Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(95)

Side by Side Diff: third_party/protobuf/ruby/ext/google/protobuf_c/encode_decode.c

Issue 1842653006: Update //third_party/protobuf to version 3. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: merge Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // This function is equivalent to rb_str_cat(), but unlike the real
34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
35 // For more information, see:
36 // https://bugs.ruby-lang.org/issues/11328
37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
38 char *p;
39 size_t oldlen = RSTRING_LEN(rb_str);
40 rb_str_modify_expand(rb_str, len);
41 p = RSTRING_PTR(rb_str);
42 memcpy(p + oldlen, str, len);
43 rb_str_set_len(rb_str, oldlen + len);
44 return rb_str;
45 }
46
47 // -----------------------------------------------------------------------------
48 // Parsing.
49 // -----------------------------------------------------------------------------
50
51 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
52
53 // Creates a handlerdata that simply contains the offset for this field.
54 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
55 size_t* hd_ofs = ALLOC(size_t);
56 *hd_ofs = ofs;
57 upb_handlers_addcleanup(h, hd_ofs, free);
58 return hd_ofs;
59 }
60
61 typedef struct {
62 size_t ofs;
63 const upb_msgdef *md;
64 } submsg_handlerdata_t;
65
66 // Creates a handlerdata that contains offset and submessage type information.
67 static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
68 const upb_fielddef* f) {
69 submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
70 hd->ofs = ofs;
71 hd->md = upb_fielddef_msgsubdef(f);
72 upb_handlers_addcleanup(h, hd, free);
73 return hd;
74 }
75
76 typedef struct {
77 size_t ofs; // union data slot
78 size_t case_ofs; // oneof_case field
79 uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
80 const upb_msgdef *md; // msgdef, for oneof submessage handler
81 } oneof_handlerdata_t;
82
83 static const void *newoneofhandlerdata(upb_handlers *h,
84 uint32_t ofs,
85 uint32_t case_ofs,
86 const upb_fielddef *f) {
87 oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
88 hd->ofs = ofs;
89 hd->case_ofs = case_ofs;
90 // We reuse the field tag number as a oneof union discriminant tag. Note that
91 // we don't expose these numbers to the user, so the only requirement is that
92 // we have some unique ID for each union case/possibility. The field tag
93 // numbers are already present and are easy to use so there's no reason to
94 // create a separate ID space. In addition, using the field tag number here
95 // lets us easily look up the field in the oneof accessor.
96 hd->oneof_case_num = upb_fielddef_number(f);
97 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
98 hd->md = upb_fielddef_msgsubdef(f);
99 } else {
100 hd->md = NULL;
101 }
102 upb_handlers_addcleanup(h, hd, free);
103 return hd;
104 }
105
106 // A handler that starts a repeated field. Gets the Repeated*Field instance for
107 // this field (such an instance always exists even in an empty message).
108 static void *startseq_handler(void* closure, const void* hd) {
109 MessageHeader* msg = closure;
110 const size_t *ofs = hd;
111 return (void*)DEREF(msg, *ofs, VALUE);
112 }
113
114 // Handlers that append primitive values to a repeated field.
115 #define DEFINE_APPEND_HANDLER(type, ctype) \
116 static bool append##type##_handler(void *closure, const void *hd, \
117 ctype val) { \
118 VALUE ary = (VALUE)closure; \
119 RepeatedField_push_native(ary, &val); \
120 return true; \
121 }
122
123 DEFINE_APPEND_HANDLER(bool, bool)
124 DEFINE_APPEND_HANDLER(int32, int32_t)
125 DEFINE_APPEND_HANDLER(uint32, uint32_t)
126 DEFINE_APPEND_HANDLER(float, float)
127 DEFINE_APPEND_HANDLER(int64, int64_t)
128 DEFINE_APPEND_HANDLER(uint64, uint64_t)
129 DEFINE_APPEND_HANDLER(double, double)
130
131 // Appends a string to a repeated field.
