416 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSTR 32
6417 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_STARTSEQ 33
6418 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_ENDSEQ 34
6419 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_INT32 35
6420 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_STARTSEQ 36
6421 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_ENDSEQ 37
6422 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_INT32 38
6423
6424 /* google.protobuf.FileDescriptorSet */
6425 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSUBMSG 2
6426 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSEQ 3
6427 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSEQ 4
6428 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSUBMSG 5
6429
6430 /* google.protobuf.FileOptions */
6431 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6432 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6433 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6434 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6435 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STRING 6
6436 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STARTSTR 7
6437 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_ENDSTR 8
6438 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STRING 9
6439 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STARTSTR 10
6440 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_ENDSTR 11
6441 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_OPTIMIZE_FOR_INT32 12
6442 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_MULTIPLE_FILES_BOOL 13
6443 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STRING 14
6444 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STARTSTR 15
6445 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_ENDSTR 16
6446 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_CC_GENERIC_SERVICES_BOOL 17
6447 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERIC_SERVICES_BOOL 18
6448 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_PY_GENERIC_SERVICES_BOOL 19
6449 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERATE_EQUALS_AND_HASH_BOOL 20
6450
6451 /* google.protobuf.MessageOptions */
6452 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6453 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6454 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6455 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6456 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_MESSAGE_SET_WIRE_FORMAT_BOOL 6
6457 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_NO_STANDARD_DESCRIPTOR_ACCESSOR_BOOL 7
6458
6459 /* google.protobuf.MethodDescriptorProto */
6460 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
6461 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
6462 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STRING 4
6463 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STARTSTR 5
6464 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_ENDSTR 6
6465 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STRING 7
6466 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STARTSTR 8
6467 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_ENDSTR 9
6468 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STRING 10
6469 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STARTSTR 11
6470 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_ENDSTR 12
6471
6472 /* google.protobuf.MethodOptions */
6473 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6474 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6475 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6476 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6477
6478 /* google.protobuf.ServiceDescriptorProto */
6479 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSUBMSG 2
6480 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
6481 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSEQ 4
6482 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSEQ 5
6483 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSUBMSG 6
6484 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
6485 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STRING 8
6486 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STARTSTR 9
6487 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_ENDSTR 10
6488
6489 /* google.protobuf.ServiceOptions */
6490 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
6491 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
6492 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
6493 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
6494
6495 /* google.protobuf.SourceCodeInfo */
6496 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSUBMSG 2
6497 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSEQ 3
6498 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSEQ 4
6499 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSUBMSG 5
6500
6501 /* google.protobuf.SourceCodeInfo.Location */
6502 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_STARTSEQ 2
6503 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_ENDSEQ 3
6504 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_INT32 4
6505 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_STARTSEQ 5
6506 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_ENDSEQ 6
6507 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_INT32 7
6508 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STRING 8
6509 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STARTSTR 9
6510 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_ENDSTR 10
6511 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STRING 11
6512 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STARTSTR 1 2
6513 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_ENDSTR 13
6514
6515 /* google.protobuf.UninterpretedOption */
6516 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSUBMSG 2
6517 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSEQ 3
6518 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSEQ 4
6519 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSUBMSG 5
6520 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STRING 6
6521 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STARTSTR 7
6522 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_ENDSTR 8
6523 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_POSITIVE_INT_VALUE_UINT64 9
6524 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NEGATIVE_INT_VALUE_INT64 10
6525 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_DOUBLE_VALUE_DOUBLE 11
6526 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STRING 12
6527 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STARTSTR 13
6528 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_ENDSTR 14
6529 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STRING 15
6530 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STARTSTR 16
6531 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_ENDSTR 17
6532
6533 /* google.protobuf.UninterpretedOption.NamePart */
6534 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STRING 2
6535 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STARTSTR 3
6536 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_ENDSTR 4
6537 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_IS_EXTENSION_BOOL 5
6538
6539 const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner);
6540
6541 /* MessageDefs */
6542 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto(const upb_s ymtab *s) {
6543 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto ");
6544 assert(m);
6545 return m;
6546 }
6547 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRa nge(const upb_symtab *s) {
6548 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto .ExtensionRange");
6549 assert(m);
6550 return m;
6551 }
6552 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto(const u pb_symtab *s) {
6553 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumDescriptorP roto");
6554 assert(m);
6555 return m;
6556 }
6557 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumOptions(const upb_symta b *s) {
6558 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumOptions");
6559 assert(m);
6560 return m;
6561 }
6562 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto(co nst upb_symtab *s) {
6563 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueDescri ptorProto");
6564 assert(m);
6565 return m;
6566 }
6567 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions(const upb_ symtab *s) {
6568 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueOption s");
6569 assert(m);
6570 return m;
6571 }
6572 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto(const upb_symtab *s) {
6573 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldDescriptor Proto");
6574 assert(m);
6575 return m;
6576 }
6577 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldOptions(const upb_symt ab *s) {
6578 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldOptions");
6579 assert(m);
6580 return m;
6581 }
6582 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto(const u pb_symtab *s) {
6583 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorP roto");
6584 assert(m);
6585 return m;
6586 }
6587 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet(const upb _symtab *s) {
6588 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorS et");
6589 assert(m);
6590 return m;
6591 }
6592 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileOptions(const upb_symta b *s) {
6593 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileOptions");
6594 assert(m);
6595 return m;
6596 }
6597 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MessageOptions(const upb_sy mtab *s) {
6598 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MessageOptions" );
6599 assert(m);
6600 return m;
6601 }
6602 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto(const upb_symtab *s) {
6603 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodDescripto rProto");
6604 assert(m);
6605 return m;
6606 }
6607 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodOptions(const upb_sym tab *s) {
6608 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodOptions") ;
6609 assert(m);
6610 return m;
6611 }
6612 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto(cons t upb_symtab *s) {
6613 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceDescript orProto");
6614 assert(m);
6615 return m;
6616 }
6617 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceOptions(const upb_sy mtab *s) {
6618 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceOptions" );
6619 assert(m);
6620 return m;
6621 }
6622 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo(const upb_sy mtab *s) {
6623 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo" );
6624 assert(m);
6625 return m;
6626 }
6627 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location(con st upb_symtab *s) {
6628 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo. Location");
6629 assert(m);
6630 return m;
6631 }
6632 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption(const u pb_symtab *s) {
6633 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOp tion");
6634 assert(m);
6635 return m;
6636 }
6637 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePar t(const upb_symtab *s) {
6638 const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOp tion.NamePart");
6639 assert(m);
6640 return m;
6641 }
6642
6643
6644 /* EnumDefs */
6645 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label (const upb_symtab *s) {
6646 const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescript orProto.Label");
6647 assert(e);
6648 return e;
6649 }
6650 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type( const upb_symtab *s) {
6651 const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescript orProto.Type");
6652 assert(e);
6653 return e;
6654 }
6655 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType(const u pb_symtab *s) {
6656 const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldOptions. CType");
6657 assert(e);
6658 return e;
6659 }
6660 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode(c onst upb_symtab *s) {
