OLD | NEW |
(Empty) | |
| 1 // Protocol Buffers - Google's data interchange format |
| 2 // Copyright 2014 Google Inc. All rights reserved. |
| 3 // https://developers.google.com/protocol-buffers/ |
| 4 // |
| 5 // Redistribution and use in source and binary forms, with or without |
| 6 // modification, are permitted provided that the following conditions are |
| 7 // met: |
| 8 // |
| 9 // * Redistributions of source code must retain the above copyright |
| 10 // notice, this list of conditions and the following disclaimer. |
| 11 // * Redistributions in binary form must reproduce the above |
| 12 // copyright notice, this list of conditions and the following disclaimer |
| 13 // in the documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // * Neither the name of Google Inc. nor the names of its |
| 16 // contributors may be used to endorse or promote products derived from |
| 17 // this software without specific prior written permission. |
| 18 // |
| 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 |
| 31 #include "protobuf.h" |
| 32 |
| 33 #include <math.h> |
| 34 |
| 35 #include <ruby/encoding.h> |
| 36 |
| 37 // ----------------------------------------------------------------------------- |
| 38 // Ruby <-> native slot management. |
| 39 // ----------------------------------------------------------------------------- |
| 40 |
| 41 #define DEREF(memory, type) *(type*)(memory) |
| 42 |
| 43 size_t native_slot_size(upb_fieldtype_t type) { |
| 44 switch (type) { |
| 45 case UPB_TYPE_FLOAT: return 4; |
| 46 case UPB_TYPE_DOUBLE: return 8; |
| 47 case UPB_TYPE_BOOL: return 1; |
| 48 case UPB_TYPE_STRING: return sizeof(VALUE); |
| 49 case UPB_TYPE_BYTES: return sizeof(VALUE); |
| 50 case UPB_TYPE_MESSAGE: return sizeof(VALUE); |
| 51 case UPB_TYPE_ENUM: return 4; |
| 52 case UPB_TYPE_INT32: return 4; |
| 53 case UPB_TYPE_INT64: return 8; |
| 54 case UPB_TYPE_UINT32: return 4; |
| 55 case UPB_TYPE_UINT64: return 8; |
| 56 default: return 0; |
| 57 } |
| 58 } |
| 59 |
| 60 static bool is_ruby_num(VALUE value) { |
| 61 return (TYPE(value) == T_FLOAT || |
| 62 TYPE(value) == T_FIXNUM || |
| 63 TYPE(value) == T_BIGNUM); |
| 64 } |
| 65 |
| 66 void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) { |
| 67 if (!is_ruby_num(val)) { |
| 68 rb_raise(rb_eTypeError, "Expected number type for integral field."); |
| 69 } |
| 70 |
| 71 // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper |
| 72 // bound; we just need to do precision checks (i.e., disallow rounding) and |
| 73 // check for < 0 on unsigned types. |
| 74 if (TYPE(val) == T_FLOAT) { |
| 75 double dbl_val = NUM2DBL(val); |
| 76 if (floor(dbl_val) != dbl_val) { |
| 77 rb_raise(rb_eRangeError, |
| 78 "Non-integral floating point value assigned to integer field."); |
| 79 } |
| 80 } |
| 81 if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) { |
| 82 if (NUM2DBL(val) < 0) { |
| 83 rb_raise(rb_eRangeError, |
| 84 "Assigning negative value to unsigned integer field."); |
| 85 } |
| 86 } |
| 87 } |
| 88 |
| 89 void native_slot_validate_string_encoding(upb_fieldtype_t type, VALUE value) { |
| 90 bool bad_encoding = false; |
| 91 rb_encoding* string_encoding = rb_enc_from_index(ENCODING_GET(value)); |
| 92 if (type == UPB_TYPE_STRING) { |
| 93 bad_encoding = |
| 94 string_encoding != kRubyStringUtf8Encoding && |
| 95 string_encoding != kRubyStringASCIIEncoding; |
| 96 } else { |
| 97 bad_encoding = |
| 98 string_encoding != kRubyString8bitEncoding; |
| 99 } |
| 100 // Check that encoding is UTF-8 or ASCII (for string fields) or ASCII-8BIT |
| 101 // (for bytes fields). |
| 102 if (bad_encoding) { |
| 103 rb_raise(rb_eTypeError, "Encoding for '%s' fields must be %s (was %s)", |
| 104 (type == UPB_TYPE_STRING) ? "string" : "bytes", |
| 105 (type == UPB_TYPE_STRING) ? "UTF-8 or ASCII" : "ASCII-8BIT", |
| 106 rb_enc_name(string_encoding)); |
| 107 } |
| 108 } |
| 109 |
