OLD | NEW |
(Empty) | |
| 1 // Protocol Buffers - Google's data interchange format |
| 2 // Copyright 2014 Google Inc. All rights reserved. |
| 3 // https://developers.google.com/protocol-buffers/ |
| 4 // |
| 5 // Redistribution and use in source and binary forms, with or without |
| 6 // modification, are permitted provided that the following conditions are |
| 7 // met: |
| 8 // |
| 9 // * Redistributions of source code must retain the above copyright |
| 10 // notice, this list of conditions and the following disclaimer. |
| 11 // * Redistributions in binary form must reproduce the above |
| 12 // copyright notice, this list of conditions and the following disclaimer |
| 13 // in the documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // * Neither the name of Google Inc. nor the names of its |
| 16 // contributors may be used to endorse or promote products derived from |
| 17 // this software without specific prior written permission. |
| 18 // |
| 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 |
| 31 #include "protobuf.h" |
| 32 |
| 33 // This function is equivalent to rb_str_cat(), but unlike the real |
| 34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby. |
| 35 // For more information, see: |
| 36 // https://bugs.ruby-lang.org/issues/11328 |
| 37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) { |
| 38 char *p; |
| 39 size_t oldlen = RSTRING_LEN(rb_str); |
| 40 rb_str_modify_expand(rb_str, len); |
| 41 p = RSTRING_PTR(rb_str); |
| 42 memcpy(p + oldlen, str, len); |
| 43 rb_str_set_len(rb_str, oldlen + len); |
| 44 return rb_str; |
| 45 } |
| 46 |
| 47 // ----------------------------------------------------------------------------- |
| 48 // Parsing. |
| 49 // ----------------------------------------------------------------------------- |
| 50 |
| 51 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) |
| 52 |
| 53 // Creates a handlerdata that simply contains the offset for this field. |
| 54 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { |
| 55 size_t* hd_ofs = ALLOC(size_t); |
| 56 *hd_ofs = ofs; |
| 57 upb_handlers_addcleanup(h, hd_ofs, free); |
| 58 return hd_ofs; |
| 59 } |
| 60 |
| 61 typedef struct { |
| 62 size_t ofs; |
| 63 const upb_msgdef *md; |
| 64 } submsg_handlerdata_t; |
| 65 |
| 66 // Creates a handlerdata that contains offset and submessage type information. |
| 67 static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, |
| 68 const upb_fielddef* f) { |
| 69 submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); |
| 70 hd->ofs = ofs; |
| 71 hd->md = upb_fielddef_msgsubdef(f); |
| 72 upb_handlers_addcleanup(h, hd, free); |
| 73 return hd; |
| 74 } |
| 75 |
| 76 typedef struct { |
| 77 size_t ofs; // union data slot |
| 78 size_t case_ofs; // oneof_case field |
| 79 uint32_t oneof_case_num; // oneof-case number to place in oneof_case field |
| 80 const upb_msgdef *md; // msgdef, for oneof submessage handler |
| 81 } oneof_handlerdata_t; |
| 82 |
| 83 static const void *newoneofhandlerdata(upb_handlers *h, |
| 84 uint32_t ofs, |
| 85 uint32_t case_ofs, |
| 86 const upb_fielddef *f) { |
| 87 oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t); |
| 88 hd->ofs = ofs; |
| 89 hd->case_ofs = case_ofs; |
| 90 // We reuse the field tag number as a oneof union discriminant tag. Note that |
| 91 // we don't expose these numbers to the user, so the only requirement is that |
| 92 // we have some unique ID for each union case/possibility. The field tag |
| 93 // numbers are already present and are easy to use so there's no reason to |
| 94 // create a separate ID space. In addition, using the field tag number here |
| 95 // lets us easily look up the field in the oneof accessor. |
| 96 hd->oneof_case_num = upb_fielddef_number(f); |
| 97 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { |
| 98 hd->md = upb_fielddef_msgsubdef(f); |
| 99 } else { |
| 100 hd->md = NULL; |
| 101 } |
| 102 upb_handlers_addcleanup(h, hd, free); |
| 103 return hd; |
| 104 } |
| 105 |
| 106 // A handler that starts a repeated field. Gets the Repeated*Field instance for |
| 107 // this field (such an instance always exists even in an empty message). |
| 108 static void *startseq_handler(void* closure, const void* hd) { |
| 109 MessageHeader* msg = closure; |
| 110 const size_t *ofs = hd; |
| 111 return (void*)DEREF(msg, *ofs, VALUE); |
| 112 } |
| 113 |
| 114 // Handlers that append primitive values to a repeated field. |
| 115 #define DEFINE_APPEND_HANDLER(type, ctype) \ |
| 116 static bool append##type##_handler(void *closure, const void *hd, \ |
| 117 ctype val) { \ |
| 118 VALUE ary = (VALUE)closure; \ |
| 119 RepeatedField_push_native(ary, &val); \ |
| 120 return true; \ |
| 121 } |
| 122 |
| 123 DEFINE_APPEND_HANDLER(bool, bool) |
| 124 DEFINE_APPEND_HANDLER(int32, int32_t) |
| 125 DEFINE_APPEND_HANDLER(uint32, uint32_t) |
| 126 DEFINE_APPEND_HANDLER(float, float) |
| 127 DEFINE_APPEND_HANDLER(int64, int64_t) |
| 128 DEFINE_APPEND_HANDLER(uint64, uint64_t) |
| 129 DEFINE_APPEND_HANDLER(double, double) |
| 130 |
| 131 // Appends a string to a repeated field. |
| 132 static void* appendstr_handler(void *closure, |
| 133 const void *hd, |
| 134 size_t size_hint) { |
| 135 VALUE ary = (VALUE)closure; |
| 136 VALUE str = rb_str_new2(""); |
| 137 rb_enc_associate(str, kRubyStringUtf8Encoding); |
| 138 RepeatedField_push(ary, str); |
| 139 return (void*)str; |
| 140 } |
| 141 |
| 142 // Appends a 'bytes' string to a repeated field. |
| 143 static void* appendbytes_handler(void *closure, |