6661 const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FileOptions.O ptimizeMode");
6662 assert(e);
6663 return e;
6664 }
6665
6666 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_Extension Range_end(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ DescriptorProto_ExtensionRange(s), 2); }
6667 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_Extension Range_start(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobu f_DescriptorProto_ExtensionRange(s), 1); }
6668 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_enum_type (const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Descripto rProto(s), 4); }
6669 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension (const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Descripto rProto(s), 6); }
6670 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension _range(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Des criptorProto(s), 5); }
6671 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_field(con st upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorPro to(s), 2); }
6672 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_name(cons t upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProt o(s), 1); }
6673 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_nested_ty pe(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Descrip torProto(s), 3); }
6674 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_options(c onst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorP roto(s), 7); }
6675 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_name( const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescri ptorProto(s), 1); }
6676 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_optio ns(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDes criptorProto(s), 3); }
6677 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_value (const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescr iptorProto(s), 2); }
6678 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_allow_alias(c onst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions (s), 2); }
6679 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_uninterpreted _option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_En umOptions(s), 999); }
6680 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_ name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumV alueDescriptorProto(s), 1); }
6681 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_ number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Enu mValueDescriptorProto(s), 2); }
6682 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_ options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_En umValueDescriptorProto(s), 3); }
6683 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_uninterp reted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protob uf_EnumValueOptions(s), 999); }
6684 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_defa ult_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ FieldDescriptorProto(s), 7); }
6685 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_exte ndee(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Field DescriptorProto(s), 2); }
6686 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_labe l(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDes criptorProto(s), 4); }
6687 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_name (const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDesc riptorProto(s), 1); }
6688 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_numb er(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDe scriptorProto(s), 3); }
6689 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_opti ons(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldD escriptorProto(s), 8); }
6690 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type (const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDesc riptorProto(s), 5); }
6691 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type _name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fiel dDescriptorProto(s), 6); }
6692 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_ctype(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 1); }
6693 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_deprecated(c onst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOption s(s), 3); }
6694 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_experimental _map_key(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_F ieldOptions(s), 9); }
6695 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_lazy(const u pb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 5); }
6696 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_packed(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s) , 2); }
6697 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_uninterprete d_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_F ieldOptions(s), 999); }
6698 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_weak(const u pb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 10); }
6699 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_depen dency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_File DescriptorProto(s), 3); }
6700 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_enum_ type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileD escriptorProto(s), 5); }
6701 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_exten sion(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileD escriptorProto(s), 7); }
6702 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_messa ge_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fi leDescriptorProto(s), 4); }
6703 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_name( const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescri ptorProto(s), 1); }
6704 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_optio ns(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDes criptorProto(s), 8); }
6705 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_packa ge(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDes criptorProto(s), 2); }
6706 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_publi c_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protob uf_FileDescriptorProto(s), 10); }
6707 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_servi ce(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDes criptorProto(s), 6); }
6708 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_sourc e_code_info(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobu f_FileDescriptorProto(s), 9); }
6709 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_weak_ dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf _FileDescriptorProto(s), 11); }
6710 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_file(co nst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescript orSet(s), 1); }
6711 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_cc_generic_se rvices(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fil eOptions(s), 16); }
6712 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_go_package(co nst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions( s), 11); }
6713 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generate _equals_and_hash(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_pr otobuf_FileOptions(s), 20); }
6714 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generic_ services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_F ileOptions(s), 17); }
6715 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_multiple _files(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fil eOptions(s), 10); }
6716 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_outer_cl assname(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fi leOptions(s), 8); }
6717 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_package( const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOption s(s), 1); }
6718 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_optimize_for( const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOption s(s), 9); }
6719 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_py_generic_se rvices(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fil eOptions(s), 18); }
6720 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_uninterpreted _option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Fi leOptions(s), 999); }
6721 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_message_se t_wire_format(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_proto buf_MessageOptions(s), 1); }
6722 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_no_standar d_descriptor_accessor(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_goog le_protobuf_MessageOptions(s), 2); }
6723 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_uninterpre ted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf _MessageOptions(s), 999); }
6724 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_inp ut_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Me thodDescriptorProto(s), 2); }
6725 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_nam e(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDe scriptorProto(s), 1); }
6726 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_opt ions(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Metho dDescriptorProto(s), 4); }
6727 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_out put_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_M ethodDescriptorProto(s), 3); }
6728 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_uninterpret ed_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ MethodOptions(s), 999); }
6729 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_me thod(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Servi ceDescriptorProto(s), 2); }
6730 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_na me(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Service DescriptorProto(s), 1); }
6731 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_op tions(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Serv iceDescriptorProto(s), 3); }
6732 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_uninterpre ted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf _ServiceOptions(s), 999); }
6733 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_l eading_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_pro tobuf_SourceCodeInfo_Location(s), 3); }
6734 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_p ath(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Source CodeInfo_Location(s), 1); }
6735 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_s pan(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Source CodeInfo_Location(s), 2); }
6736 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_t railing_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_pr otobuf_SourceCodeInfo_Location(s), 4); }
6737 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_location(c onst upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeI nfo(s), 1); }
6738 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NameP art_is_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_pr otobuf_UninterpretedOption_NamePart(s), 2); }
6739 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NameP art_name_part(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_proto buf_UninterpretedOption_NamePart(s), 1); }
6740 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_aggre gate_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf _UninterpretedOption(s), 8); }
6741 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_doubl e_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Un interpretedOption(s), 6); }
6742 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_ident ifier_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobu f_UninterpretedOption(s), 3); }
6743 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_name( const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Uninterpre tedOption(s), 2); }