| 110 void native_slot_set(upb_fieldtype_t type, VALUE type_class, |
| 111 void* memory, VALUE value) { |
| 112 native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0); |
| 113 } |
| 114 |
| 115 void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class, |
| 116 void* memory, VALUE value, |
| 117 uint32_t* case_memory, |
| 118 uint32_t case_number) { |
| 119 // Note that in order to atomically change the value in memory and the case |
| 120 // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after |
| 121 // all Ruby VM calls are complete. The case is then set at the bottom of this |
| 122 // function. |
| 123 switch (type) { |
| 124 case UPB_TYPE_FLOAT: |
| 125 if (!is_ruby_num(value)) { |
| 126 rb_raise(rb_eTypeError, "Expected number type for float field."); |
| 127 } |
| 128 DEREF(memory, float) = NUM2DBL(value); |
| 129 break; |
| 130 case UPB_TYPE_DOUBLE: |
| 131 if (!is_ruby_num(value)) { |
| 132 rb_raise(rb_eTypeError, "Expected number type for double field."); |
| 133 } |
| 134 DEREF(memory, double) = NUM2DBL(value); |
| 135 break; |
| 136 case UPB_TYPE_BOOL: { |
| 137 int8_t val = -1; |
| 138 if (value == Qtrue) { |
| 139 val = 1; |
| 140 } else if (value == Qfalse) { |
| 141 val = 0; |
| 142 } else { |
| 143 rb_raise(rb_eTypeError, "Invalid argument for boolean field."); |
| 144 } |
| 145 DEREF(memory, int8_t) = val; |
| 146 break; |
| 147 } |
| 148 case UPB_TYPE_STRING: |
| 149 case UPB_TYPE_BYTES: { |
| 150 if (CLASS_OF(value) != rb_cString) { |
| 151 rb_raise(rb_eTypeError, "Invalid argument for string field."); |
| 152 } |
| 153 native_slot_validate_string_encoding(type, value); |
| 154 DEREF(memory, VALUE) = value; |
| 155 break; |
| 156 } |
| 157 case UPB_TYPE_MESSAGE: { |
| 158 if (CLASS_OF(value) == CLASS_OF(Qnil)) { |
| 159 value = Qnil; |
| 160 } else if (CLASS_OF(value) != type_class) { |
| 161 rb_raise(rb_eTypeError, |
| 162 "Invalid type %s to assign to submessage field.", |
| 163 rb_class2name(CLASS_OF(value))); |
| 164 } |
| 165 DEREF(memory, VALUE) = value; |
| 166 break; |
| 167 } |
| 168 case UPB_TYPE_ENUM: { |
| 169 int32_t int_val = 0; |
| 170 if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) { |
| 171 rb_raise(rb_eTypeError, |
| 172 "Expected number or symbol type for enum field."); |
| 173 } |
| 174 if (TYPE(value) == T_SYMBOL) { |
| 175 // Ensure that the given symbol exists in the enum module. |
| 176 VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value); |
| 177 if (lookup == Qnil) { |
| 178 rb_raise(rb_eRangeError, "Unknown symbol value for enum field."); |
| 179 } else { |
| 180 int_val = NUM2INT(lookup); |
| 181 } |
| 182 } else { |
| 183 native_slot_check_int_range_precision(UPB_TYPE_INT32, value); |
| 184 int_val = NUM2INT(value); |
| 185 } |
| 186 DEREF(memory, int32_t) = int_val; |
| 187 break; |
| 188 } |
| 189 case UPB_TYPE_INT32: |
| 190 case UPB_TYPE_INT64: |
| 191 case UPB_TYPE_UINT32: |
| 192 case UPB_TYPE_UINT64: |
| 193 native_slot_check_int_range_precision(type, value); |
| 194 switch (type) { |
| 195 case UPB_TYPE_INT32: |
| 196 DEREF(memory, int32_t) = NUM2INT(value); |
| 197 break; |
| 198 case UPB_TYPE_INT64: |
| 199 DEREF(memory, int64_t) = NUM2LL(value); |
| 200 break; |
| 201 case UPB_TYPE_UINT32: |
| 202 DEREF(memory, uint32_t) = NUM2UINT(value); |
| 203 break; |
| 204 case UPB_TYPE_UINT64: |
| 205 DEREF(memory, uint64_t) = NUM2ULL(value); |
| 206 break; |
| 207 default: |
| 208 break; |
| 209 } |
| 210 break; |
| 211 default: |
| 212 break; |
| 213 } |
| 214 |
| 215 if (case_memory != NULL) { |
| 216 *case_memory = case_number; |
| 217 } |
| 218 } |
| 219 |
| 220 VALUE native_slot_get(upb_fieldtype_t type, |
| 221 VALUE type_class, |
| 222 const void* memory) { |
| 223 switch (type) { |
| 224 case UPB_TYPE_FLOAT: |
| 225 return DBL2NUM(DEREF(memory, float)); |
| 226 case UPB_TYPE_DOUBLE: |
| 227 return DBL2NUM(DEREF(memory, double)); |