132 static void* appendstr_handler(void *closure,
133 const void *hd,
134 size_t size_hint) {
135 VALUE ary = (VALUE)closure;
136 VALUE str = rb_str_new2("");
137 rb_enc_associate(str, kRubyStringUtf8Encoding);
138 RepeatedField_push(ary, str);
139 return (void*)str;
140 }
141
142 // Appends a 'bytes' string to a repeated field.
143 static void* appendbytes_handler(void *closure,
144 const void *hd,
145 size_t size_hint) {
146 VALUE ary = (VALUE)closure;
147 VALUE str = rb_str_new2("");
148 rb_enc_associate(str, kRubyString8bitEncoding);
149 RepeatedField_push(ary, str);
150 return (void*)str;
151 }
152
153 // Sets a non-repeated string field in a message.
154 static void* str_handler(void *closure,
155 const void *hd,
156 size_t size_hint) {
157 MessageHeader* msg = closure;
158 const size_t *ofs = hd;
159 VALUE str = rb_str_new2("");
160 rb_enc_associate(str, kRubyStringUtf8Encoding);
161 DEREF(msg, *ofs, VALUE) = str;
162 return (void*)str;
163 }
164
165 // Sets a non-repeated 'bytes' field in a message.
166 static void* bytes_handler(void *closure,
167 const void *hd,
168 size_t size_hint) {
169 MessageHeader* msg = closure;
170 const size_t *ofs = hd;
171 VALUE str = rb_str_new2("");
172 rb_enc_associate(str, kRubyString8bitEncoding);
173 DEREF(msg, *ofs, VALUE) = str;
174 return (void*)str;
175 }
176
177 static size_t stringdata_handler(void* closure, const void* hd,
178 const char* str, size_t len,
179 const upb_bufhandle* handle) {
180 VALUE rb_str = (VALUE)closure;
181 noleak_rb_str_cat(rb_str, str, len);
182 return len;
183 }
184
185 // Appends a submessage to a repeated field (a regular Ruby array for now).
186 static void *appendsubmsg_handler(void *closure, const void *hd) {
187 VALUE ary = (VALUE)closure;
188 const submsg_handlerdata_t *submsgdata = hd;
189 VALUE subdesc =
190 get_def_obj((void*)submsgdata->md);
191 VALUE subklass = Descriptor_msgclass(subdesc);
192 MessageHeader* submsg;
193
194 VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
195 RepeatedField_push(ary, submsg_rb);
196
197 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
198 return submsg;
199 }
200
201 // Sets a non-repeated submessage field in a message.
202 static void *submsg_handler(void *closure, const void *hd) {
203 MessageHeader* msg = closure;
204 const submsg_handlerdata_t* submsgdata = hd;
205 VALUE subdesc =
206 get_def_obj((void*)submsgdata->md);
207 VALUE subklass = Descriptor_msgclass(subdesc);
208 VALUE submsg_rb;
209 MessageHeader* submsg;
210
211 if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
212 DEREF(msg, submsgdata->ofs, VALUE) =
213 rb_class_new_instance(0, NULL, subklass);
214 }
215
216 submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
217 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
218 return submsg;
219 }
220
221 // Handler data for startmap/endmap handlers.
222 typedef struct {
223 size_t ofs;
224 upb_fieldtype_t key_field_type;
225 upb_fieldtype_t value_field_type;
226
227 // We know that we can hold this reference because the handlerdata has the
228 // same lifetime as the upb_handlers struct, and the upb_handlers struct holds
229 // a reference to the upb_msgdef, which in turn has references to its subdefs.
230 const upb_def* value_field_subdef;
231 } map_handlerdata_t;
232
233 // Temporary frame for map parsing: at the beginning of a map entry message, a
234 // submsg handler allocates a frame to hold (i) a reference to the Map object
235 // into which this message will be inserted and (ii) storage slots to
236 // temporarily hold the key and value for this map entry until the end of the
237 // submessage. When the submessage ends, another handler is called to insert the
238 // value into the map.