| 144 const void *hd, |
| 145 size_t size_hint) { |
| 146 VALUE ary = (VALUE)closure; |
| 147 VALUE str = rb_str_new2(""); |
| 148 rb_enc_associate(str, kRubyString8bitEncoding); |
| 149 RepeatedField_push(ary, str); |
| 150 return (void*)str; |
| 151 } |
| 152 |
| 153 // Sets a non-repeated string field in a message. |
| 154 static void* str_handler(void *closure, |
| 155 const void *hd, |
| 156 size_t size_hint) { |
| 157 MessageHeader* msg = closure; |
| 158 const size_t *ofs = hd; |
| 159 VALUE str = rb_str_new2(""); |
| 160 rb_enc_associate(str, kRubyStringUtf8Encoding); |
| 161 DEREF(msg, *ofs, VALUE) = str; |
| 162 return (void*)str; |
| 163 } |
| 164 |
| 165 // Sets a non-repeated 'bytes' field in a message. |
| 166 static void* bytes_handler(void *closure, |
| 167 const void *hd, |
| 168 size_t size_hint) { |
| 169 MessageHeader* msg = closure; |
| 170 const size_t *ofs = hd; |
| 171 VALUE str = rb_str_new2(""); |
| 172 rb_enc_associate(str, kRubyString8bitEncoding); |
| 173 DEREF(msg, *ofs, VALUE) = str; |
| 174 return (void*)str; |
| 175 } |
| 176 |
| 177 static size_t stringdata_handler(void* closure, const void* hd, |
| 178 const char* str, size_t len, |
| 179 const upb_bufhandle* handle) { |
| 180 VALUE rb_str = (VALUE)closure; |
| 181 noleak_rb_str_cat(rb_str, str, len); |
| 182 return len; |
| 183 } |
| 184 |
| 185 // Appends a submessage to a repeated field (a regular Ruby array for now). |
| 186 static void *appendsubmsg_handler(void *closure, const void *hd) { |
| 187 VALUE ary = (VALUE)closure; |
| 188 const submsg_handlerdata_t *submsgdata = hd; |
| 189 VALUE subdesc = |
| 190 get_def_obj((void*)submsgdata->md); |
| 191 VALUE subklass = Descriptor_msgclass(subdesc); |
| 192 MessageHeader* submsg; |
| 193 |
| 194 VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); |
| 195 RepeatedField_push(ary, submsg_rb); |
| 196 |
| 197 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
| 198 return submsg; |
| 199 } |
| 200 |
| 201 // Sets a non-repeated submessage field in a message. |
| 202 static void *submsg_handler(void *closure, const void *hd) { |
| 203 MessageHeader* msg = closure; |
| 204 const submsg_handlerdata_t* submsgdata = hd; |
| 205 VALUE subdesc = |
| 206 get_def_obj((void*)submsgdata->md); |
| 207 VALUE subklass = Descriptor_msgclass(subdesc); |
| 208 VALUE submsg_rb; |
| 209 MessageHeader* submsg; |
| 210 |
| 211 if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { |
| 212 DEREF(msg, submsgdata->ofs, VALUE) = |
| 213 rb_class_new_instance(0, NULL, subklass); |
| 214 } |
| 215 |
| 216 submsg_rb = DEREF(msg, submsgdata->ofs, VALUE); |
| 217 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
| 218 return submsg; |
| 219 } |
| 220 |
| 221 // Handler data for startmap/endmap handlers. |
| 222 typedef struct { |
| 223 size_t ofs; |
| 224 upb_fieldtype_t key_field_type; |
| 225 upb_fieldtype_t value_field_type; |
| 226 |
| 227 // We know that we can hold this reference because the handlerdata has the |
| 228 // same lifetime as the upb_handlers struct, and the upb_handlers struct holds |
| 229 // a reference to the upb_msgdef, which in turn has references to its subdefs. |
| 230 const upb_def* value_field_subdef; |
| 231 } map_handlerdata_t; |
| 232 |
| 233 // Temporary frame for map parsing: at the beginning of a map entry message, a |
| 234 // submsg handler allocates a frame to hold (i) a reference to the Map object |
| 235 // into which this message will be inserted and (ii) storage slots to |
| 236 // temporarily hold the key and value for this map entry until the end of the |
| 237 // submessage. When the submessage ends, another handler is called to insert the |
| 238 // value into the map. |
| 239 typedef struct { |
| 240 VALUE map; |
| 241 char key_storage[NATIVE_SLOT_MAX_SIZE]; |
| 242 char value_storage[NATIVE_SLOT_MAX_SIZE]; |
| 243 } map_parse_frame_t; |
| 244 |
| 245 // Handler to begin a map entry: allocates a temporary frame. This is the |
| 246 // 'startsubmsg' handler on the msgdef that contains the map field. |
| 247 static void *startmapentry_handler(void *closure, const void *hd) { |
| 248 MessageHeader* msg = closure; |
| 249 const map_handlerdata_t* mapdata = hd; |
| 250 VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE); |
| 251 |
| 252 map_parse_frame_t* frame = ALLOC(map_parse_frame_t); |
| 253 frame->map = map_rb; |
| 254 |
| 255 native_slot_init(mapdata->key_field_type, &frame->key_storage); |
| 256 native_slot_init(mapdata->value_field_type, &frame->value_storage); |
| 257 |
| 258 return frame; |
| 259 } |
| 260 |
| 261 // Handler to end a map entry: inserts the value defined during the message into |
| 262 // the map. This is the 'endmsg' handler on the map entry msgdef. |
| 263 static bool endmap_handler(void *closure, const void *hd, upb_status* s) { |
| 264 map_parse_frame_t* frame = closure; |
| 265 const map_handlerdata_t* mapdata = hd; |
| 266 |
| 267 VALUE key = native_slot_get( |
| 268 mapdata->key_field_type, Qnil, |
| 269 &frame->key_storage); |
| 270 |
| 271 VALUE value_field_typeclass = Qnil; |
| 272 VALUE value; |
| 273 |
| 274 if (mapdata->value_field_type == UPB_TYPE_MESSAGE || |
| 275 mapdata->value_field_type == UPB_TYPE_ENUM) { |
| 276 value_field_typeclass = get_def_obj(mapdata->value_field_subdef); |
| 277 } |
| 278 |
| 279 value = native_slot_get( |
| 280 mapdata->value_field_type, value_field_typeclass, |
| 281 &frame->value_storage); |
| 282 |
| 283 Map_index_set(frame->map, key, value); |
| 284 free(frame); |
| 285 |
| 286 return true; |