6744 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_negat ive_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_proto buf_UninterpretedOption(s), 5); }
6745 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_posit ive_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_proto buf_UninterpretedOption(s), 4); }
6746 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_strin g_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_Un interpretedOption(s), 7); }
6747
6748 UPB_END_EXTERN_C
6749
6750 #ifdef __cplusplus
6751
6752 namespace upbdefs {
6753 namespace google {
6754 namespace protobuf {
6755 namespace descriptor {
6756 inline upb::reffed_ptr<const upb::SymbolTable> SymbolTable() {
6757 const upb::SymbolTable* s = upbdefs_google_protobuf_descriptor(&s);
6758 return upb::reffed_ptr<const upb::SymbolTable>(s, &s);
6759 }
6760 } /* namespace descriptor */
6761 } /* namespace protobuf */
6762 } /* namespace google */
6763
6764 #define RETURN_REFFED(type, func) \
6765 const type* obj = func(upbdefs::google::protobuf::descriptor::SymbolTable(). get()); \
6766 return upb::reffed_ptr<const type>(obj);
6767
6768 namespace google {
6769 namespace protobuf {
6770 namespace DescriptorProto {
6771 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_DescriptorProto) }
6772 inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_DescriptorProto_enum_type) }
6773 inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_DescriptorProto_extension) }
6774 inline upb::reffed_ptr<const upb::FieldDef> extension_range() { RETURN_REFFED(up b::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension_range) }
6775 inline upb::reffed_ptr<const upb::FieldDef> field() { RETURN_REFFED(upb::FieldDe f, upbdefs_google_protobuf_DescriptorProto_field) }
6776 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_DescriptorProto_name) }
6777 inline upb::reffed_ptr<const upb::FieldDef> nested_type() { RETURN_REFFED(upb::F ieldDef, upbdefs_google_protobuf_DescriptorProto_nested_type) }
6778 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_DescriptorProto_options) }
6779 } /* namespace DescriptorProto */
6780 } /* namespace protobuf */
6781 } /* namespace google */
6782
6783 namespace google {
6784 namespace protobuf {
6785 namespace DescriptorProto {
6786 namespace ExtensionRange {
6787 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange) }
6788 inline upb::reffed_ptr<const upb::FieldDef> end() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end) }
6789 inline upb::reffed_ptr<const upb::FieldDef> start() { RETURN_REFFED(upb::FieldDe f, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start) }
6790 } /* namespace ExtensionRange */
6791 } /* namespace DescriptorProto */
6792 } /* namespace protobuf */
6793 } /* namespace google */
6794
6795 namespace google {
6796 namespace protobuf {
6797 namespace EnumDescriptorProto {
6798 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_EnumDescriptorProto) }
6799 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_EnumDescriptorProto_name) }
6800 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_EnumDescriptorProto_options) }
6801 inline upb::reffed_ptr<const upb::FieldDef> value() { RETURN_REFFED(upb::FieldDe f, upbdefs_google_protobuf_EnumDescriptorProto_value) }
6802 } /* namespace EnumDescriptorProto */
6803 } /* namespace protobuf */
6804 } /* namespace google */
6805
6806 namespace google {
6807 namespace protobuf {
6808 namespace EnumOptions {
6809 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_EnumOptions) }
6810 inline upb::reffed_ptr<const upb::FieldDef> allow_alias() { RETURN_REFFED(upb::F ieldDef, upbdefs_google_protobuf_EnumOptions_allow_alias) }
6811 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_uninterpreted_option) }
6812 } /* namespace EnumOptions */
6813 } /* namespace protobuf */
6814 } /* namespace google */
6815
6816 namespace google {
6817 namespace protobuf {
6818 namespace EnumValueDescriptorProto {
6819 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_EnumValueDescriptorProto) }
6820 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_EnumValueDescriptorProto_name) }
6821 inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldD ef, upbdefs_google_protobuf_EnumValueDescriptorProto_number) }
6822 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_EnumValueDescriptorProto_options) }
6823 } /* namespace EnumValueDescriptorProto */
6824 } /* namespace protobuf */
6825 } /* namespace google */
6826
6827 namespace google {
6828 namespace protobuf {
6829 namespace EnumValueOptions {
6830 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_EnumValueOptions) }
6831 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option) }
6832 } /* namespace EnumValueOptions */
6833 } /* namespace protobuf */
6834 } /* namespace google */
6835
6836 namespace google {
6837 namespace protobuf {
6838 namespace FieldDescriptorProto {
6839 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_FieldDescriptorProto) }
6840 inline upb::reffed_ptr<const upb::FieldDef> default_value() { RETURN_REFFED(upb: :FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_default_value) }
6841 inline upb::reffed_ptr<const upb::FieldDef> extendee() { RETURN_REFFED(upb::Fiel dDef, upbdefs_google_protobuf_FieldDescriptorProto_extendee) }
6842 inline upb::reffed_ptr<const upb::FieldDef> label() { RETURN_REFFED(upb::FieldDe f, upbdefs_google_protobuf_FieldDescriptorProto_label) }
6843 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FieldDescriptorProto_name) }
6844 inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldD ef, upbdefs_google_protobuf_FieldDescriptorProto_number) }
6845 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_FieldDescriptorProto_options) }
6846 inline upb::reffed_ptr<const upb::FieldDef> type() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FieldDescriptorProto_type) }
6847 inline upb::reffed_ptr<const upb::FieldDef> type_name() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_FieldDescriptorProto_type_name) }
6848 inline upb::reffed_ptr<const upb::EnumDef> Label() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Label) }
6849 inline upb::reffed_ptr<const upb::EnumDef> Type() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Type) }
6850 } /* namespace FieldDescriptorProto */
6851 } /* namespace protobuf */
6852 } /* namespace google */
6853
6854 namespace google {
6855 namespace protobuf {
6856 namespace FieldOptions {
6857 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_FieldOptions) }
6858 inline upb::reffed_ptr<const upb::FieldDef> ctype() { RETURN_REFFED(upb::FieldDe f, upbdefs_google_protobuf_FieldOptions_ctype) }
6859 inline upb::reffed_ptr<const upb::FieldDef> deprecated() { RETURN_REFFED(upb::Fi eldDef, upbdefs_google_protobuf_FieldOptions_deprecated) }
6860 inline upb::reffed_ptr<const upb::FieldDef> experimental_map_key() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_experimental_map_key) }
6861 inline upb::reffed_ptr<const upb::FieldDef> lazy() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FieldOptions_lazy) }
6862 inline upb::reffed_ptr<const upb::FieldDef> packed() { RETURN_REFFED(upb::FieldD ef, upbdefs_google_protobuf_FieldOptions_packed) }
6863 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_uninterpreted_option) }
6864 inline upb::reffed_ptr<const upb::FieldDef> weak() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FieldOptions_weak) }
6865 inline upb::reffed_ptr<const upb::EnumDef> CType() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldOptions_CType) }
6866 } /* namespace FieldOptions */
6867 } /* namespace protobuf */
6868 } /* namespace google */
6869
6870 namespace google {
6871 namespace protobuf {
6872 namespace FileDescriptorProto {
6873 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_FileDescriptorProto) }
6874 inline upb::reffed_ptr<const upb::FieldDef> dependency() { RETURN_REFFED(upb::Fi eldDef, upbdefs_google_protobuf_FileDescriptorProto_dependency) }
6875 inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_FileDescriptorProto_enum_type) }
6876 inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_FileDescriptorProto_extension) }
6877 inline upb::reffed_ptr<const upb::FieldDef> message_type() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_FileDescriptorProto_message_type) }
6878 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FileDescriptorProto_name) }
6879 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_FileDescriptorProto_options) }
6880 inline upb::reffed_ptr<const upb::FieldDef> package() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_FileDescriptorProto_package) }
6881 inline upb::reffed_ptr<const upb::FieldDef> public_dependency() { RETURN_REFFED( upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_public_dependency) }
6882 inline upb::reffed_ptr<const upb::FieldDef> service() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_FileDescriptorProto_service) }
6883 inline upb::reffed_ptr<const upb::FieldDef> source_code_info() { RETURN_REFFED(u pb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_source_code_info) }
6884 inline upb::reffed_ptr<const upb::FieldDef> weak_dependency() { RETURN_REFFED(up b::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_weak_dependency) }
6885 } /* namespace FileDescriptorProto */
6886 } /* namespace protobuf */
6887 } /* namespace google */
6888
6889 namespace google {
6890 namespace protobuf {
6891 namespace FileDescriptorSet {
6892 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_FileDescriptorSet) }
6893 inline upb::reffed_ptr<const upb::FieldDef> file() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_FileDescriptorSet_file) }
6894 } /* namespace FileDescriptorSet */
6895 } /* namespace protobuf */
6896 } /* namespace google */
6897
6898 namespace google {
6899 namespace protobuf {
6900 namespace FileOptions {
6901 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_FileOptions) }
6902 inline upb::reffed_ptr<const upb::FieldDef> cc_generic_services() { RETURN_REFFE D(upb::FieldDef, upbdefs_google_protobuf_FileOptions_cc_generic_services) }
6903 inline upb::reffed_ptr<const upb::FieldDef> go_package() { RETURN_REFFED(upb::Fi eldDef, upbdefs_google_protobuf_FileOptions_go_package) }
6904 inline upb::reffed_ptr<const upb::FieldDef> java_generate_equals_and_hash() { RE TURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generate_equ als_and_hash) }
6905 inline upb::reffed_ptr<const upb::FieldDef> java_generic_services() { RETURN_REF FED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generic_services) }
6906 inline upb::reffed_ptr<const upb::FieldDef> java_multiple_files() { RETURN_REFFE D(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_multiple_files) }
6907 inline upb::reffed_ptr<const upb::FieldDef> java_outer_classname() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_outer_classname) }
6908 inline upb::reffed_ptr<const upb::FieldDef> java_package() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_FileOptions_java_package) }
6909 inline upb::reffed_ptr<const upb::FieldDef> optimize_for() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_FileOptions_optimize_for) }
6910 inline upb::reffed_ptr<const upb::FieldDef> py_generic_services() { RETURN_REFFE D(upb::FieldDef, upbdefs_google_protobuf_FileOptions_py_generic_services) }
6911 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_uninterpreted_option) }
6912 inline upb::reffed_ptr<const upb::EnumDef> OptimizeMode() { RETURN_REFFED(upb::E numDef, upbdefs_google_protobuf_FileOptions_OptimizeMode) }
6913 } /* namespace FileOptions */
6914 } /* namespace protobuf */
6915 } /* namespace google */
6916
6917 namespace google {
6918 namespace protobuf {
6919 namespace MessageOptions {
6920 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_MessageOptions) }
6921 inline upb::reffed_ptr<const upb::FieldDef> message_set_wire_format() { RETURN_R EFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_message_set_wire_for mat) }
6922 inline upb::reffed_ptr<const upb::FieldDef> no_standard_descriptor_accessor() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_no_standard_ descriptor_accessor) }
6923 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_uninterpreted_option) }