239 typedef struct {
240 VALUE map;
241 char key_storage[NATIVE_SLOT_MAX_SIZE];
242 char value_storage[NATIVE_SLOT_MAX_SIZE];
243 } map_parse_frame_t;
244
245 // Handler to begin a map entry: allocates a temporary frame. This is the
246 // 'startsubmsg' handler on the msgdef that contains the map field.
247 static void *startmapentry_handler(void *closure, const void *hd) {
248 MessageHeader* msg = closure;
249 const map_handlerdata_t* mapdata = hd;
250 VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
251
252 map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
253 frame->map = map_rb;
254
255 native_slot_init(mapdata->key_field_type, &frame->key_storage);
256 native_slot_init(mapdata->value_field_type, &frame->value_storage);
257
258 return frame;
259 }
260
261 // Handler to end a map entry: inserts the value defined during the message into
262 // the map. This is the 'endmsg' handler on the map entry msgdef.
263 static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
264 map_parse_frame_t* frame = closure;
265 const map_handlerdata_t* mapdata = hd;
266
267 VALUE key = native_slot_get(
268 mapdata->key_field_type, Qnil,
269 &frame->key_storage);
270
271 VALUE value_field_typeclass = Qnil;
272 VALUE value;
273
274 if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
275 mapdata->value_field_type == UPB_TYPE_ENUM) {
276 value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
277 }
278
279 value = native_slot_get(
280 mapdata->value_field_type, value_field_typeclass,
281 &frame->value_storage);
282
283 Map_index_set(frame->map, key, value);
284 free(frame);
285
286 return true;
287 }
288
289 // Allocates a new map_handlerdata_t given the map entry message definition. If
290 // the offset of the field within the parent message is also given, that is
291 // added to the handler data as well. Note that this is called *twice* per map
292 // field: once in the parent message handler setup when setting the startsubmsg
293 // handler and once in the map entry message handler setup when setting the
294 // key/value and endmsg handlers. The reason is that there is no easy way to
295 // pass the handlerdata down to the sub-message handler setup.
296 static map_handlerdata_t* new_map_handlerdata(
297 size_t ofs,
298 const upb_msgdef* mapentry_def,
299 Descriptor* desc) {
300 const upb_fielddef* key_field;
301 const upb_fielddef* value_field;
302 map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
303 hd->ofs = ofs;
304 key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
305 assert(key_field != NULL);
306 hd->key_field_type = upb_fielddef_type(key_field);
307 value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
308 assert(value_field != NULL);
309 hd->value_field_type = upb_fielddef_type(value_field);
310 hd->value_field_subdef = upb_fielddef_subdef(value_field);
311
312 return hd;
313 }
314
315 // Handlers that set primitive values in oneofs.
316 #define DEFINE_ONEOF_HANDLER(type, ctype) \
317 static bool oneof##type##_handler(void *closure, const void *hd, \
318 ctype val) { \
319 const oneof_handlerdata_t *oneofdata = hd; \
320 DEREF(closure, oneofdata->case_ofs, uint32_t) = \
321 oneofdata->oneof_case_num; \
322 DEREF(closure, oneofdata->ofs, ctype) = val; \
323 return true; \
324 }
325
326 DEFINE_ONEOF_HANDLER(bool, bool)
327 DEFINE_ONEOF_HANDLER(int32, int32_t)
328 DEFINE_ONEOF_HANDLER(uint32, uint32_t)
329 DEFINE_ONEOF_HANDLER(float, float)
330 DEFINE_ONEOF_HANDLER(int64, int64_t)
331 DEFINE_ONEOF_HANDLER(uint64, uint64_t)
332 DEFINE_ONEOF_HANDLER(double, double)
333
334 #undef DEFINE_ONEOF_HANDLER
335
336 // Handlers for strings in a oneof.