| 287 } |
| 288 |
| 289 // Allocates a new map_handlerdata_t given the map entry message definition. If |
| 290 // the offset of the field within the parent message is also given, that is |
| 291 // added to the handler data as well. Note that this is called *twice* per map |
| 292 // field: once in the parent message handler setup when setting the startsubmsg |
| 293 // handler and once in the map entry message handler setup when setting the |
| 294 // key/value and endmsg handlers. The reason is that there is no easy way to |
| 295 // pass the handlerdata down to the sub-message handler setup. |
| 296 static map_handlerdata_t* new_map_handlerdata( |
| 297 size_t ofs, |
| 298 const upb_msgdef* mapentry_def, |
| 299 Descriptor* desc) { |
| 300 const upb_fielddef* key_field; |
| 301 const upb_fielddef* value_field; |
| 302 map_handlerdata_t* hd = ALLOC(map_handlerdata_t); |
| 303 hd->ofs = ofs; |
| 304 key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); |
| 305 assert(key_field != NULL); |
| 306 hd->key_field_type = upb_fielddef_type(key_field); |
| 307 value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); |
| 308 assert(value_field != NULL); |
| 309 hd->value_field_type = upb_fielddef_type(value_field); |
| 310 hd->value_field_subdef = upb_fielddef_subdef(value_field); |
| 311 |
| 312 return hd; |
| 313 } |
| 314 |
| 315 // Handlers that set primitive values in oneofs. |
| 316 #define DEFINE_ONEOF_HANDLER(type, ctype) \ |
| 317 static bool oneof##type##_handler(void *closure, const void *hd, \ |
| 318 ctype val) { \ |
| 319 const oneof_handlerdata_t *oneofdata = hd; \ |
| 320 DEREF(closure, oneofdata->case_ofs, uint32_t) = \ |
| 321 oneofdata->oneof_case_num; \ |
| 322 DEREF(closure, oneofdata->ofs, ctype) = val; \ |
| 323 return true; \ |
| 324 } |
| 325 |
| 326 DEFINE_ONEOF_HANDLER(bool, bool) |
| 327 DEFINE_ONEOF_HANDLER(int32, int32_t) |
| 328 DEFINE_ONEOF_HANDLER(uint32, uint32_t) |
| 329 DEFINE_ONEOF_HANDLER(float, float) |
| 330 DEFINE_ONEOF_HANDLER(int64, int64_t) |
| 331 DEFINE_ONEOF_HANDLER(uint64, uint64_t) |
| 332 DEFINE_ONEOF_HANDLER(double, double) |
| 333 |
| 334 #undef DEFINE_ONEOF_HANDLER |
| 335 |
| 336 // Handlers for strings in a oneof. |
| 337 static void *oneofstr_handler(void *closure, |
| 338 const void *hd, |
| 339 size_t size_hint) { |
| 340 MessageHeader* msg = closure; |
| 341 const oneof_handlerdata_t *oneofdata = hd; |
| 342 VALUE str = rb_str_new2(""); |
| 343 rb_enc_associate(str, kRubyStringUtf8Encoding); |
| 344 DEREF(msg, oneofdata->case_ofs, uint32_t) = |
| 345 oneofdata->oneof_case_num; |
| 346 DEREF(msg, oneofdata->ofs, VALUE) = str; |
| 347 return (void*)str; |
| 348 } |
| 349 |
| 350 static void *oneofbytes_handler(void *closure, |
| 351 const void *hd, |
| 352 size_t size_hint) { |
| 353 MessageHeader* msg = closure; |
| 354 const oneof_handlerdata_t *oneofdata = hd; |
| 355 VALUE str = rb_str_new2(""); |
| 356 rb_enc_associate(str, kRubyString8bitEncoding); |
| 357 DEREF(msg, oneofdata->case_ofs, uint32_t) = |
| 358 oneofdata->oneof_case_num; |
| 359 DEREF(msg, oneofdata->ofs, VALUE) = str; |
| 360 return (void*)str; |
| 361 } |
| 362 |
| 363 // Handler for a submessage field in a oneof. |
| 364 static void *oneofsubmsg_handler(void *closure, |
| 365 const void *hd) { |
| 366 MessageHeader* msg = closure; |
| 367 const oneof_handlerdata_t *oneofdata = hd; |
| 368 uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t); |
| 369 |
| 370 VALUE subdesc = |
| 371 get_def_obj((void*)oneofdata->md); |
| 372 VALUE subklass = Descriptor_msgclass(subdesc); |
| 373 VALUE submsg_rb; |
| 374 MessageHeader* submsg; |
| 375 |
| 376 if (oldcase != oneofdata->oneof_case_num || |
| 377 DEREF(msg, oneofdata->ofs, VALUE) == Qnil) { |
| 378 DEREF(msg, oneofdata->ofs, VALUE) = |
| 379 rb_class_new_instance(0, NULL, subklass); |
| 380 } |
| 381 // Set the oneof case *after* allocating the new class instance -- otherwise, |
| 382 // if the Ruby GC is invoked as part of a call into the VM, it might invoke |
| 383 // our mark routines, and our mark routines might see the case value |
| 384 // indicating a VALUE is present and expect a valid VALUE. See comment in |
| 385 // layout_set() for more detail: basically, the change to the value and the |
| 386 // case must be atomic w.r.t. the Ruby VM. |
| 387 DEREF(msg, oneofdata->case_ofs, uint32_t) = |
| 388 oneofdata->oneof_case_num; |
| 389 |
| 390 submsg_rb = DEREF(msg, oneofdata->ofs, VALUE); |
| 391 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
| 392 return submsg; |
| 393 } |
| 394 |
| 395 // Set up handlers for a repeated field. |
| 396 static void add_handlers_for_repeated_field(upb_handlers *h, |
| 397 const upb_fielddef *f, |
| 398 size_t offset) { |
| 399 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 400 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
| 401 upb_handlers_setstartseq(h, f, startseq_handler, &attr); |
| 402 upb_handlerattr_uninit(&attr); |
| 403 |
| 404 switch (upb_fielddef_type(f)) { |
| 405 |
| 406 #define SET_HANDLER(utype, ltype) \ |
| 407 case utype: \ |
| 408 upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ |
| 409 break; |
| 410 |
| 411 SET_HANDLER(UPB_TYPE_BOOL, bool); |
| 412 SET_HANDLER(UPB_TYPE_INT32, int32); |
| 413 SET_HANDLER(UPB_TYPE_UINT32, uint32); |
| 414 SET_HANDLER(UPB_TYPE_ENUM, int32); |
| 415 SET_HANDLER(UPB_TYPE_FLOAT, float); |
| 416 SET_HANDLER(UPB_TYPE_INT64, int64); |
| 417 SET_HANDLER(UPB_TYPE_UINT64, uint64); |
| 418 SET_HANDLER(UPB_TYPE_DOUBLE, double); |
| 419 |