6924 } /* namespace MessageOptions */
6925 } /* namespace protobuf */
6926 } /* namespace google */
6927
6928 namespace google {
6929 namespace protobuf {
6930 namespace MethodDescriptorProto {
6931 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_MethodDescriptorProto) }
6932 inline upb::reffed_ptr<const upb::FieldDef> input_type() { RETURN_REFFED(upb::Fi eldDef, upbdefs_google_protobuf_MethodDescriptorProto_input_type) }
6933 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_MethodDescriptorProto_name) }
6934 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_MethodDescriptorProto_options) }
6935 inline upb::reffed_ptr<const upb::FieldDef> output_type() { RETURN_REFFED(upb::F ieldDef, upbdefs_google_protobuf_MethodDescriptorProto_output_type) }
6936 } /* namespace MethodDescriptorProto */
6937 } /* namespace protobuf */
6938 } /* namespace google */
6939
6940 namespace google {
6941 namespace protobuf {
6942 namespace MethodOptions {
6943 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_MethodOptions) }
6944 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_MethodOptions_uninterpreted_option) }
6945 } /* namespace MethodOptions */
6946 } /* namespace protobuf */
6947 } /* namespace google */
6948
6949 namespace google {
6950 namespace protobuf {
6951 namespace ServiceDescriptorProto {
6952 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_ServiceDescriptorProto) }
6953 inline upb::reffed_ptr<const upb::FieldDef> method() { RETURN_REFFED(upb::FieldD ef, upbdefs_google_protobuf_ServiceDescriptorProto_method) }
6954 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_ServiceDescriptorProto_name) }
6955 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::Field Def, upbdefs_google_protobuf_ServiceDescriptorProto_options) }
6956 } /* namespace ServiceDescriptorProto */
6957 } /* namespace protobuf */
6958 } /* namespace google */
6959
6960 namespace google {
6961 namespace protobuf {
6962 namespace ServiceOptions {
6963 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_ServiceOptions) }
6964 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFF ED(upb::FieldDef, upbdefs_google_protobuf_ServiceOptions_uninterpreted_option) }
6965 } /* namespace ServiceOptions */
6966 } /* namespace protobuf */
6967 } /* namespace google */
6968
6969 namespace google {
6970 namespace protobuf {
6971 namespace SourceCodeInfo {
6972 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_SourceCodeInfo) }
6973 inline upb::reffed_ptr<const upb::FieldDef> location() { RETURN_REFFED(upb::Fiel dDef, upbdefs_google_protobuf_SourceCodeInfo_location) }
6974 } /* namespace SourceCodeInfo */
6975 } /* namespace protobuf */
6976 } /* namespace google */
6977
6978 namespace google {
6979 namespace protobuf {
6980 namespace SourceCodeInfo {
6981 namespace Location {
6982 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_SourceCodeInfo_Location) }
6983 inline upb::reffed_ptr<const upb::FieldDef> leading_comments() { RETURN_REFFED(u pb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments) }
6984 inline upb::reffed_ptr<const upb::FieldDef> path() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_SourceCodeInfo_Location_path) }
6985 inline upb::reffed_ptr<const upb::FieldDef> span() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_SourceCodeInfo_Location_span) }
6986 inline upb::reffed_ptr<const upb::FieldDef> trailing_comments() { RETURN_REFFED( upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments ) }
6987 } /* namespace Location */
6988 } /* namespace SourceCodeInfo */
6989 } /* namespace protobuf */
6990 } /* namespace google */
6991
6992 namespace google {
6993 namespace protobuf {
6994 namespace UninterpretedOption {
6995 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_UninterpretedOption) }
6996 inline upb::reffed_ptr<const upb::FieldDef> aggregate_value() { RETURN_REFFED(up b::FieldDef, upbdefs_google_protobuf_UninterpretedOption_aggregate_value) }
6997 inline upb::reffed_ptr<const upb::FieldDef> double_value() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_UninterpretedOption_double_value) }
6998 inline upb::reffed_ptr<const upb::FieldDef> identifier_value() { RETURN_REFFED(u pb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_identifier_value) }
6999 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef , upbdefs_google_protobuf_UninterpretedOption_name) }
7000 inline upb::reffed_ptr<const upb::FieldDef> negative_int_value() { RETURN_REFFED (upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_negative_int_value) }
7001 inline upb::reffed_ptr<const upb::FieldDef> positive_int_value() { RETURN_REFFED (upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_positive_int_value) }
7002 inline upb::reffed_ptr<const upb::FieldDef> string_value() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_UninterpretedOption_string_value) }
7003 } /* namespace UninterpretedOption */
7004 } /* namespace protobuf */
7005 } /* namespace google */
7006
7007 namespace google {
7008 namespace protobuf {
7009 namespace UninterpretedOption {
7010 namespace NamePart {
7011 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb:: MessageDef, upbdefs_google_protobuf_UninterpretedOption_NamePart) }
7012 inline upb::reffed_ptr<const upb::FieldDef> is_extension() { RETURN_REFFED(upb:: FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension) }
7013 inline upb::reffed_ptr<const upb::FieldDef> name_part() { RETURN_REFFED(upb::Fie ldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part) }
7014 } /* namespace NamePart */
7015 } /* namespace UninterpretedOption */
7016 } /* namespace protobuf */
7017 } /* namespace google */
7018
7019 } /* namespace upbdefs */
7020
7021
7022 #undef RETURN_REFFED
7023 #endif /* __cplusplus */
7024
7025 #endif /* GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_ */
7026 /*
7027 ** Internal-only definitions for the decoder.
7028 */
7029
7030 #ifndef UPB_DECODER_INT_H_
7031 #define UPB_DECODER_INT_H_
7032
7033 #include <stdlib.h>
7034 /*
7035 ** upb::pb::Decoder
7036 **
7037 ** A high performance, streaming, resumable decoder for the binary protobuf
7038 ** format.
7039 **
7040 ** This interface works the same regardless of what decoder backend is being
7041 ** used. A client of this class does not need to know whether decoding is using
7042 ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default,
7043 ** it will always use the fastest available decoder. However, you can call
7044 ** set_allow_jit(false) to disable any JIT decoder that might be available.
7045 ** This is primarily useful for testing purposes.
7046 */
7047
7048 #ifndef UPB_DECODER_H_
7049 #define UPB_DECODER_H_
7050
7051
7052 #ifdef __cplusplus
7053 namespace upb {
7054 namespace pb {
7055 class CodeCache;
7056 class Decoder;
7057 class DecoderMethod;
7058 class DecoderMethodOptions;
7059 } /* namespace pb */
7060 } /* namespace upb */
7061 #endif
7062
7063 UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
7064 UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
7065 UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
7066
7067 UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
7068 upb_pbdecodermethod, upb_refcounted)
7069
7070 #ifdef __cplusplus
7071
7072 /* The parameters one uses to construct a DecoderMethod.
7073 * TODO(haberman): move allowjit here? Seems more convenient for users.
7074 * TODO(haberman): move this to be heap allocated for ABI stability. */
7075 class upb::pb::DecoderMethodOptions {
7076 public:
7077 /* Parameter represents the destination handlers that this method will push
7078 * to. */
7079 explicit DecoderMethodOptions(const Handlers* dest_handlers);
7080
7081 /* Should the decoder push submessages to lazy handlers for fields that have
7082 * them? The caller should set this iff the lazy handlers expect data that is
7083 * in protobuf binary format and the caller wishes to lazy parse it. */
7084 void set_lazy(bool lazy);
7085 #else
7086 struct upb_pbdecodermethodopts {
7087 #endif
7088 const upb_handlers *handlers;
7089 bool lazy;
7090 };
7091
7092 #ifdef __cplusplus
7093
7094 /* Represents the code to parse a protobuf according to a destination
7095 * Handlers. */
7096 class upb::pb::DecoderMethod {
7097 public:
7098 /* Include base methods from upb::ReferenceCounted. */
7099 UPB_REFCOUNTED_CPPMETHODS
7100
7101 /* The destination handlers that are statically bound to this method.
7102 * This method is only capable of outputting to a sink that uses these
7103 * handlers. */
7104 const Handlers* dest_handlers() const;
7105
7106 /* The input handlers for this decoder method. */
7107 const BytesHandler* input_handler() const;
7108
7109 /* Whether this method is native. */
7110 bool is_native() const;
7111
7112 /* Convenience method for generating a DecoderMethod without explicitly
7113 * creating a CodeCache. */
7114 static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
7115
7116 private:
7117 UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
7118 };
7119
7120 #endif
7121
7122 /* Preallocation hint: decoder won't allocate more bytes than this when first
7123 * constructed. This hint may be an overestimate for some build configurations.
7124 * But if the decoder library is upgraded without recompiling the application,
7125 * it may be an underestimate. */
7126 #define UPB_PB_DECODER_SIZE 4408
7127
7128 #ifdef __cplusplus
7129
7130 /* A Decoder receives binary protobuf data on its input sink and pushes the
7131 * decoded data to its output sink. */
7132 class upb::pb::Decoder {
7133 public:
7134 /* Constructs a decoder instance for the given method, which must outlive this
7135 * decoder. Any errors during parsing will be set on the given status, which
7136 * must also outlive this decoder.
7137 *
7138 * The sink must match the given method. */
7139 static Decoder* Create(Environment* env, const DecoderMethod* method,
7140 Sink* output);
7141
7142 /* Returns the DecoderMethod this decoder is parsing from. */
7143 const DecoderMethod* method() const;
7144
7145 /* The sink on which this decoder receives input. */
7146 BytesSink* input();
7147
7148 /* Returns number of bytes successfully parsed.
7149 *
7150 * This can be useful for determining the stream position where an error
7151 * occurred.
7152 *
7153 * This value may not be up-to-date when called from inside a parsing
7154 * callback. */
7155 uint64_t BytesParsed() const;
7156
7157 /* Gets/sets the parsing nexting limit. If the total number of nested
7158 * submessages and repeated fields hits this limit, parsing will fail. This
7159 * is a resource limit that controls the amount of memory used by the parsing
7160 * stack.
7161 *
7162 * Setting the limit will fail if the parser is currently suspended at a depth
7163 * greater than this, or if memory allocation of the stack fails. */
7164 size_t max_nesting() const;
7165 bool set_max_nesting(size_t max);
7166
7167 void Reset();
7168
7169 static const size_t kSize = UPB_PB_DECODER_SIZE;
7170
7171 private:
7172 UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
7173 };
7174
7175 #endif /* __cplusplus */
7176
7177 #ifdef __cplusplus
7178
7179 /* A class for caching protobuf processing code, whether bytecode for the
7180 * interpreted decoder or machine code for the JIT.
7181 *
7182 * This class is not thread-safe.
7183 *
7184 * TODO(haberman): move this to be heap allocated for ABI stability. */
7185 class upb::pb::CodeCache {
7186 public:
7187 CodeCache();
7188 ~CodeCache();
7189
7190 /* Whether the cache is allowed to generate machine code. Defaults to true.
7191 * There is no real reason to turn it off except for testing or if you are
7192 * having a specific problem with the JIT.
7193 *
7194 * Note that allow_jit = true does not *guarantee* that the code will be JIT
7195 * compiled. If this platform is not supported or the JIT was not compiled
7196 * in, the code may still be interpreted. */
7197 bool allow_jit() const;
7198
7199 /* This may only be called when the object is first constructed, and prior to
7200 * any code generation, otherwise returns false and does nothing. */
7201 bool set_allow_jit(bool allow);
7202
7203 /* Returns a DecoderMethod that can push data to the given handlers.