| 228 case UPB_TYPE_BOOL: |
| 229 return DEREF(memory, int8_t) ? Qtrue : Qfalse; |
| 230 case UPB_TYPE_STRING: |
| 231 case UPB_TYPE_BYTES: |
| 232 case UPB_TYPE_MESSAGE: |
| 233 return DEREF(memory, VALUE); |
| 234 case UPB_TYPE_ENUM: { |
| 235 int32_t val = DEREF(memory, int32_t); |
| 236 VALUE symbol = enum_lookup(type_class, INT2NUM(val)); |
| 237 if (symbol == Qnil) { |
| 238 return INT2NUM(val); |
| 239 } else { |
| 240 return symbol; |
| 241 } |
| 242 } |
| 243 case UPB_TYPE_INT32: |
| 244 return INT2NUM(DEREF(memory, int32_t)); |
| 245 case UPB_TYPE_INT64: |
| 246 return LL2NUM(DEREF(memory, int64_t)); |
| 247 case UPB_TYPE_UINT32: |
| 248 return UINT2NUM(DEREF(memory, uint32_t)); |
| 249 case UPB_TYPE_UINT64: |
| 250 return ULL2NUM(DEREF(memory, uint64_t)); |
| 251 default: |
| 252 return Qnil; |
| 253 } |
| 254 } |
| 255 |
| 256 void native_slot_init(upb_fieldtype_t type, void* memory) { |
| 257 switch (type) { |
| 258 case UPB_TYPE_FLOAT: |
| 259 DEREF(memory, float) = 0.0; |
| 260 break; |
| 261 case UPB_TYPE_DOUBLE: |
| 262 DEREF(memory, double) = 0.0; |
| 263 break; |
| 264 case UPB_TYPE_BOOL: |
| 265 DEREF(memory, int8_t) = 0; |
| 266 break; |
| 267 case UPB_TYPE_STRING: |
| 268 case UPB_TYPE_BYTES: |
| 269 DEREF(memory, VALUE) = rb_str_new2(""); |
| 270 rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ? |
| 271 kRubyString8bitEncoding : kRubyStringUtf8Encoding); |
| 272 break; |
| 273 case UPB_TYPE_MESSAGE: |
| 274 DEREF(memory, VALUE) = Qnil; |
| 275 break; |
| 276 case UPB_TYPE_ENUM: |
| 277 case UPB_TYPE_INT32: |
| 278 DEREF(memory, int32_t) = 0; |
| 279 break; |
| 280 case UPB_TYPE_INT64: |
| 281 DEREF(memory, int64_t) = 0; |
| 282 break; |
| 283 case UPB_TYPE_UINT32: |
| 284 DEREF(memory, uint32_t) = 0; |
| 285 break; |
| 286 case UPB_TYPE_UINT64: |
| 287 DEREF(memory, uint64_t) = 0; |
| 288 break; |
| 289 default: |
| 290 break; |
| 291 } |
| 292 } |
| 293 |
| 294 void native_slot_mark(upb_fieldtype_t type, void* memory) { |
| 295 switch (type) { |
| 296 case UPB_TYPE_STRING: |
| 297 case UPB_TYPE_BYTES: |
| 298 case UPB_TYPE_MESSAGE: |
| 299 rb_gc_mark(DEREF(memory, VALUE)); |
| 300 break; |
| 301 default: |
| 302 break; |
| 303 } |
| 304 } |
| 305 |
| 306 void native_slot_dup(upb_fieldtype_t type, void* to, void* from) { |
| 307 memcpy(to, from, native_slot_size(type)); |
| 308 } |
| 309 |
| 310 void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) { |
| 311 switch (type) { |
| 312 case UPB_TYPE_STRING: |
| 313 case UPB_TYPE_BYTES: { |
| 314 VALUE from_val = DEREF(from, VALUE); |
| 315 DEREF(to, VALUE) = (from_val != Qnil) ? |
| 316 rb_funcall(from_val, rb_intern("dup"), 0) : Qnil; |
| 317 break; |
| 318 } |
| 319 case UPB_TYPE_MESSAGE: { |
| 320 VALUE from_val = DEREF(from, VALUE); |
| 321 DEREF(to, VALUE) = (from_val != Qnil) ? |
| 322 Message_deep_copy(from_val) : Qnil; |
| 323 break; |
| 324 } |
| 325 default: |
| 326 memcpy(to, from, native_slot_size(type)); |
| 327 } |
| 328 } |
| 329 |
| 330 bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) { |
| 331 switch (type) { |
| 332 case UPB_TYPE_STRING: |
| 333 case UPB_TYPE_BYTES: |
| 334 case UPB_TYPE_MESSAGE: { |
| 335 VALUE val1 = DEREF(mem1, VALUE); |
| 336 VALUE val2 = DEREF(mem2, VALUE); |
| 337 VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2); |
| 338 return ret == Qtrue; |
| 339 } |
| 340 default: |
| 341 return !memcmp(mem1, mem2, native_slot_size(type)); |
| 342 } |
| 343 } |
| 344 |
| 345 // ----------------------------------------------------------------------------- |
| 346 // Map field utilities. |
| 347 // ----------------------------------------------------------------------------- |
| 348 |
| 349 const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) { |
| 350 const upb_msgdef* subdef; |
| 351 if (upb_fielddef_label(field) != UPB_LABEL_REPEATED || |
| 352 upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { |
| 353 return NULL; |
| 354 } |
| 355 subdef = upb_fielddef_msgsubdef(field); |
| 356 return upb_msgdef_mapentry(subdef) ? subdef : NULL; |
| 357 } |
| 358 |
| 359 const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) { |
| 360 const upb_msgdef* subdef = tryget_map_entry_msgdef(field); |
| 361 assert(subdef); |
| 362 return subdef; |
| 363 } |
| 364 |
| 365 bool is_map_field(const upb_fielddef *field) { |
| 366 return tryget_map_entry_msgdef(field) != NULL; |
| 367 } |
| 368 |
| 369 const upb_fielddef* map_field_key(const upb_fielddef* field) { |
| 370 const upb_msgdef* subdef = map_entry_msgdef(field); |
| 371 return map_entry_key(subdef); |
| 372 } |
| 373 |
| 374 const upb_fielddef* map_field_value(const upb_fielddef* field) { |
| 375 const upb_msgdef* subdef = map_entry_msgdef(field); |
| 376 return map_entry_value(subdef); |
| 377 } |
| 378 |
| 379 const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) { |
| 380 const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD); |
| 381 assert(key_field != NULL); |
| 382 return key_field; |
| 383 } |
| 384 |
| 385 const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) { |
| 386 const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD); |
| 387 assert(value_field != NULL); |
| 388 return value_field; |
| 389 } |
| 390 |
| 391 // ----------------------------------------------------------------------------- |
| 392 // Memory layout management. |
| 393 // ----------------------------------------------------------------------------- |
| 394 |
| 395 static size_t align_up_to(size_t offset, size_t granularity) { |
| 396 // Granularity must be a power of two. |
| 397 return (offset + granularity - 1) & ~(granularity - 1); |
| 398 } |
| 399 |
| 400 MessageLayout* create_layout(const upb_msgdef* msgdef) { |
| 401 MessageLayout* layout = ALLOC(MessageLayout); |
| 402 int nfields = upb_msgdef_numfields(msgdef); |
| 403 upb_msg_field_iter it; |
| 404 upb_msg_oneof_iter oit; |
| 405 size_t off = 0; |
| 406 |
| 407 layout->fields = ALLOC_N(MessageField, nfields); |
| 408 |
| 409 for (upb_msg_field_begin(&it, msgdef); |
| 410 !upb_msg_field_done(&it); |
| 411 upb_msg_field_next(&it)) { |
| 412 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 413 size_t field_size; |
| 414 |
| 415 if (upb_fielddef_containingoneof(field)) { |
| 416 // Oneofs are handled separately below. |
| 417 continue; |
| 418 } |
| 419 |
| 420 // Allocate |field_size| bytes for this field in the layout. |
| 421 field_size = 0; |
| 422 if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 423 field_size = sizeof(VALUE); |
| 424 } else { |
| 425 field_size = native_slot_size(upb_fielddef_type(field)); |
| 426 } |
| 427 // Align current offset up to |size| granularity. |
| 428 off = align_up_to(off, field_size); |
| 429 layout->fields[upb_fielddef_index(field)].offset = off; |
| 430 layout->fields[upb_fielddef_index(field)].case_offset = |
| 431 MESSAGE_FIELD_NO_CASE; |
| 432 off += field_size; |
| 433 } |
| 434 |
| 435 // Handle oneofs now -- we iterate over oneofs specifically and allocate only |
| 436 // one slot per oneof. |
| 437 // |
| 438 // We assign all value slots first, then pack the 'case' fields at the end, |
| 439 // since in the common case (modern 64-bit platform) these are 8 bytes and 4 |
| 440 // bytes respectively and we want to avoid alignment overhead. |
| 441 // |
| 442 // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value |
| 443 // space for oneof cases is conceptually as wide as field tag numbers. In |
| 444 // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K |
| 445 // members (8 or 16 bits respectively), so conceivably we could assign |
| 446 // consecutive case numbers and then pick a smaller oneof case slot size, but |
| 447 // the complexity to implement this indirection is probably not worthwhile. |
| 448 for (upb_msg_oneof_begin(&oit, msgdef); |