| 420 #undef SET_HANDLER |
| 421 |
| 422 case UPB_TYPE_STRING: |
| 423 case UPB_TYPE_BYTES: { |
| 424 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
| 425 upb_handlers_setstartstr(h, f, is_bytes ? |
| 426 appendbytes_handler : appendstr_handler, |
| 427 NULL); |
| 428 upb_handlers_setstring(h, f, stringdata_handler, NULL); |
| 429 break; |
| 430 } |
| 431 case UPB_TYPE_MESSAGE: { |
| 432 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 433 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); |
| 434 upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); |
| 435 upb_handlerattr_uninit(&attr); |
| 436 break; |
| 437 } |
| 438 } |
| 439 } |
| 440 |
| 441 // Set up handlers for a singular field. |
| 442 static void add_handlers_for_singular_field(upb_handlers *h, |
| 443 const upb_fielddef *f, |
| 444 size_t offset) { |
| 445 switch (upb_fielddef_type(f)) { |
| 446 case UPB_TYPE_BOOL: |
| 447 case UPB_TYPE_INT32: |
| 448 case UPB_TYPE_UINT32: |
| 449 case UPB_TYPE_ENUM: |
| 450 case UPB_TYPE_FLOAT: |
| 451 case UPB_TYPE_INT64: |
| 452 case UPB_TYPE_UINT64: |
| 453 case UPB_TYPE_DOUBLE: |
| 454 upb_shim_set(h, f, offset, -1); |
| 455 break; |
| 456 case UPB_TYPE_STRING: |
| 457 case UPB_TYPE_BYTES: { |
| 458 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
| 459 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 460 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
| 461 upb_handlers_setstartstr(h, f, |
| 462 is_bytes ? bytes_handler : str_handler, |
| 463 &attr); |
| 464 upb_handlers_setstring(h, f, stringdata_handler, &attr); |
| 465 upb_handlerattr_uninit(&attr); |
| 466 break; |
| 467 } |
| 468 case UPB_TYPE_MESSAGE: { |
| 469 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 470 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); |
| 471 upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); |
| 472 upb_handlerattr_uninit(&attr); |
| 473 break; |
| 474 } |
| 475 } |
| 476 } |
| 477 |
| 478 // Adds handlers to a map field. |
| 479 static void add_handlers_for_mapfield(upb_handlers* h, |
| 480 const upb_fielddef* fielddef, |
| 481 size_t offset, |
| 482 Descriptor* desc) { |
| 483 const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); |
| 484 map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); |
| 485 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 486 |
| 487 upb_handlers_addcleanup(h, hd, free); |
| 488 upb_handlerattr_sethandlerdata(&attr, hd); |
| 489 upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); |
| 490 upb_handlerattr_uninit(&attr); |
| 491 } |
| 492 |
| 493 // Adds handlers to a map-entry msgdef. |
| 494 static void add_handlers_for_mapentry(const upb_msgdef* msgdef, |
| 495 upb_handlers* h, |
| 496 Descriptor* desc) { |
| 497 const upb_fielddef* key_field = map_entry_key(msgdef); |
| 498 const upb_fielddef* value_field = map_entry_value(msgdef); |
| 499 map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); |
| 500 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 501 |
| 502 upb_handlers_addcleanup(h, hd, free); |
| 503 upb_handlerattr_sethandlerdata(&attr, hd); |
| 504 upb_handlers_setendmsg(h, endmap_handler, &attr); |
| 505 |
| 506 add_handlers_for_singular_field( |
| 507 h, key_field, |
| 508 offsetof(map_parse_frame_t, key_storage)); |
| 509 add_handlers_for_singular_field( |
| 510 h, value_field, |
| 511 offsetof(map_parse_frame_t, value_storage)); |
| 512 } |
| 513 |
| 514 // Set up handlers for a oneof field. |
| 515 static void add_handlers_for_oneof_field(upb_handlers *h, |
| 516 const upb_fielddef *f, |
| 517 size_t offset, |
| 518 size_t oneof_case_offset) { |
| 519 |
| 520 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| 521 upb_handlerattr_sethandlerdata( |
| 522 &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f)); |
| 523 |
| 524 switch (upb_fielddef_type(f)) { |
| 525 |
| 526 #define SET_HANDLER(utype, ltype) \ |
| 527 case utype: \ |
| 528 upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ |
| 529 break; |
| 530 |
| 531 SET_HANDLER(UPB_TYPE_BOOL, bool); |
| 532 SET_HANDLER(UPB_TYPE_INT32, int32); |
| 533 SET_HANDLER(UPB_TYPE_UINT32, uint32); |
| 534 SET_HANDLER(UPB_TYPE_ENUM, int32); |
| 535 SET_HANDLER(UPB_TYPE_FLOAT, float); |
| 536 SET_HANDLER(UPB_TYPE_INT64, int64); |
| 537 SET_HANDLER(UPB_TYPE_UINT64, uint64); |
| 538 SET_HANDLER(UPB_TYPE_DOUBLE, double); |
| 539 |
| 540 #undef SET_HANDLER |
| 541 |
| 542 case UPB_TYPE_STRING: |
| 543 case UPB_TYPE_BYTES: { |
| 544 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
| 545 upb_handlers_setstartstr(h, f, is_bytes ? |
| 546 oneofbytes_handler : oneofstr_handler, |
| 547 &attr); |
| 548 upb_handlers_setstring(h, f, stringdata_handler, NULL); |
| 549 break; |
| 550 } |
| 551 case UPB_TYPE_MESSAGE: { |
| 552 upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); |
| 553 break; |
| 554 } |
| 555 } |
| 556 |
| 557 upb_handlerattr_uninit(&attr); |
| 558 } |
| 559 |
| 560 |
| 561 static void add_handlers_for_message(const void *closure, upb_handlers *h) { |
| 562 const upb_msgdef* msgdef = upb_handlers_msgdef(h); |
| 563 Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef)); |
| 564 upb_msg_field_iter i; |
| 565 |
| 566 // If this is a mapentry message type, set up a special set of handlers and |
| 567 // bail out of the normal (user-defined) message type handling. |
| 568 if (upb_msgdef_mapentry(msgdef)) { |
| 569 add_handlers_for_mapentry(msgdef, h, desc); |
| 570 return; |
| 571 } |
| 572 |
| 573 // Ensure layout exists. We may be invoked to create handlers for a given |