337 static void *oneofstr_handler(void *closure,
338 const void *hd,
339 size_t size_hint) {
340 MessageHeader* msg = closure;
341 const oneof_handlerdata_t *oneofdata = hd;
342 VALUE str = rb_str_new2("");
343 rb_enc_associate(str, kRubyStringUtf8Encoding);
344 DEREF(msg, oneofdata->case_ofs, uint32_t) =
345 oneofdata->oneof_case_num;
346 DEREF(msg, oneofdata->ofs, VALUE) = str;
347 return (void*)str;
348 }
349
350 static void *oneofbytes_handler(void *closure,
351 const void *hd,
352 size_t size_hint) {
353 MessageHeader* msg = closure;
354 const oneof_handlerdata_t *oneofdata = hd;
355 VALUE str = rb_str_new2("");
356 rb_enc_associate(str, kRubyString8bitEncoding);
357 DEREF(msg, oneofdata->case_ofs, uint32_t) =
358 oneofdata->oneof_case_num;
359 DEREF(msg, oneofdata->ofs, VALUE) = str;
360 return (void*)str;
361 }
362
363 // Handler for a submessage field in a oneof.
364 static void *oneofsubmsg_handler(void *closure,
365 const void *hd) {
366 MessageHeader* msg = closure;
367 const oneof_handlerdata_t *oneofdata = hd;
368 uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
369
370 VALUE subdesc =
371 get_def_obj((void*)oneofdata->md);
372 VALUE subklass = Descriptor_msgclass(subdesc);
373 VALUE submsg_rb;
374 MessageHeader* submsg;
375
376 if (oldcase != oneofdata->oneof_case_num ||
377 DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
378 DEREF(msg, oneofdata->ofs, VALUE) =
379 rb_class_new_instance(0, NULL, subklass);
380 }
381 // Set the oneof case *after* allocating the new class instance -- otherwise,
382 // if the Ruby GC is invoked as part of a call into the VM, it might invoke
383 // our mark routines, and our mark routines might see the case value
384 // indicating a VALUE is present and expect a valid VALUE. See comment in
385 // layout_set() for more detail: basically, the change to the value and the
386 // case must be atomic w.r.t. the Ruby VM.
387 DEREF(msg, oneofdata->case_ofs, uint32_t) =
388 oneofdata->oneof_case_num;
389
390 submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
391 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
392 return submsg;
393 }
394
395 // Set up handlers for a repeated field.
396 static void add_handlers_for_repeated_field(upb_handlers *h,
397 const upb_fielddef *f,
398 size_t offset) {
399 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
400 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
401 upb_handlers_setstartseq(h, f, startseq_handler, &attr);
402 upb_handlerattr_uninit(&attr);
403
404 switch (upb_fielddef_type(f)) {
405
406 #define SET_HANDLER(utype, ltype) \
407 case utype: \
408 upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
409 break;
410
411 SET_HANDLER(UPB_TYPE_BOOL, bool);
412 SET_HANDLER(UPB_TYPE_INT32, int32);
413 SET_HANDLER(UPB_TYPE_UINT32, uint32);
414 SET_HANDLER(UPB_TYPE_ENUM, int32);
415 SET_HANDLER(UPB_TYPE_FLOAT, float);
416 SET_HANDLER(UPB_TYPE_INT64, int64);
417 SET_HANDLER(UPB_TYPE_UINT64, uint64);
418 SET_HANDLER(UPB_TYPE_DOUBLE, double);
419
420 #undef SET_HANDLER
421
422 case UPB_TYPE_STRING:
423 case UPB_TYPE_BYTES: {
424 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
425 upb_handlers_setstartstr(h, f, is_bytes ?
426 appendbytes_handler : appendstr_handler,
427 NULL);
428 upb_handlers_setstring(h, f, stringdata_handler, NULL);
429 break;
430 }
431 case UPB_TYPE_MESSAGE: {
432 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
433 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
434 upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
435 upb_handlerattr_uninit(&attr);
436 break;
437 }
438 }
439 }
440
441 // Set up handlers for a singular field.