| 449 !upb_msg_oneof_done(&oit); |
| 450 upb_msg_oneof_next(&oit)) { |
| 451 const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
| 452 upb_oneof_iter fit; |
| 453 |
| 454 // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between |
| 455 // all fields. |
| 456 size_t field_size = NATIVE_SLOT_MAX_SIZE; |
| 457 // Align the offset. |
| 458 off = align_up_to(off, field_size); |
| 459 // Assign all fields in the oneof this same offset. |
| 460 for (upb_oneof_begin(&fit, oneof); |
| 461 !upb_oneof_done(&fit); |
| 462 upb_oneof_next(&fit)) { |
| 463 const upb_fielddef* field = upb_oneof_iter_field(&fit); |
| 464 layout->fields[upb_fielddef_index(field)].offset = off; |
| 465 } |
| 466 off += field_size; |
| 467 } |
| 468 |
| 469 // Now the case fields. |
| 470 for (upb_msg_oneof_begin(&oit, msgdef); |
| 471 !upb_msg_oneof_done(&oit); |
| 472 upb_msg_oneof_next(&oit)) { |
| 473 const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
| 474 upb_oneof_iter fit; |
| 475 |
| 476 size_t field_size = sizeof(uint32_t); |
| 477 // Align the offset. |
| 478 off = (off + field_size - 1) & ~(field_size - 1); |
| 479 // Assign all fields in the oneof this same offset. |
| 480 for (upb_oneof_begin(&fit, oneof); |
| 481 !upb_oneof_done(&fit); |
| 482 upb_oneof_next(&fit)) { |
| 483 const upb_fielddef* field = upb_oneof_iter_field(&fit); |
| 484 layout->fields[upb_fielddef_index(field)].case_offset = off; |
| 485 } |
| 486 off += field_size; |
| 487 } |
| 488 |
| 489 layout->size = off; |
| 490 |
| 491 layout->msgdef = msgdef; |
| 492 upb_msgdef_ref(layout->msgdef, &layout->msgdef); |
| 493 |
| 494 return layout; |
| 495 } |
| 496 |
| 497 void free_layout(MessageLayout* layout) { |
| 498 xfree(layout->fields); |
| 499 upb_msgdef_unref(layout->msgdef, &layout->msgdef); |
| 500 xfree(layout); |
| 501 } |
| 502 |
| 503 VALUE field_type_class(const upb_fielddef* field) { |
| 504 VALUE type_class = Qnil; |
| 505 if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { |
| 506 VALUE submsgdesc = |
| 507 get_def_obj(upb_fielddef_subdef(field)); |
| 508 type_class = Descriptor_msgclass(submsgdesc); |
| 509 } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) { |
| 510 VALUE subenumdesc = |
| 511 get_def_obj(upb_fielddef_subdef(field)); |
| 512 type_class = EnumDescriptor_enummodule(subenumdesc); |
| 513 } |
| 514 return type_class; |
| 515 } |
| 516 |
| 517 static void* slot_memory(MessageLayout* layout, |
| 518 const void* storage, |
| 519 const upb_fielddef* field) { |
| 520 return ((uint8_t *)storage) + |
| 521 layout->fields[upb_fielddef_index(field)].offset; |
| 522 } |
| 523 |
| 524 static uint32_t* slot_oneof_case(MessageLayout* layout, |
| 525 const void* storage, |
| 526 const upb_fielddef* field) { |
| 527 return (uint32_t *)(((uint8_t *)storage) + |
| 528 layout->fields[upb_fielddef_index(field)].case_offset); |
| 529 } |
| 530 |
| 531 |
| 532 VALUE layout_get(MessageLayout* layout, |
| 533 const void* storage, |
| 534 const upb_fielddef* field) { |
| 535 void* memory = slot_memory(layout, storage, field); |
| 536 uint32_t* oneof_case = slot_oneof_case(layout, storage, field); |
| 537 |
| 538 if (upb_fielddef_containingoneof(field)) { |
| 539 if (*oneof_case != upb_fielddef_number(field)) { |
| 540 return Qnil; |
| 541 } |
| 542 return native_slot_get(upb_fielddef_type(field), |
| 543 field_type_class(field), |
| 544 memory); |
| 545 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 546 return *((VALUE *)memory); |
| 547 } else { |
| 548 return native_slot_get(upb_fielddef_type(field), |
| 549 field_type_class(field), |
| 550 memory); |
| 551 } |
| 552 } |
| 553 |
| 554 static void check_repeated_field_type(VALUE val, const upb_fielddef* field) { |
| 555 RepeatedField* self; |
| 556 assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED); |
| 557 |
| 558 if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
| 559 RTYPEDDATA_TYPE(val) != &RepeatedField_type) { |