| 574 // message if we are included as a submsg of another message type before our |
| 575 // class is actually built, so to work around this, we just create the layout |
| 576 // (and handlers, in the class-building function) on-demand. |
| 577 if (desc->layout == NULL) { |
| 578 desc->layout = create_layout(desc->msgdef); |
| 579 } |
| 580 |
| 581 for (upb_msg_field_begin(&i, desc->msgdef); |
| 582 !upb_msg_field_done(&i); |
| 583 upb_msg_field_next(&i)) { |
| 584 const upb_fielddef *f = upb_msg_iter_field(&i); |
| 585 size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + |
| 586 sizeof(MessageHeader); |
| 587 |
| 588 if (upb_fielddef_containingoneof(f)) { |
| 589 size_t oneof_case_offset = |
| 590 desc->layout->fields[upb_fielddef_index(f)].case_offset + |
| 591 sizeof(MessageHeader); |
| 592 add_handlers_for_oneof_field(h, f, offset, oneof_case_offset); |
| 593 } else if (is_map_field(f)) { |
| 594 add_handlers_for_mapfield(h, f, offset, desc); |
| 595 } else if (upb_fielddef_isseq(f)) { |
| 596 add_handlers_for_repeated_field(h, f, offset); |
| 597 } else { |
| 598 add_handlers_for_singular_field(h, f, offset); |
| 599 } |
| 600 } |
| 601 } |
| 602 |
| 603 // Creates upb handlers for populating a message. |
| 604 static const upb_handlers *new_fill_handlers(Descriptor* desc, |
| 605 const void* owner) { |
| 606 // TODO(cfallin, haberman): once upb gets a caching/memoization layer for |
| 607 // handlers, reuse subdef handlers so that e.g. if we already parse |
| 608 // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to |
| 609 // parse A-with-field-of-type-B-with-field-of-type-C. |
| 610 return upb_handlers_newfrozen(desc->msgdef, owner, |
| 611 add_handlers_for_message, NULL); |
| 612 } |
| 613 |
| 614 // Constructs the handlers for filling a message's data into an in-memory |
| 615 // object. |
| 616 const upb_handlers* get_fill_handlers(Descriptor* desc) { |
| 617 if (!desc->fill_handlers) { |
| 618 desc->fill_handlers = |
| 619 new_fill_handlers(desc, &desc->fill_handlers); |
| 620 } |
| 621 return desc->fill_handlers; |
| 622 } |
| 623 |
| 624 // Constructs the upb decoder method for parsing messages of this type. |
| 625 // This is called from the message class creation code. |
| 626 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, |
| 627 const void* owner) { |
| 628 const upb_handlers* handlers = get_fill_handlers(desc); |
| 629 upb_pbdecodermethodopts opts; |
| 630 upb_pbdecodermethodopts_init(&opts, handlers); |
| 631 |
| 632 return upb_pbdecodermethod_new(&opts, owner); |
| 633 } |
| 634 |
| 635 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { |
| 636 if (desc->fill_method == NULL) { |
| 637 desc->fill_method = new_fillmsg_decodermethod( |
| 638 desc, &desc->fill_method); |
| 639 } |
| 640 return desc->fill_method; |
| 641 } |
| 642 |
| 643 |
| 644 // Stack-allocated context during an encode/decode operation. Contains the upb |
| 645 // environment and its stack-based allocator, an initial buffer for allocations |
| 646 // to avoid malloc() when possible, and a template for Ruby exception messages |
| 647 // if any error occurs. |
| 648 #define STACK_ENV_STACKBYTES 4096 |
| 649 typedef struct { |
| 650 upb_env env; |
| 651 upb_seededalloc alloc; |
| 652 const char* ruby_error_template; |
| 653 char allocbuf[STACK_ENV_STACKBYTES]; |
| 654 } stackenv; |
| 655 |
| 656 static void stackenv_init(stackenv* se, const char* errmsg); |
| 657 static void stackenv_uninit(stackenv* se); |
| 658 |
| 659 // Callback invoked by upb if any error occurs during parsing or serialization. |
| 660 static bool env_error_func(void* ud, const upb_status* status) { |
| 661 stackenv* se = ud; |
| 662 // Free the env -- rb_raise will longjmp up the stack past the encode/decode |
| 663 // function so it would not otherwise have been freed. |
| 664 stackenv_uninit(se); |
| 665 |
| 666 // TODO(haberman): have a way to verify that this is actually a parse error, |
| 667 // instead of just throwing "parse error" unconditionally. |
| 668 rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status)); |
| 669 // Never reached: rb_raise() always longjmp()s up the stack, past all of our |
| 670 // code, back to Ruby. |
| 671 return false; |
| 672 } |
| 673 |
| 674 static void stackenv_init(stackenv* se, const char* errmsg) { |
| 675 se->ruby_error_template = errmsg; |
| 676 upb_env_init(&se->env); |
| 677 upb_seededalloc_init(&se->alloc, &se->allocbuf, STACK_ENV_STACKBYTES); |
| 678 upb_env_setallocfunc( |
| 679 &se->env, upb_seededalloc_getallocfunc(&se->alloc), &se->alloc); |
| 680 upb_env_seterrorfunc(&se->env, env_error_func, se); |
| 681 } |
| 682 |
| 683 static void stackenv_uninit(stackenv* se) { |
| 684 upb_env_uninit(&se->env); |
| 685 upb_seededalloc_uninit(&se->alloc); |
| 686 } |
| 687 |
| 688 /* |
| 689 * call-seq: |
| 690 * MessageClass.decode(data) => message |
| 691 * |
| 692 * Decodes the given data (as a string containing bytes in protocol buffers wire |
| 693 * format) under the interpretration given by this message class's definition |
| 694 * and returns a message object with the corresponding field values. |
| 695 */ |
| 696 VALUE Message_decode(VALUE klass, VALUE data) { |
| 697 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
| 698 Descriptor* desc = ruby_to_Descriptor(descriptor); |
| 699 VALUE msgklass = Descriptor_msgclass(descriptor); |
| 700 VALUE msg_rb; |
| 701 MessageHeader* msg; |
| 702 |
| 703 if (TYPE(data) != T_STRING) { |
| 704 rb_raise(rb_eArgError, "Expected string for binary protobuf data."); |