7204 * If a suitable method already exists, it will be returned from the cache.
7205 *
7206 * Specifying the destination handlers here allows the DecoderMethod to be
7207 * statically bound to the destination handlers if possible, which can allow
7208 * more efficient decoding. However the returned method may or may not
7209 * actually be statically bound. But in all cases, the returned method can
7210 * push data to the given handlers. */
7211 const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
7212
7213 /* If/when someone needs to explicitly create a dynamically-bound
7214 * DecoderMethod*, we can add a method to get it here. */
7215
7216 private:
7217 UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
7218 #else
7219 struct upb_pbcodecache {
7220 #endif
7221 bool allow_jit_;
7222
7223 /* Array of mgroups. */
7224 upb_inttable groups;
7225 };
7226
7227 UPB_BEGIN_EXTERN_C
7228
7229 upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
7230 const upb_pbdecodermethod *method,
7231 upb_sink *output);
7232 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
7233 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
7234 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
7235 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
7236 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
7237 void upb_pbdecoder_reset(upb_pbdecoder *d);
7238
7239 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
7240 const upb_handlers *h);
7241 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
7242
7243
7244 /* Include refcounted methods like upb_pbdecodermethod_ref(). */
7245 UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
7246
7247 const upb_handlers *upb_pbdecodermethod_desthandlers(
7248 const upb_pbdecodermethod *m);
7249 const upb_byteshandler *upb_pbdecodermethod_inputhandler(
7250 const upb_pbdecodermethod *m);
7251 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
7252 const upb_pbdecodermethod *upb_pbdecodermethod_new(
7253 const upb_pbdecodermethodopts *opts, const void *owner);
7254
7255 void upb_pbcodecache_init(upb_pbcodecache *c);
7256 void upb_pbcodecache_uninit(upb_pbcodecache *c);
7257 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
7258 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
7259 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
7260 upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
7261
7262 UPB_END_EXTERN_C
7263
7264 #ifdef __cplusplus
7265
7266 namespace upb {
7267
7268 namespace pb {
7269
7270 /* static */
7271 inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
7272 Sink* sink) {
7273 return upb_pbdecoder_create(env, m, sink);
7274 }
7275 inline const DecoderMethod* Decoder::method() const {
7276 return upb_pbdecoder_method(this);
7277 }
7278 inline BytesSink* Decoder::input() {
7279 return upb_pbdecoder_input(this);
7280 }
7281 inline uint64_t Decoder::BytesParsed() const {
7282 return upb_pbdecoder_bytesparsed(this);
7283 }
7284 inline size_t Decoder::max_nesting() const {
7285 return upb_pbdecoder_maxnesting(this);
7286 }
7287 inline bool Decoder::set_max_nesting(size_t max) {
7288 return upb_pbdecoder_setmaxnesting(this, max);
7289 }
7290 inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
7291
7292 inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
7293 upb_pbdecodermethodopts_init(this, h);
7294 }
7295 inline void DecoderMethodOptions::set_lazy(bool lazy) {
7296 upb_pbdecodermethodopts_setlazy(this, lazy);
7297 }
7298
7299 inline const Handlers* DecoderMethod::dest_handlers() const {
7300 return upb_pbdecodermethod_desthandlers(this);
7301 }
7302 inline const BytesHandler* DecoderMethod::input_handler() const {
7303 return upb_pbdecodermethod_inputhandler(this);
7304 }
7305 inline bool DecoderMethod::is_native() const {
7306 return upb_pbdecodermethod_isnative(this);
7307 }
7308 /* static */
7309 inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
7310 const DecoderMethodOptions &opts) {
7311 const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
7312 return reffed_ptr<const DecoderMethod>(m, &m);
7313 }
7314
7315 inline CodeCache::CodeCache() {
7316 upb_pbcodecache_init(this);
7317 }
7318 inline CodeCache::~CodeCache() {
7319 upb_pbcodecache_uninit(this);
7320 }
7321 inline bool CodeCache::allow_jit() const {
7322 return upb_pbcodecache_allowjit(this);
7323 }
7324 inline bool CodeCache::set_allow_jit(bool allow) {
7325 return upb_pbcodecache_setallowjit(this, allow);
7326 }
7327 inline const DecoderMethod *CodeCache::GetDecoderMethod(
7328 const DecoderMethodOptions& opts) {
7329 return upb_pbcodecache_getdecodermethod(this, &opts);
7330 }
7331
7332 } /* namespace pb */
7333 } /* namespace upb */
7334
7335 #endif /* __cplusplus */
7336
7337 #endif /* UPB_DECODER_H_ */
7338
7339 /* C++ names are not actually used since this type isn't exposed to users. */
7340 #ifdef __cplusplus
7341 namespace upb {
7342 namespace pb {
7343 class MessageGroup;
7344 } /* namespace pb */
7345 } /* namespace upb */
7346 #endif
7347 UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
7348 mgroup, upb_refcounted)
7349
7350 /* Opcode definitions. The canonical meaning of each opcode is its
7351 * implementation in the interpreter (the JIT is written to match this).
7352 *
7353 * All instructions have the opcode in the low byte.
7354 * Instruction format for most instructions is:
7355 *
7356 * +-------------------+--------+
7357 * | arg (24) | op (8) |
7358 * +-------------------+--------+
7359 *
7360 * Exceptions are indicated below. A few opcodes are multi-word. */
7361 typedef enum {
7362 /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
7363 * Arg for all of these is the upb selector for this field. */
7364 #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
7365 T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
7366 T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
7367 #undef T
7368 OP_STARTMSG = 9, /* No arg. */
7369 OP_ENDMSG = 10, /* No arg. */
7370 OP_STARTSEQ = 11,
7371 OP_ENDSEQ = 12,
7372 OP_STARTSUBMSG = 14,
7373 OP_ENDSUBMSG = 19,
7374 OP_STARTSTR = 20,
7375 OP_STRING = 21,
7376 OP_ENDSTR = 22,
7377
7378 OP_PUSHTAGDELIM = 23, /* No arg. */
7379 OP_PUSHLENDELIM = 24, /* No arg. */
7380 OP_POP = 25, /* No arg. */
7381 OP_SETDELIM = 26, /* No arg. */
7382 OP_SETBIGGROUPNUM = 27, /* two words:
7383 * | unused (24) | opc (8) |
7384 * | groupnum (32) | */
7385 OP_CHECKDELIM = 28,
7386 OP_CALL = 29,
7387 OP_RET = 30,
7388 OP_BRANCH = 31,
7389
7390 /* Different opcodes depending on how many bytes expected. */
7391 OP_TAG1 = 32, /* | match tag (16) | jump target (8) | opc (8) | */
7392 OP_TAG2 = 33, /* | match tag (16) | jump target (8) | opc (8) | */
7393 OP_TAGN = 34, /* three words: */
7394 /* | unused (16) | jump target(8) | opc (8) | */
7395 /* | match tag 1 (32) | */
7396 /* | match tag 2 (32) | */
7397
7398 OP_SETDISPATCH = 35, /* N words: */
7399 /* | unused (24) | opc | */
7400 /* | upb_inttable* (32 or 64) | */
7401
7402 OP_DISPATCH = 36, /* No arg. */
7403
7404 OP_HALT = 37 /* No arg. */
7405 } opcode;
7406
7407 #define OP_MAX OP_HALT
7408
7409 UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
7410
7411 /* Method group; represents a set of decoder methods that had their code
7412 * emitted together, and must therefore be freed together. Immutable once
7413 * created. It is possible we may want to expose this to users at some point.
7414 *
7415 * Overall ownership of Decoder objects looks like this:
7416 *
7417 * +----------+
7418 * | | <---> DecoderMethod
7419 * | method |
7420 * CodeCache ---> | group | <---> DecoderMethod
7421 * | |
7422 * | (mgroup) | <---> DecoderMethod
7423 * +----------+
7424 */
7425 struct mgroup {
7426 upb_refcounted base;
7427
7428 /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the
7429 * methods. */
7430 upb_inttable methods;
7431
7432 /* When we add the ability to link to previously existing mgroups, we'll
7433 * need an array of mgroups we reference here, and own refs on them. */
7434
7435 /* The bytecode for our methods, if any exists. Owned by us. */
7436 uint32_t *bytecode;
7437 uint32_t *bytecode_end;
7438
7439 #ifdef UPB_USE_JIT_X64
7440 /* JIT-generated machine code, if any. */
7441 upb_string_handlerfunc *jit_code;
7442 /* The size of the jit_code (required to munmap()). */
7443 size_t jit_size;
7444 char *debug_info;
7445 void *dl;
7446 #endif
7447 };
7448
7449 /* The maximum that any submessages can be nested. Matches proto2's limit.