| 560 rb_raise(rb_eTypeError, "Expected repeated field array"); |
| 561 } |
| 562 |
| 563 self = ruby_to_RepeatedField(val); |
| 564 if (self->field_type != upb_fielddef_type(field)) { |
| 565 rb_raise(rb_eTypeError, "Repeated field array has wrong element type"); |
| 566 } |
| 567 |
| 568 if (self->field_type == UPB_TYPE_MESSAGE || |
| 569 self->field_type == UPB_TYPE_ENUM) { |
| 570 if (self->field_type_class != |
| 571 get_def_obj(upb_fielddef_subdef(field))) { |
| 572 rb_raise(rb_eTypeError, |
| 573 "Repeated field array has wrong message/enum class"); |
| 574 } |
| 575 } |
| 576 } |
| 577 |
| 578 static void check_map_field_type(VALUE val, const upb_fielddef* field) { |
| 579 const upb_fielddef* key_field = map_field_key(field); |
| 580 const upb_fielddef* value_field = map_field_value(field); |
| 581 Map* self; |
| 582 |
| 583 if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
| 584 RTYPEDDATA_TYPE(val) != &Map_type) { |
| 585 rb_raise(rb_eTypeError, "Expected Map instance"); |
| 586 } |
| 587 |
| 588 self = ruby_to_Map(val); |
| 589 if (self->key_type != upb_fielddef_type(key_field)) { |
| 590 rb_raise(rb_eTypeError, "Map key type does not match field's key type"); |
| 591 } |
| 592 if (self->value_type != upb_fielddef_type(value_field)) { |
| 593 rb_raise(rb_eTypeError, "Map value type does not match field's value type"); |
| 594 } |
| 595 if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE || |
| 596 upb_fielddef_type(value_field) == UPB_TYPE_ENUM) { |
| 597 if (self->value_type_class != |
| 598 get_def_obj(upb_fielddef_subdef(value_field))) { |
| 599 rb_raise(rb_eTypeError, |
| 600 "Map value type has wrong message/enum class"); |
| 601 } |
| 602 } |
| 603 } |
| 604 |
| 605 |
| 606 void layout_set(MessageLayout* layout, |
| 607 void* storage, |
| 608 const upb_fielddef* field, |
| 609 VALUE val) { |
| 610 void* memory = slot_memory(layout, storage, field); |
| 611 uint32_t* oneof_case = slot_oneof_case(layout, storage, field); |
| 612 |
| 613 if (upb_fielddef_containingoneof(field)) { |
| 614 if (val == Qnil) { |
| 615 // Assigning nil to a oneof field clears the oneof completely. |
| 616 *oneof_case = ONEOF_CASE_NONE; |
| 617 memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
| 618 } else { |
| 619 // The transition between field types for a single oneof (union) slot is |
| 620 // somewhat complex because we need to ensure that a GC triggered at any |
| 621 // point by a call into the Ruby VM sees a valid state for this field and |
| 622 // does not either go off into the weeds (following what it thinks is a |
| 623 // VALUE but is actually a different field type) or miss an object (seeing |
| 624 // what it thinks is a primitive field but is actually a VALUE for the new |
| 625 // field type). |
| 626 // |
| 627 // In order for the transition to be safe, the oneof case slot must be in |
| 628 // sync with the value slot whenever the Ruby VM has been called. Thus, we |
| 629 // use native_slot_set_value_and_case(), which ensures that both the value |
| 630 // and case number are altered atomically (w.r.t. the Ruby VM). |
| 631 native_slot_set_value_and_case( |
| 632 upb_fielddef_type(field), field_type_class(field), |
| 633 memory, val, |
| 634 oneof_case, upb_fielddef_number(field)); |
| 635 } |
| 636 } else if (is_map_field(field)) { |
| 637 check_map_field_type(val, field); |
| 638 DEREF(memory, VALUE) = val; |
| 639 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 640 check_repeated_field_type(val, field); |
| 641 DEREF(memory, VALUE) = val; |
| 642 } else { |
| 643 native_slot_set(upb_fielddef_type(field), field_type_class(field), |
| 644 memory, val); |
| 645 } |
| 646 } |
| 647 |
| 648 void layout_init(MessageLayout* layout, |
| 649 void* storage) { |
| 650 upb_msg_field_iter it; |
| 651 for (upb_msg_field_begin(&it, layout->msgdef); |
| 652 !upb_msg_field_done(&it); |