442 static void add_handlers_for_singular_field(upb_handlers *h,
443 const upb_fielddef *f,
444 size_t offset) {
445 switch (upb_fielddef_type(f)) {
446 case UPB_TYPE_BOOL:
447 case UPB_TYPE_INT32:
448 case UPB_TYPE_UINT32:
449 case UPB_TYPE_ENUM:
450 case UPB_TYPE_FLOAT:
451 case UPB_TYPE_INT64:
452 case UPB_TYPE_UINT64:
453 case UPB_TYPE_DOUBLE:
454 upb_shim_set(h, f, offset, -1);
455 break;
456 case UPB_TYPE_STRING:
457 case UPB_TYPE_BYTES: {
458 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
459 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
460 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
461 upb_handlers_setstartstr(h, f,
462 is_bytes ? bytes_handler : str_handler,
463 &attr);
464 upb_handlers_setstring(h, f, stringdata_handler, &attr);
465 upb_handlerattr_uninit(&attr);
466 break;
467 }
468 case UPB_TYPE_MESSAGE: {
469 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
470 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
471 upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
472 upb_handlerattr_uninit(&attr);
473 break;
474 }
475 }
476 }
477
478 // Adds handlers to a map field.
479 static void add_handlers_for_mapfield(upb_handlers* h,
480 const upb_fielddef* fielddef,
481 size_t offset,
482 Descriptor* desc) {
483 const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
484 map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
485 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
486
487 upb_handlers_addcleanup(h, hd, free);
488 upb_handlerattr_sethandlerdata(&attr, hd);
489 upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
490 upb_handlerattr_uninit(&attr);
491 }
492
493 // Adds handlers to a map-entry msgdef.
494 static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
495 upb_handlers* h,
496 Descriptor* desc) {
497 const upb_fielddef* key_field = map_entry_key(msgdef);
498 const upb_fielddef* value_field = map_entry_value(msgdef);
499 map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
500 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
501
502 upb_handlers_addcleanup(h, hd, free);
503 upb_handlerattr_sethandlerdata(&attr, hd);
504 upb_handlers_setendmsg(h, endmap_handler, &attr);
505
506 add_handlers_for_singular_field(
507 h, key_field,
508 offsetof(map_parse_frame_t, key_storage));
509 add_handlers_for_singular_field(
510 h, value_field,
511 offsetof(map_parse_frame_t, value_storage));
512 }
513
514 // Set up handlers for a oneof field.
515 static void add_handlers_for_oneof_field(upb_handlers *h,
516 const upb_fielddef *f,
517 size_t offset,
518 size_t oneof_case_offset) {
519
520 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
521 upb_handlerattr_sethandlerdata(
522 &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));
523
524 switch (upb_fielddef_type(f)) {
525
526 #define SET_HANDLER(utype, ltype) \
527 case utype: \
528 upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
529 break;
530
531 SET_HANDLER(UPB_TYPE_BOOL, bool);
532 SET_HANDLER(UPB_TYPE_INT32, int32);
533 SET_HANDLER(UPB_TYPE_UINT32, uint32);
534 SET_HANDLER(UPB_TYPE_ENUM, int32);
535 SET_HANDLER(UPB_TYPE_FLOAT, float);
536 SET_HANDLER(UPB_TYPE_INT64, int64);
537 SET_HANDLER(UPB_TYPE_UINT64, uint64);
538 SET_HANDLER(UPB_TYPE_DOUBLE, double);
539
540 #undef SET_HANDLER
541
542 case UPB_TYPE_STRING:
543 case UPB_TYPE_BYTES: {
544 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
545 upb_handlers_setstartstr(h, f, is_bytes ?
546 oneofbytes_handler : oneofstr_handler,
547 &attr);
548 upb_handlers_setstring(h, f, stringdata_handler, NULL);
549 break;
550 }
551 case UPB_TYPE_MESSAGE: {
552 upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
553 break;
554 }
555 }
556
557 upb_handlerattr_uninit(&attr);
558 }
559
560
561 static void add_handlers_for_message(const void *closure, upb_handlers *h) {
562 const upb_msgdef* msgdef = upb_handlers_msgdef(h);
563 Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
564 upb_msg_field_iter i;
565
566 // If this is a mapentry message type, set up a special set of handlers and
567 // bail out of the normal (user-defined) message type handling.