7450 * This specifies the size of the decoder's statically-sized array and therefore
7451 * setting it high will cause the upb::pb::Decoder object to be larger.
7452 *
7453 * If necessary we can add a runtime-settable property to Decoder that allow
7454 * this to be larger than the compile-time setting, but this would add
7455 * complexity, particularly since we would have to decide how/if to give users
7456 * the ability to set a custom memory allocation function. */
7457 #define UPB_DECODER_MAX_NESTING 64
7458
7459 /* Internal-only struct used by the decoder. */
7460 typedef struct {
7461 /* Space optimization note: we store two pointers here that the JIT
7462 * doesn't need at all; the upb_handlers* inside the sink and
7463 * the dispatch table pointer. We can optimze so that the JIT uses
7464 * smaller stack frames than the interpreter. The only thing we need
7465 * to guarantee is that the fallback routines can find end_ofs. */
7466 upb_sink sink;
7467
7468 /* The absolute stream offset of the end-of-frame delimiter.
7469 * Non-delimited frames (groups and non-packed repeated fields) reuse the
7470 * delimiter of their parent, even though the frame may not end there.
7471 *
7472 * NOTE: the JIT stores a slightly different value here for non-top frames.
7473 * It stores the value relative to the end of the enclosed message. But the
7474 * top frame is still stored the same way, which is important for ensuring
7475 * that calls from the JIT into C work correctly. */
7476 uint64_t end_ofs;
7477 const uint32_t *base;
7478
7479 /* 0 indicates a length-delimited field.
7480 * A positive number indicates a known group.
7481 * A negative number indicates an unknown group. */
7482 int32_t groupnum;
7483 upb_inttable *dispatch; /* Not used by the JIT. */
7484 } upb_pbdecoder_frame;
7485
7486 struct upb_pbdecodermethod {
7487 upb_refcounted base;
7488
7489 /* While compiling, the base is relative in "ofs", after compiling it is
7490 * absolute in "ptr". */
7491 union {
7492 uint32_t ofs; /* PC offset of method. */
7493 void *ptr; /* Pointer to bytecode or machine code for this method. */
7494 } code_base;
7495
7496 /* The decoder method group to which this method belongs. We own a ref.
7497 * Owning a ref on the entire group is more coarse-grained than is strictly
7498 * necessary; all we truly require is that methods we directly reference
7499 * outlive us, while the group could contain many other messages we don't
7500 * require. But the group represents the messages that were
7501 * allocated+compiled together, so it makes the most sense to free them
7502 * together also. */
7503 const upb_refcounted *group;
7504
7505 /* Whether this method is native code or bytecode. */
7506 bool is_native_;
7507
7508 /* The handler one calls to invoke this method. */
7509 upb_byteshandler input_handler_;
7510
7511 /* The destination handlers this method is bound to. We own a ref. */
7512 const upb_handlers *dest_handlers_;
7513
7514 /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
7515 * field number that wasn't the one we were expecting to see. See
7516 * decoder.int.h for the layout of this table. */
7517 upb_inttable dispatch;
7518 };
7519
7520 struct upb_pbdecoder {
7521 upb_env *env;
7522
7523 /* Our input sink. */
7524 upb_bytessink input_;
7525
7526 /* The decoder method we are parsing with (owned). */
7527 const upb_pbdecodermethod *method_;
7528
7529 size_t call_len;
7530 const uint32_t *pc, *last;
7531
7532 /* Current input buffer and its stream offset. */
7533 const char *buf, *ptr, *end, *checkpoint;
7534
7535 /* End of the delimited region, relative to ptr, NULL if not in this buf. */
7536 const char *delim_end;
7537
7538 /* End of the delimited region, relative to ptr, end if not in this buf. */
7539 const char *data_end;
7540
7541 /* Overall stream offset of "buf." */
7542 uint64_t bufstart_ofs;
7543
7544 /* Buffer for residual bytes not parsed from the previous buffer.
7545 * The maximum number of residual bytes we require is 12; a five-byte
7546 * unknown tag plus an eight-byte value, less one because the value
7547 * is only a partial value. */
7548 char residual[12];
7549 char *residual_end;
7550
7551 /* Bytes of data that should be discarded from the input beore we start
7552 * parsing again. We set this when we internally determine that we can
7553 * safely skip the next N bytes, but this region extends past the current
7554 * user buffer. */
7555 size_t skip;
7556
7557 /* Stores the user buffer passed to our decode function. */
7558 const char *buf_param;
7559 size_t size_param;
7560 const upb_bufhandle *handle;
7561
7562 /* Our internal stack. */
7563 upb_pbdecoder_frame *stack, *top, *limit;
7564 const uint32_t **callstack;
7565 size_t stack_size;
7566
7567 upb_status *status;
7568
7569 #ifdef UPB_USE_JIT_X64
7570 /* Used momentarily by the generated code to store a value while a user
7571 * function is called. */
7572 uint32_t tmp_len;
7573
7574 const void *saved_rsp;
7575 #endif
7576 };
7577
7578 /* Decoder entry points; used as handlers. */
7579 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
7580 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
7581 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
7582 size_t size, const upb_bufhandle *handle);
7583 bool upb_pbdecoder_end(void *closure, const void *handler_data);
7584
7585 /* Decoder-internal functions that the JIT calls to handle fallback paths. */
7586 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
7587 size_t size, const upb_bufhandle *handle);
7588 size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
7589 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
7590 uint8_t wire_type);
7591 int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
7592 int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
7593 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
7594 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
7595 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
7596
7597 /* Error messages that are shared between the bytecode and JIT decoders. */
7598 extern const char *kPbDecoderStackOverflow;
7599 extern const char *kPbDecoderSubmessageTooLong;
7600
7601 /* Access to decoderplan members needed by the decoder. */
7602 const char *upb_pbdecoder_getopname(unsigned int op);
7603
7604 /* JIT codegen entry point. */
7605 void upb_pbdecoder_jit(mgroup *group);
7606 void upb_pbdecoder_freejit(mgroup *group);
7607 UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
7608
7609 /* A special label that means "do field dispatch for this message and branch to
7610 * wherever that takes you." */
7611 #define LABEL_DISPATCH 0
7612
7613 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
7614 * RET) for branching to when we find an appropriate ENDGROUP tag. */
7615 #define DISPATCH_ENDMSG 0
7616
7617 /* It's important to use this invalid wire type instead of 0 (which is a valid
7618 * wire type). */
7619 #define NO_WIRE_TYPE 0xff
7620
7621 /* The dispatch table layout is:
7622 * [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
7623 *
7624 * If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup
7625 * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
7626 *
7627 * We need two wire types because of packed/non-packed compatibility. A
7628 * primitive repeated field can use either wire type and be valid. While we
7629 * could key the table on fieldnum+wiretype, the table would be 8x sparser.
7630 *
7631 * Storing two wire types in the primary value allows us to quickly rule out
7632 * the second wire type without needing to do a separate lookup (this case is
7633 * less common than an unknown field). */
7634 UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
7635 uint8_t wt2) {
7636 return (ofs << 16) | (wt2 << 8) | wt1;
7637 }
7638
7639 UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
7640 uint8_t *wt1, uint8_t *wt2) {
7641 *wt1 = (uint8_t)dispatch;
7642 *wt2 = (uint8_t)(dispatch >> 8);
7643 *ofs = dispatch >> 16;
7644 }
7645
7646 /* All of the functions in decoder.c that return int32_t return values according
7647 * to the following scheme:
7648 * 1. negative values indicate a return code from the following list.
7649 * 2. positive values indicate that error or end of buffer was hit, and
7650 * that the decode function should immediately return the given value
7651 * (the decoder state has already been suspended and is ready to be
7652 * resumed). */
7653 #define DECODE_OK -1
7654 #define DECODE_MISMATCH -2 /* Used only from checktag_slow(). */
7655 #define DECODE_ENDGROUP -3 /* Used only from checkunknown(). */
7656
7657 #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
7658
7659 #endif /* UPB_DECODER_INT_H_ */
7660 /*
7661 ** A number of routines for varint manipulation (we keep them all around to
7662 ** have multiple approaches available for benchmarking).
7663 */
7664
7665 #ifndef UPB_VARINT_DECODER_H_
7666 #define UPB_VARINT_DECODER_H_
7667
7668 #include <assert.h>
7669 #include <stdint.h>
7670 #include <string.h>
7671
7672 #ifdef __cplusplus
7673 extern "C" {
7674 #endif
7675
7676 /* A list of types as they are encoded on-the-wire. */
7677 typedef enum {
7678 UPB_WIRE_TYPE_VARINT = 0,
7679 UPB_WIRE_TYPE_64BIT = 1,
7680 UPB_WIRE_TYPE_DELIMITED = 2,
7681 UPB_WIRE_TYPE_START_GROUP = 3,
7682 UPB_WIRE_TYPE_END_GROUP = 4,
7683 UPB_WIRE_TYPE_32BIT = 5
7684 } upb_wiretype_t;
7685
7686 #define UPB_MAX_WIRE_TYPE 5
7687
7688 /* The maximum number of bytes that it takes to encode a 64-bit varint.