| 653 upb_msg_field_next(&it)) { |
| 654 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 655 void* memory = slot_memory(layout, storage, field); |
| 656 uint32_t* oneof_case = slot_oneof_case(layout, storage, field); |
| 657 |
| 658 if (upb_fielddef_containingoneof(field)) { |
| 659 memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
| 660 *oneof_case = ONEOF_CASE_NONE; |
| 661 } else if (is_map_field(field)) { |
| 662 VALUE map = Qnil; |
| 663 |
| 664 const upb_fielddef* key_field = map_field_key(field); |
| 665 const upb_fielddef* value_field = map_field_value(field); |
| 666 VALUE type_class = field_type_class(value_field); |
| 667 |
| 668 if (type_class != Qnil) { |
| 669 VALUE args[3] = { |
| 670 fieldtype_to_ruby(upb_fielddef_type(key_field)), |
| 671 fieldtype_to_ruby(upb_fielddef_type(value_field)), |
| 672 type_class, |
| 673 }; |
| 674 map = rb_class_new_instance(3, args, cMap); |
| 675 } else { |
| 676 VALUE args[2] = { |
| 677 fieldtype_to_ruby(upb_fielddef_type(key_field)), |
| 678 fieldtype_to_ruby(upb_fielddef_type(value_field)), |
| 679 }; |
| 680 map = rb_class_new_instance(2, args, cMap); |
| 681 } |
| 682 |
| 683 DEREF(memory, VALUE) = map; |
| 684 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 685 VALUE ary = Qnil; |
| 686 |
| 687 VALUE type_class = field_type_class(field); |
| 688 |
| 689 if (type_class != Qnil) { |
| 690 VALUE args[2] = { |
| 691 fieldtype_to_ruby(upb_fielddef_type(field)), |
| 692 type_class, |
| 693 }; |
| 694 ary = rb_class_new_instance(2, args, cRepeatedField); |
| 695 } else { |
| 696 VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) }; |
| 697 ary = rb_class_new_instance(1, args, cRepeatedField); |
| 698 } |
| 699 |
| 700 DEREF(memory, VALUE) = ary; |
| 701 } else { |
| 702 native_slot_init(upb_fielddef_type(field), memory); |
| 703 } |
| 704 } |
| 705 } |
| 706 |
| 707 void layout_mark(MessageLayout* layout, void* storage) { |
| 708 upb_msg_field_iter it; |
| 709 for (upb_msg_field_begin(&it, layout->msgdef); |
| 710 !upb_msg_field_done(&it); |
| 711 upb_msg_field_next(&it)) { |
| 712 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 713 void* memory = slot_memory(layout, storage, field); |
| 714 uint32_t* oneof_case = slot_oneof_case(layout, storage, field); |
| 715 |
| 716 if (upb_fielddef_containingoneof(field)) { |
| 717 if (*oneof_case == upb_fielddef_number(field)) { |
| 718 native_slot_mark(upb_fielddef_type(field), memory); |
| 719 } |
| 720 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 721 rb_gc_mark(DEREF(memory, VALUE)); |
| 722 } else { |
| 723 native_slot_mark(upb_fielddef_type(field), memory); |
| 724 } |
| 725 } |
| 726 } |
| 727 |
| 728 void layout_dup(MessageLayout* layout, void* to, void* from) { |
| 729 upb_msg_field_iter it; |
| 730 for (upb_msg_field_begin(&it, layout->msgdef); |
| 731 !upb_msg_field_done(&it); |
| 732 upb_msg_field_next(&it)) { |
| 733 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 734 |
| 735 void* to_memory = slot_memory(layout, to, field); |
| 736 uint32_t* to_oneof_case = slot_oneof_case(layout, to, field); |
| 737 void* from_memory = slot_memory(layout, from, field); |
| 738 uint32_t* from_oneof_case = slot_oneof_case(layout, from, field); |
| 739 |
| 740 if (upb_fielddef_containingoneof(field)) { |
| 741 if (*from_oneof_case == upb_fielddef_number(field)) { |
| 742 *to_oneof_case = *from_oneof_case; |
| 743 native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
| 744 } |
| 745 } else if (is_map_field(field)) { |
| 746 DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE)); |
| 747 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 748 DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE)); |
| 749 } else { |
| 750 native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
| 751 } |
| 752 } |
| 753 } |
| 754 |
| 755 void layout_deep_copy(MessageLayout* layout, void* to, void* from) { |