| 705 } |
| 706 |
| 707 msg_rb = rb_class_new_instance(0, NULL, msgklass); |
| 708 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| 709 |
| 710 { |
| 711 const upb_pbdecodermethod* method = msgdef_decodermethod(desc); |
| 712 const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); |
| 713 stackenv se; |
| 714 upb_sink sink; |
| 715 upb_pbdecoder* decoder; |
| 716 stackenv_init(&se, "Error occurred during parsing: %s"); |
| 717 |
| 718 upb_sink_reset(&sink, h, msg); |
| 719 decoder = upb_pbdecoder_create(&se.env, method, &sink); |
| 720 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
| 721 upb_pbdecoder_input(decoder)); |
| 722 |
| 723 stackenv_uninit(&se); |
| 724 } |
| 725 |
| 726 return msg_rb; |
| 727 } |
| 728 |
| 729 /* |
| 730 * call-seq: |
| 731 * MessageClass.decode_json(data) => message |
| 732 * |
| 733 * Decodes the given data (as a string containing bytes in protocol buffers wire |
| 734 * format) under the interpretration given by this message class's definition |
| 735 * and returns a message object with the corresponding field values. |
| 736 */ |
| 737 VALUE Message_decode_json(VALUE klass, VALUE data) { |
| 738 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
| 739 Descriptor* desc = ruby_to_Descriptor(descriptor); |
| 740 VALUE msgklass = Descriptor_msgclass(descriptor); |
| 741 VALUE msg_rb; |
| 742 MessageHeader* msg; |
| 743 |
| 744 if (TYPE(data) != T_STRING) { |
| 745 rb_raise(rb_eArgError, "Expected string for JSON data."); |
| 746 } |
| 747 // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to |
| 748 // convert, because string handlers pass data directly to message string |
| 749 // fields. |
| 750 |
| 751 msg_rb = rb_class_new_instance(0, NULL, msgklass); |
| 752 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| 753 |
| 754 { |
| 755 stackenv se; |
| 756 upb_sink sink; |
| 757 upb_json_parser* parser; |
| 758 stackenv_init(&se, "Error occurred during parsing: %s"); |
| 759 |
| 760 upb_sink_reset(&sink, get_fill_handlers(desc), msg); |
| 761 parser = upb_json_parser_create(&se.env, &sink); |
| 762 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
| 763 upb_json_parser_input(parser)); |
| 764 |
| 765 stackenv_uninit(&se); |
| 766 } |
| 767 |
| 768 return msg_rb; |
| 769 } |
| 770 |
| 771 // ----------------------------------------------------------------------------- |
| 772 // Serializing. |
| 773 // ----------------------------------------------------------------------------- |
| 774 // |
| 775 // The code below also comes from upb's prototype Ruby binding, developed by |
| 776 // haberman@. |
| 777 |
| 778 /* stringsink *****************************************************************/ |
| 779 |
| 780 // This should probably be factored into a common upb component. |
| 781 |
| 782 typedef struct { |
| 783 upb_byteshandler handler; |
| 784 upb_bytessink sink; |
| 785 char *ptr; |
| 786 size_t len, size; |
| 787 } stringsink; |
| 788 |
| 789 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { |
| 790 stringsink *sink = _sink; |
| 791 sink->len = 0; |
| 792 return sink; |
| 793 } |
| 794 |
| 795 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, |
| 796 size_t len, const upb_bufhandle *handle) { |
| 797 stringsink *sink = _sink; |
| 798 size_t new_size = sink->size; |
| 799 |
| 800 UPB_UNUSED(hd); |
| 801 UPB_UNUSED(handle); |
| 802 |
| 803 while (sink->len + len > new_size) { |
| 804 new_size *= 2; |
| 805 } |
| 806 |
| 807 if (new_size != sink->size) { |
| 808 sink->ptr = realloc(sink->ptr, new_size); |
| 809 sink->size = new_size; |
| 810 } |
| 811 |
| 812 memcpy(sink->ptr + sink->len, ptr, len); |
| 813 sink->len += len; |
| 814 |
| 815 return len; |
| 816 } |
| 817 |
| 818 void stringsink_init(stringsink *sink) { |
| 819 upb_byteshandler_init(&sink->handler); |
| 820 upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); |
| 821 upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); |
| 822 |
| 823 upb_bytessink_reset(&sink->sink, &sink->handler, sink); |
| 824 |
| 825 sink->size = 32; |
| 826 sink->ptr = malloc(sink->size); |
| 827 sink->len = 0; |
| 828 } |
| 829 |
| 830 void stringsink_uninit(stringsink *sink) { |
| 831 free(sink->ptr); |
| 832 } |
| 833 |
| 834 /* msgvisitor *****************************************************************/ |
| 835 |
| 836 // TODO: If/when we support proto2 semantics in addition to the current proto3 |
| 837 // semantics, which means that we have true field presence, we will want to |
| 838 // modify msgvisitor so that it emits all present fields rather than all |
| 839 // non-default-value fields. |
| 840 // |
| 841 // Likewise, when implementing JSON serialization, we may need to have a |
| 842 // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only |
| 843 // those with non-default values. |
| 844 |
| 845 static void putmsg(VALUE msg, const Descriptor* desc, |
| 846 upb_sink *sink, int depth); |
| 847 |
| 848 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { |
| 849 upb_selector_t ret; |
| 850 bool ok = upb_handlers_getselector(f, type, &ret); |
| 851 UPB_ASSERT_VAR(ok, ok); |
| 852 return ret; |
| 853 } |
| 854 |
| 855 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { |
| 856 upb_sink subsink; |
| 857 |
| 858 if (str == Qnil) return; |
| 859 |
| 860 assert(BUILTIN_TYPE(str) == RUBY_T_STRING); |
| 861 |
| 862 // Ensure that the string has the correct encoding. We also check at field-set |
| 863 // time, but the user may have mutated the string object since then. |