7689 * Note that with a better encoding this could be 9 (TODO: write up a
7690 * wiki document about this). */
7691 #define UPB_PB_VARINT_MAX_LEN 10
7692
7693 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a
7694 * descriptor type (upb_descriptortype_t). */
7695 extern const uint8_t upb_pb_native_wire_types[];
7696
7697 /* Zig-zag encoding/decoding **************************************************/
7698
7699 UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
7700 return (n >> 1) ^ -(int32_t)(n & 1);
7701 }
7702 UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
7703 return (n >> 1) ^ -(int64_t)(n & 1);
7704 }
7705 UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
7706 UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
7707
7708 /* Decoding *******************************************************************/
7709
7710 /* All decoding functions return this struct by value. */
7711 typedef struct {
7712 const char *p; /* NULL if the varint was unterminated. */
7713 uint64_t val;
7714 } upb_decoderet;
7715
7716 UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
7717 upb_decoderet ret;
7718 ret.p = p;
7719 ret.val = val;
7720 return ret;
7721 }
7722
7723 /* Four functions for decoding a varint of at most eight bytes. They are all
7724 * functionally identical, but are implemented in different ways and likely have
7725 * different performance profiles. We keep them around for performance testing.
7726 *
7727 * Note that these functions may not read byte-by-byte, so they must not be used
7728 * unless there are at least eight bytes left in the buffer! */
7729 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
7730 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
7731 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
7732 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
7733
7734 /* Template for a function that checks the first two bytes with branching
7735 * and dispatches 2-10 bytes with a separate function. Note that this may read
7736 * up to 10 bytes, so it must not be used unless there are at least ten bytes
7737 * left in the buffer! */
7738 #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \
7739 UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \
7740 uint8_t *p = (uint8_t*)_p; \
7741 upb_decoderet r; \
7742 if ((*p & 0x80) == 0) { \
7743 /* Common case: one-byte varint. */ \
7744 return upb_decoderet_make(_p + 1, *p & 0x7fU); \
7745 } \
7746 r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)); \
7747 if ((*(p + 1) & 0x80) == 0) { \
7748 /* Two-byte varint. */ \
7749 return r; \
7750 } \
7751 /* Longer varint, fallback to out-of-line function. */ \
7752 return decode_max8_function(r); \
7753 }
7754
7755 UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
7756 UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
7757 UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
7758 UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
7759 #undef UPB_VARINT_DECODER_CHECK2
7760
7761 /* Our canonical functions for decoding varints, based on the currently
7762 * favored best-performing implementations. */
7763 UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
7764 if (sizeof(long) == 8)
7765 return upb_vdecode_check2_branch64(p);
7766 else
7767 return upb_vdecode_check2_branch32(p);
7768 }
7769
7770 UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
7771 return upb_vdecode_max8_massimino(r);
7772 }
7773
7774
7775 /* Encoding *******************************************************************/
7776
7777 UPB_INLINE int upb_value_size(uint64_t val) {
7778 #ifdef __GNUC__
7779 int high_bit = 63 - __builtin_clzll(val); /* 0-based, undef if val == 0. */
7780 #else
7781 int high_bit = 0;
7782 uint64_t tmp = val;
7783 while(tmp >>= 1) high_bit++;
7784 #endif
7785 return val == 0 ? 1 : high_bit / 8 + 1;
7786 }
7787
7788 /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
7789 * bytes long), returning how many bytes were used.
7790 *
7791 * TODO: benchmark and optimize if necessary. */
7792 UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
7793 size_t i;
7794 if (val == 0) { buf[0] = 0; return 1; }
7795 i = 0;
7796 while (val) {
7797 uint8_t byte = val & 0x7fU;
7798 val >>= 7;
7799 if (val) byte |= 0x80U;
7800 buf[i++] = byte;
7801 }
7802 return i;
7803 }
7804
7805 UPB_INLINE size_t upb_varint_size(uint64_t val) {
7806 char buf[UPB_PB_VARINT_MAX_LEN];
7807 return upb_vencode64(val, buf);
7808 }
7809
7810 /* Encodes a 32-bit varint, *not* sign-extended. */
7811 UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
7812 char buf[UPB_PB_VARINT_MAX_LEN];
7813 size_t bytes = upb_vencode64(val, buf);
7814 uint64_t ret = 0;
7815 assert(bytes <= 5);
7816 memcpy(&ret, buf, bytes);
7817 assert(ret <= 0xffffffffffU);
7818 return ret;
7819 }
7820
7821 #ifdef __cplusplus
7822 } /* extern "C" */
7823 #endif
7824
7825 #endif /* UPB_VARINT_DECODER_H_ */
7826 /*
7827 ** upb::pb::Encoder (upb_pb_encoder)
7828 **
7829 ** Implements a set of upb_handlers that write protobuf data to the binary wire
7830 ** format.
7831 **
7832 ** This encoder implementation does not have any access to any out-of-band or
7833 ** precomputed lengths for submessages, so it must buffer submessages internally
7834 ** before it can emit the first byte.
7835 */
7836
7837 #ifndef UPB_ENCODER_H_
7838 #define UPB_ENCODER_H_
7839
7840
7841 #ifdef __cplusplus
7842 namespace upb {
7843 namespace pb {
7844 class Encoder;
7845 } /* namespace pb */
7846 } /* namespace upb */
7847 #endif
7848
7849 UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
7850
7851 #define UPB_PBENCODER_MAX_NESTING 100
7852
7853 /* upb::pb::Encoder ***********************************************************/
7854
7855 /* Preallocation hint: decoder won't allocate more bytes than this when first
7856 * constructed. This hint may be an overestimate for some build configurations.
7857 * But if the decoder library is upgraded without recompiling the application,
7858 * it may be an underestimate. */
7859 #define UPB_PB_ENCODER_SIZE 768
7860
7861 #ifdef __cplusplus
7862
7863 class upb::pb::Encoder {
7864 public:
7865 /* Creates a new encoder in the given environment. The Handlers must have
7866 * come from NewHandlers() below. */
7867 static Encoder* Create(Environment* env, const Handlers* handlers,
7868 BytesSink* output);
7869
7870 /* The input to the encoder. */
7871 Sink* input();
7872
7873 /* Creates a new set of handlers for this MessageDef. */
7874 static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
7875
7876 static const size_t kSize = UPB_PB_ENCODER_SIZE;
7877
7878 private:
7879 UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
7880 };
7881
7882 #endif
7883
7884 UPB_BEGIN_EXTERN_C
7885
7886 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
7887 const void *owner);
7888 upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
7889 upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
7890 upb_bytessink* output);
7891
7892 UPB_END_EXTERN_C
7893
7894 #ifdef __cplusplus
7895
7896 namespace upb {
7897 namespace pb {
7898 inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
7899 BytesSink* output) {
7900 return upb_pb_encoder_create(env, handlers, output);
7901 }
7902 inline Sink* Encoder::input() {
7903 return upb_pb_encoder_input(this);
7904 }
7905 inline reffed_ptr<const Handlers> Encoder::NewHandlers(
7906 const upb::MessageDef *md) {
7907 const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
7908 return reffed_ptr<const Handlers>(h, &h);
7909 }
7910 } /* namespace pb */
7911 } /* namespace upb */
7912
7913 #endif
7914
7915 #endif /* UPB_ENCODER_H_ */
7916 /*
7917 ** upb's core components like upb_decoder and upb_msg are carefully designed to
7918 ** avoid depending on each other for maximum orthogonality. In other words,
7919 ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
7920 ** just one such structure. A upb_msg can be serialized/deserialized into any
7921 ** format, protobuf binary format is just one such format.
7922 **
7923 ** However, for convenience we provide functions here for doing common
7924 ** operations like deserializing protobuf binary format into a upb_msg. The
7925 ** compromise is that this file drags in almost all of upb as a dependency,
7926 ** which could be undesirable if you're trying to use a trimmed-down build of
7927 ** upb.
7928 **
7929 ** While these routines are convenient, they do not reuse any encoding/decoding
7930 ** state. For example, if a decoder is JIT-based, it will be re-JITted every
7931 ** time these functions are called. For this reason, if you are parsing lots
7932 ** of data and efficiency is an issue, these may not be the best functions to
7933 ** use (though they are useful for prototyping, before optimizing).