| 756 upb_msg_field_iter it; |
| 757 for (upb_msg_field_begin(&it, layout->msgdef); |
| 758 !upb_msg_field_done(&it); |
| 759 upb_msg_field_next(&it)) { |
| 760 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 761 |
| 762 void* to_memory = slot_memory(layout, to, field); |
| 763 uint32_t* to_oneof_case = slot_oneof_case(layout, to, field); |
| 764 void* from_memory = slot_memory(layout, from, field); |
| 765 uint32_t* from_oneof_case = slot_oneof_case(layout, from, field); |
| 766 |
| 767 if (upb_fielddef_containingoneof(field)) { |
| 768 if (*from_oneof_case == upb_fielddef_number(field)) { |
| 769 *to_oneof_case = *from_oneof_case; |
| 770 native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory); |
| 771 } |
| 772 } else if (is_map_field(field)) { |
| 773 DEREF(to_memory, VALUE) = |
| 774 Map_deep_copy(DEREF(from_memory, VALUE)); |
| 775 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 776 DEREF(to_memory, VALUE) = |
| 777 RepeatedField_deep_copy(DEREF(from_memory, VALUE)); |
| 778 } else { |
| 779 native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory); |
| 780 } |
| 781 } |
| 782 } |
| 783 |
| 784 VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) { |
| 785 upb_msg_field_iter it; |
| 786 for (upb_msg_field_begin(&it, layout->msgdef); |
| 787 !upb_msg_field_done(&it); |
| 788 upb_msg_field_next(&it)) { |
| 789 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 790 |
| 791 void* msg1_memory = slot_memory(layout, msg1, field); |
| 792 uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field); |
| 793 void* msg2_memory = slot_memory(layout, msg2, field); |
| 794 uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field); |
| 795 |
| 796 if (upb_fielddef_containingoneof(field)) { |
| 797 if (*msg1_oneof_case != *msg2_oneof_case || |
| 798 (*msg1_oneof_case == upb_fielddef_number(field) && |
| 799 !native_slot_eq(upb_fielddef_type(field), |
| 800 msg1_memory, |
| 801 msg2_memory))) { |
| 802 return Qfalse; |
| 803 } |
| 804 } else if (is_map_field(field)) { |
| 805 if (!Map_eq(DEREF(msg1_memory, VALUE), |
| 806 DEREF(msg2_memory, VALUE))) { |
| 807 return Qfalse; |
| 808 } |
| 809 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| 810 if (!RepeatedField_eq(DEREF(msg1_memory, VALUE), |
| 811 DEREF(msg2_memory, VALUE))) { |
| 812 return Qfalse; |
| 813 } |
| 814 } else { |
| 815 if (!native_slot_eq(upb_fielddef_type(field), |
| 816 msg1_memory, msg2_memory)) { |
| 817 return Qfalse; |
| 818 } |
| 819 } |
| 820 } |
| 821 return Qtrue; |
| 822 } |
| 823 |
| 824 VALUE layout_hash(MessageLayout* layout, void* storage) { |
| 825 upb_msg_field_iter it; |
| 826 st_index_t h = rb_hash_start(0); |
| 827 VALUE hash_sym = rb_intern("hash"); |
| 828 for (upb_msg_field_begin(&it, layout->msgdef); |
| 829 !upb_msg_field_done(&it); |
| 830 upb_msg_field_next(&it)) { |
| 831 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 832 VALUE field_val = layout_get(layout, storage, field); |
| 833 h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0))); |
| 834 } |
| 835 h = rb_hash_end(h); |
| 836 |
| 837 return INT2FIX(h); |
| 838 } |
| 839 |
| 840 VALUE layout_inspect(MessageLayout* layout, void* storage) { |
| 841 VALUE str = rb_str_new2(""); |
| 842 |
| 843 upb_msg_field_iter it; |
| 844 bool first = true; |
| 845 for (upb_msg_field_begin(&it, layout->msgdef); |
| 846 !upb_msg_field_done(&it); |
| 847 upb_msg_field_next(&it)) { |
| 848 const upb_fielddef* field = upb_msg_iter_field(&it); |
| 849 VALUE field_val = layout_get(layout, storage, field); |
| 850 |
| 851 if (!first) { |
| 852 str = rb_str_cat2(str, ", "); |
| 853 } else { |
| 854 first = false; |
| 855 } |
| 856 str = rb_str_cat2(str, upb_fielddef_name(field)); |
| 857 str = rb_str_cat2(str, ": "); |
| 858 |
| 859 str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0)); |
| 860 } |
| 861 |
| 862 return str; |
| 863 } |
OLD | NEW |