| 864 native_slot_validate_string_encoding(upb_fielddef_type(f), str); |
| 865 |
| 866 upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), |
| 867 &subsink); |
| 868 upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), |
| 869 RSTRING_LEN(str), NULL); |
| 870 upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); |
| 871 } |
| 872 |
| 873 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, |
| 874 int depth) { |
| 875 upb_sink subsink; |
| 876 VALUE descriptor; |
| 877 Descriptor* subdesc; |
| 878 |
| 879 if (submsg == Qnil) return; |
| 880 |
| 881 descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); |
| 882 subdesc = ruby_to_Descriptor(descriptor); |
| 883 |
| 884 upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); |
| 885 putmsg(submsg, subdesc, &subsink, depth + 1); |
| 886 upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
| 887 } |
| 888 |
| 889 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, |
| 890 int depth) { |
| 891 upb_sink subsink; |
| 892 upb_fieldtype_t type = upb_fielddef_type(f); |
| 893 upb_selector_t sel = 0; |
| 894 int size; |
| 895 |
| 896 if (ary == Qnil) return; |
| 897 |
| 898 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
| 899 |
| 900 if (upb_fielddef_isprimitive(f)) { |
| 901 sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
| 902 } |
| 903 |
| 904 size = NUM2INT(RepeatedField_length(ary)); |
| 905 for (int i = 0; i < size; i++) { |
| 906 void* memory = RepeatedField_index_native(ary, i); |
| 907 switch (type) { |
| 908 #define T(upbtypeconst, upbtype, ctype) \ |
| 909 case upbtypeconst: \ |
| 910 upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ |
| 911 break; |
| 912 |
| 913 T(UPB_TYPE_FLOAT, float, float) |
| 914 T(UPB_TYPE_DOUBLE, double, double) |
| 915 T(UPB_TYPE_BOOL, bool, int8_t) |
| 916 case UPB_TYPE_ENUM: |
| 917 T(UPB_TYPE_INT32, int32, int32_t) |
| 918 T(UPB_TYPE_UINT32, uint32, uint32_t) |
| 919 T(UPB_TYPE_INT64, int64, int64_t) |
| 920 T(UPB_TYPE_UINT64, uint64, uint64_t) |
| 921 |
| 922 case UPB_TYPE_STRING: |
| 923 case UPB_TYPE_BYTES: |
| 924 putstr(*((VALUE *)memory), f, &subsink); |
| 925 break; |
| 926 case UPB_TYPE_MESSAGE: |
| 927 putsubmsg(*((VALUE *)memory), f, &subsink, depth); |
| 928 break; |
| 929 |
| 930 #undef T |
| 931 |
| 932 } |
| 933 } |
| 934 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
| 935 } |
| 936 |
| 937 static void put_ruby_value(VALUE value, |
| 938 const upb_fielddef *f, |
| 939 VALUE type_class, |
| 940 int depth, |
| 941 upb_sink *sink) { |
| 942 upb_selector_t sel = 0; |
| 943 if (upb_fielddef_isprimitive(f)) { |
| 944 sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
| 945 } |
| 946 |
| 947 switch (upb_fielddef_type(f)) { |
| 948 case UPB_TYPE_INT32: |
| 949 upb_sink_putint32(sink, sel, NUM2INT(value)); |
| 950 break; |
| 951 case UPB_TYPE_INT64: |
| 952 upb_sink_putint64(sink, sel, NUM2LL(value)); |
| 953 break; |
| 954 case UPB_TYPE_UINT32: |
| 955 upb_sink_putuint32(sink, sel, NUM2UINT(value)); |
| 956 break; |
| 957 case UPB_TYPE_UINT64: |
| 958 upb_sink_putuint64(sink, sel, NUM2ULL(value)); |
| 959 break; |
| 960 case UPB_TYPE_FLOAT: |
| 961 upb_sink_putfloat(sink, sel, NUM2DBL(value)); |
| 962 break; |
| 963 case UPB_TYPE_DOUBLE: |
| 964 upb_sink_putdouble(sink, sel, NUM2DBL(value)); |
| 965 break; |
| 966 case UPB_TYPE_ENUM: { |
| 967 if (TYPE(value) == T_SYMBOL) { |
| 968 value = rb_funcall(type_class, rb_intern("resolve"), 1, value); |
| 969 } |
| 970 upb_sink_putint32(sink, sel, NUM2INT(value)); |
| 971 break; |
| 972 } |
| 973 case UPB_TYPE_BOOL: |
| 974 upb_sink_putbool(sink, sel, value == Qtrue); |
| 975 break; |
| 976 case UPB_TYPE_STRING: |
| 977 case UPB_TYPE_BYTES: |
| 978 putstr(value, f, sink); |
| 979 break; |
| 980 case UPB_TYPE_MESSAGE: |
| 981 putsubmsg(value, f, sink, depth); |
| 982 } |
| 983 } |
| 984 |
| 985 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink, |
| 986 int depth) { |
| 987 Map* self; |
| 988 upb_sink subsink; |
| 989 const upb_fielddef* key_field; |
| 990 const upb_fielddef* value_field; |
| 991 Map_iter it; |
| 992 |
| 993 if (map == Qnil) return; |
| 994 self = ruby_to_Map(map); |
| 995 |
| 996 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
| 997 |
| 998 assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); |
| 999 key_field = map_field_key(f); |
| 1000 value_field = map_field_value(f); |
| 1001 |
| 1002 for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) { |
| 1003 VALUE key = Map_iter_key(&it); |
| 1004 VALUE value = Map_iter_value(&it); |
| 1005 upb_status status; |
| 1006 |
| 1007 upb_sink entry_sink; |
| 1008 upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), |
| 1009 &entry_sink); |
| 1010 upb_sink_startmsg(&entry_sink); |
| 1011 |
| 1012 put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink); |
| 1013 put_ruby_value(value, value_field, self->value_type_class, depth + 1, |
| 1014 &entry_sink); |
| 1015 |
| 1016 upb_sink_endmsg(&entry_sink, &status); |
| 1017 upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
| 1018 } |
| 1019 |
| 1020 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
| 1021 } |
| 1022 |
| 1023 static void putmsg(VALUE msg_rb, const Descriptor* desc, |
| 1024 upb_sink *sink, int depth) { |
| 1025 MessageHeader* msg; |
| 1026 upb_msg_field_iter i; |
| 1027 upb_status status; |
| 1028 |
| 1029 upb_sink_startmsg(sink); |
| 1030 |
| 1031 // Protect against cycles (possible because users may freely reassign message |
| 1032 // and repeated fields) by imposing a maximum recursion depth. |