7934 */
7935
7936 #ifndef UPB_GLUE_H
7937 #define UPB_GLUE_H
7938
7939 #include <stdbool.h>
7940
7941 #ifdef __cplusplus
7942 extern "C" {
7943 #endif
7944
7945 /* Loads all defs from the given protobuf binary descriptor, setting default
7946 * accessors and a default layout on all messages. The caller owns the
7947 * returned array of defs, which will be of length *n. On error NULL is
7948 * returned and status is set (if non-NULL). */
7949 upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n,
7950 void *owner, upb_status *status);
7951
7952 /* Like the previous but also adds the loaded defs to the given symtab. */
7953 bool upb_load_descriptor_into_symtab(upb_symtab *symtab, const char *str,
7954 size_t len, upb_status *status);
7955
7956 /* Like the previous but also reads the descriptor from the given filename. */
7957 bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname,
7958 upb_status *status);
7959
7960 /* Reads the given filename into a character string, returning NULL if there
7961 * was an error. */
7962 char *upb_readfile(const char *filename, size_t *len);
7963
7964 #ifdef __cplusplus
7965 } /* extern "C" */
7966
7967 namespace upb {
7968
7969 /* All routines that load descriptors expect the descriptor to be a
7970 * FileDescriptorSet. */
7971 inline bool LoadDescriptorFileIntoSymtab(SymbolTable* s, const char *fname,
7972 Status* status) {
7973 return upb_load_descriptor_file_into_symtab(s, fname, status);
7974 }
7975
7976 inline bool LoadDescriptorIntoSymtab(SymbolTable* s, const char* str,
7977 size_t len, Status* status) {
7978 return upb_load_descriptor_into_symtab(s, str, len, status);
7979 }
7980
7981 /* Templated so it can accept both string and std::string. */
7982 template <typename T>
7983 bool LoadDescriptorIntoSymtab(SymbolTable* s, const T& desc, Status* status) {
7984 return upb_load_descriptor_into_symtab(s, desc.c_str(), desc.size(), status);
7985 }
7986
7987 } /* namespace upb */
7988
7989 #endif
7990
7991 #endif /* UPB_GLUE_H */
7992 /*
7993 ** upb::pb::TextPrinter (upb_textprinter)
7994 **
7995 ** Handlers for writing to protobuf text format.
7996 */
7997
7998 #ifndef UPB_TEXT_H_
7999 #define UPB_TEXT_H_
8000
8001
8002 #ifdef __cplusplus
8003 namespace upb {
8004 namespace pb {
8005 class TextPrinter;
8006 } /* namespace pb */
8007 } /* namespace upb */
8008 #endif
8009
8010 UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
8011
8012 #ifdef __cplusplus
8013
8014 class upb::pb::TextPrinter {
8015 public:
8016 /* The given handlers must have come from NewHandlers(). It must outlive the
8017 * TextPrinter. */
8018 static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
8019 BytesSink *output);
8020
8021 void SetSingleLineMode(bool single_line);
8022
8023 Sink* input();
8024
8025 /* If handler caching becomes a requirement we can add a code cache as in
8026 * decoder.h */
8027 static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
8028 };
8029
8030 #endif
8031
8032 UPB_BEGIN_EXTERN_C
8033
8034 /* C API. */
8035 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
8036 upb_bytessink *output);
8037 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
8038 upb_sink *upb_textprinter_input(upb_textprinter *p);
8039
8040 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
8041 const void *owner);
8042
8043 UPB_END_EXTERN_C
8044
8045 #ifdef __cplusplus
8046
8047 namespace upb {
8048 namespace pb {
8049 inline TextPrinter *TextPrinter::Create(Environment *env,
8050 const upb::Handlers *handlers,
8051 BytesSink *output) {
8052 return upb_textprinter_create(env, handlers, output);
8053 }
8054 inline void TextPrinter::SetSingleLineMode(bool single_line) {
8055 upb_textprinter_setsingleline(this, single_line);
8056 }
8057 inline Sink* TextPrinter::input() {
8058 return upb_textprinter_input(this);
8059 }
8060 inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
8061 const MessageDef *md) {
8062 const Handlers* h = upb_textprinter_newhandlers(md, &h);
8063 return reffed_ptr<const Handlers>(h, &h);
8064 }
8065 } /* namespace pb */
8066 } /* namespace upb */
8067
8068 #endif
8069
8070 #endif /* UPB_TEXT_H_ */
8071 /*
8072 ** upb::json::Parser (upb_json_parser)
8073 **
8074 ** Parses JSON according to a specific schema.
8075 ** Support for parsing arbitrary JSON (schema-less) will be added later.
8076 */
8077
8078 #ifndef UPB_JSON_PARSER_H_
8079 #define UPB_JSON_PARSER_H_
8080
8081
8082 #ifdef __cplusplus
8083 namespace upb {
8084 namespace json {
8085 class Parser;
8086 } /* namespace json */
8087 } /* namespace upb */
8088 #endif
8089
8090 UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
8091
8092 /* upb::json::Parser **********************************************************/
8093
8094 /* Preallocation hint: parser won't allocate more bytes than this when first
8095 * constructed. This hint may be an overestimate for some build configurations.
8096 * But if the parser library is upgraded without recompiling the application,
8097 * it may be an underestimate. */
8098 #define UPB_JSON_PARSER_SIZE 3704
8099
8100 #ifdef __cplusplus
8101
8102 /* Parses an incoming BytesStream, pushing the results to the destination
8103 * sink. */
8104 class upb::json::Parser {
8105 public:
8106 static Parser* Create(Environment* env, Sink* output);
8107
8108 BytesSink* input();
8109
8110 private:
8111 UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
8112 };
8113
8114 #endif
8115
8116 UPB_BEGIN_EXTERN_C
8117
8118 upb_json_parser *upb_json_parser_create(upb_env *e, upb_sink *output);
8119 upb_bytessink *upb_json_parser_input(upb_json_parser *p);
8120
8121 UPB_END_EXTERN_C
8122
8123 #ifdef __cplusplus
8124
8125 namespace upb {
8126 namespace json {
8127 inline Parser* Parser::Create(Environment* env, Sink* output) {
8128 return upb_json_parser_create(env, output);
8129 }
8130 inline BytesSink* Parser::input() {
8131 return upb_json_parser_input(this);
8132 }
8133 } /* namespace json */
8134 } /* namespace upb */
8135
8136 #endif
8137
8138
8139 #endif /* UPB_JSON_PARSER_H_ */
8140 /*
8141 ** upb::json::Printer
8142 **
8143 ** Handlers that emit JSON according to a specific protobuf schema.
8144 */
8145
8146 #ifndef UPB_JSON_TYPED_PRINTER_H_
8147 #define UPB_JSON_TYPED_PRINTER_H_
8148
8149
8150 #ifdef __cplusplus
8151 namespace upb {
8152 namespace json {
8153 class Printer;
8154 } /* namespace json */
8155 } /* namespace upb */
8156 #endif
8157
8158 UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
8159
8160
8161 /* upb::json::Printer *********************************************************/
8162
8163 #define UPB_JSON_PRINTER_SIZE 168
8164
8165 #ifdef __cplusplus
8166
8167 /* Prints an incoming stream of data to a BytesSink in JSON format. */
8168 class upb::json::Printer {
8169 public:
8170 static Printer* Create(Environment* env, const upb::Handlers* handlers,
8171 BytesSink* output);
8172
8173 /* The input to the printer. */
8174 Sink* input();
8175
8176 /* Returns handlers for printing according to the specified schema. */
8177 static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md);
8178
8179 static const size_t kSize = UPB_JSON_PRINTER_SIZE;
8180
8181 private:
8182 UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
8183 };
8184
8185 #endif
8186
8187 UPB_BEGIN_EXTERN_C
8188
8189 /* Native C API. */
8190 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
8191 upb_bytessink *output);
8192 upb_sink *upb_json_printer_input(upb_json_printer *p);
8193 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
8194 const void *owner);
8195
8196 UPB_END_EXTERN_C
8197
8198 #ifdef __cplusplus
8199
8200 namespace upb {
8201 namespace json {
8202 inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
8203 BytesSink* output) {
8204 return upb_json_printer_create(env, handlers, output);
8205 }
8206 inline Sink* Printer::input() { return upb_json_printer_input(this); }
8207 inline reffed_ptr<const Handlers> Printer::NewHandlers(
8208 const upb::MessageDef *md) {
8209 const Handlers* h = upb_json_printer_newhandlers(md, &h);
8210 return reffed_ptr<const Handlers>(h, &h);
8211 }
8212 } /* namespace json */
8213 } /* namespace upb */
8214
8215 #endif
8216
8217 #endif /* UPB_JSON_TYPED_PRINTER_H_ */
OLDNEW
« no previous file with comments | « third_party/protobuf/ruby/ext/google/protobuf_c/storage.c ('k') | third_party/protobuf/ruby/ext/google/protobuf_c/upb.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698