| 1033 if (depth > ENCODE_MAX_NESTING) { |
| 1034 rb_raise(rb_eRuntimeError, |
| 1035 "Maximum recursion depth exceeded during encoding."); |
| 1036 } |
| 1037 |
| 1038 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| 1039 |
| 1040 for (upb_msg_field_begin(&i, desc->msgdef); |
| 1041 !upb_msg_field_done(&i); |
| 1042 upb_msg_field_next(&i)) { |
| 1043 upb_fielddef *f = upb_msg_iter_field(&i); |
| 1044 uint32_t offset = |
| 1045 desc->layout->fields[upb_fielddef_index(f)].offset + |
| 1046 sizeof(MessageHeader); |
| 1047 |
| 1048 if (upb_fielddef_containingoneof(f)) { |
| 1049 uint32_t oneof_case_offset = |
| 1050 desc->layout->fields[upb_fielddef_index(f)].case_offset + |
| 1051 sizeof(MessageHeader); |
| 1052 // For a oneof, check that this field is actually present -- skip all the |
| 1053 // below if not. |
| 1054 if (DEREF(msg, oneof_case_offset, uint32_t) != |
| 1055 upb_fielddef_number(f)) { |
| 1056 continue; |
| 1057 } |
| 1058 // Otherwise, fall through to the appropriate singular-field handler |
| 1059 // below. |
| 1060 } |
| 1061 |
| 1062 if (is_map_field(f)) { |
| 1063 VALUE map = DEREF(msg, offset, VALUE); |
| 1064 if (map != Qnil) { |
| 1065 putmap(map, f, sink, depth); |
| 1066 } |
| 1067 } else if (upb_fielddef_isseq(f)) { |
| 1068 VALUE ary = DEREF(msg, offset, VALUE); |
| 1069 if (ary != Qnil) { |
| 1070 putary(ary, f, sink, depth); |
| 1071 } |
| 1072 } else if (upb_fielddef_isstring(f)) { |
| 1073 VALUE str = DEREF(msg, offset, VALUE); |
| 1074 if (RSTRING_LEN(str) > 0) { |
| 1075 putstr(str, f, sink); |
| 1076 } |
| 1077 } else if (upb_fielddef_issubmsg(f)) { |
| 1078 putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth); |
| 1079 } else { |
| 1080 upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
| 1081 |
| 1082 #define T(upbtypeconst, upbtype, ctype, default_value) \ |
| 1083 case upbtypeconst: { \ |
| 1084 ctype value = DEREF(msg, offset, ctype); \ |
| 1085 if (value != default_value) { \ |
| 1086 upb_sink_put##upbtype(sink, sel, value); \ |
| 1087 } \ |
| 1088 } \ |
| 1089 break; |
| 1090 |
| 1091 switch (upb_fielddef_type(f)) { |
| 1092 T(UPB_TYPE_FLOAT, float, float, 0.0) |
| 1093 T(UPB_TYPE_DOUBLE, double, double, 0.0) |
| 1094 T(UPB_TYPE_BOOL, bool, uint8_t, 0) |
| 1095 case UPB_TYPE_ENUM: |
| 1096 T(UPB_TYPE_INT32, int32, int32_t, 0) |
| 1097 T(UPB_TYPE_UINT32, uint32, uint32_t, 0) |
| 1098 T(UPB_TYPE_INT64, int64, int64_t, 0) |
| 1099 T(UPB_TYPE_UINT64, uint64, uint64_t, 0) |
| 1100 |
| 1101 case UPB_TYPE_STRING: |
| 1102 case UPB_TYPE_BYTES: |
| 1103 case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); |
| 1104 } |
| 1105 |
| 1106 #undef T |
| 1107 |
| 1108 } |
| 1109 } |
| 1110 |
| 1111 upb_sink_endmsg(sink, &status); |
| 1112 } |
| 1113 |
| 1114 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { |
| 1115 if (desc->pb_serialize_handlers == NULL) { |
| 1116 desc->pb_serialize_handlers = |
| 1117 upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); |
| 1118 } |
| 1119 return desc->pb_serialize_handlers; |
| 1120 } |
| 1121 |
| 1122 static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) { |
| 1123 if (desc->json_serialize_handlers == NULL) { |
| 1124 desc->json_serialize_handlers = |
| 1125 upb_json_printer_newhandlers( |
| 1126 desc->msgdef, &desc->json_serialize_handlers); |
| 1127 } |
| 1128 return desc->json_serialize_handlers; |
| 1129 } |
| 1130 |
| 1131 /* |
| 1132 * call-seq: |
| 1133 * MessageClass.encode(msg) => bytes |
| 1134 * |
| 1135 * Encodes the given message object to its serialized form in protocol buffers |
| 1136 * wire format. |
| 1137 */ |
| 1138 VALUE Message_encode(VALUE klass, VALUE msg_rb) { |
| 1139 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
| 1140 Descriptor* desc = ruby_to_Descriptor(descriptor); |
| 1141 |
| 1142 stringsink sink; |
| 1143 stringsink_init(&sink); |
| 1144 |
| 1145 { |
| 1146 const upb_handlers* serialize_handlers = |
| 1147 msgdef_pb_serialize_handlers(desc); |
| 1148 |
| 1149 stackenv se; |
| 1150 upb_pb_encoder* encoder; |
| 1151 VALUE ret; |
| 1152 |
| 1153 stackenv_init(&se, "Error occurred during encoding: %s"); |
| 1154 encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); |
| 1155 |
| 1156 putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0); |
| 1157 |
| 1158 ret = rb_str_new(sink.ptr, sink.len); |
| 1159 |
| 1160 stackenv_uninit(&se); |
| 1161 stringsink_uninit(&sink); |
| 1162 |
| 1163 return ret; |
| 1164 } |
| 1165 } |
| 1166 |
| 1167 /* |
| 1168 * call-seq: |
| 1169 * MessageClass.encode_json(msg) => json_string |
| 1170 * |
| 1171 * Encodes the given message object into its serialized JSON representation. |
| 1172 */ |
| 1173 VALUE Message_encode_json(VALUE klass, VALUE msg_rb) { |
| 1174 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
| 1175 Descriptor* desc = ruby_to_Descriptor(descriptor); |
| 1176 |
| 1177 stringsink sink; |
| 1178 stringsink_init(&sink); |
| 1179 |
| 1180 { |
| 1181 const upb_handlers* serialize_handlers = |
| 1182 msgdef_json_serialize_handlers(desc); |
| 1183 upb_json_printer* printer; |
| 1184 stackenv se; |
| 1185 VALUE ret; |
| 1186 |
| 1187 stackenv_init(&se, "Error occurred during encoding: %s"); |
| 1188 printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); |
| 1189 |
| 1190 putmsg(msg_rb, desc, upb_json_printer_input(printer), 0); |
| 1191 |
| 1192 ret = rb_str_new(sink.ptr, sink.len); |
| 1193 |
| 1194 stackenv_uninit(&se); |
| 1195 stringsink_uninit(&sink); |
| 1196 |
| 1197 return ret; |
| 1198 } |
| 1199 } |
| 1200 |
OLD | NEW |