568 if (upb_msgdef_mapentry(msgdef)) {
569 add_handlers_for_mapentry(msgdef, h, desc);
570 return;
571 }
572
573 // Ensure layout exists. We may be invoked to create handlers for a given
574 // message if we are included as a submsg of another message type before our
575 // class is actually built, so to work around this, we just create the layout
576 // (and handlers, in the class-building function) on-demand.
577 if (desc->layout == NULL) {
578 desc->layout = create_layout(desc->msgdef);
579 }
580
581 for (upb_msg_field_begin(&i, desc->msgdef);
582 !upb_msg_field_done(&i);
583 upb_msg_field_next(&i)) {
584 const upb_fielddef *f = upb_msg_iter_field(&i);
585 size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
586 sizeof(MessageHeader);
587
588 if (upb_fielddef_containingoneof(f)) {
589 size_t oneof_case_offset =
590 desc->layout->fields[upb_fielddef_index(f)].case_offset +
591 sizeof(MessageHeader);
592 add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
593 } else if (is_map_field(f)) {
594 add_handlers_for_mapfield(h, f, offset, desc);
595 } else if (upb_fielddef_isseq(f)) {
596 add_handlers_for_repeated_field(h, f, offset);
597 } else {
598 add_handlers_for_singular_field(h, f, offset);
599 }
600 }
601 }
602
603 // Creates upb handlers for populating a message.
604 static const upb_handlers *new_fill_handlers(Descriptor* desc,
605 const void* owner) {
606 // TODO(cfallin, haberman): once upb gets a caching/memoization layer for
607 // handlers, reuse subdef handlers so that e.g. if we already parse
608 // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
609 // parse A-with-field-of-type-B-with-field-of-type-C.
610 return upb_handlers_newfrozen(desc->msgdef, owner,
611 add_handlers_for_message, NULL);
612 }
613
614 // Constructs the handlers for filling a message's data into an in-memory
615 // object.
616 const upb_handlers* get_fill_handlers(Descriptor* desc) {
617 if (!desc->fill_handlers) {
618 desc->fill_handlers =
619 new_fill_handlers(desc, &desc->fill_handlers);
620 }
621 return desc->fill_handlers;
622 }
623
624 // Constructs the upb decoder method for parsing messages of this type.
625 // This is called from the message class creation code.
626 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
627 const void* owner) {
628 const upb_handlers* handlers = get_fill_handlers(desc);
629 upb_pbdecodermethodopts opts;
630 upb_pbdecodermethodopts_init(&opts, handlers);
631
632 return upb_pbdecodermethod_new(&opts, owner);
633 }
634
635 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
636 if (desc->fill_method == NULL) {
637 desc->fill_method = new_fillmsg_decodermethod(
638 desc, &desc->fill_method);
639 }
640 return desc->fill_method;
641 }
642
643
644 // Stack-allocated context during an encode/decode operation. Contains the upb
645 // environment and its stack-based allocator, an initial buffer for allocations
646 // to avoid malloc() when possible, and a template for Ruby exception messages
647 // if any error occurs.
648 #define STACK_ENV_STACKBYTES 4096
649 typedef struct {
650 upb_env env;
651 upb_seededalloc alloc;
652 const char* ruby_error_template;
653 char allocbuf[STACK_ENV_STACKBYTES];
654 } stackenv;
655
656 static void stackenv_init(stackenv* se, const char* errmsg);
657 static void stackenv_uninit(stackenv* se);
658
659 // Callback invoked by upb if any error occurs during parsing or serialization.
660 static bool env_error_func(void* ud, const upb_status* status) {
661 stackenv* se = ud;
662 // Free the env -- rb_raise will longjmp up the stack past the encode/decode
663 // function so it would not otherwise have been freed.
664 stackenv_uninit(se);
665
666 // TODO(haberman): have a way to verify that this is actually a parse error,
667 // instead of just throwing "parse error" unconditionally.
668 rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));
669 // Never reached: rb_raise() always longjmp()s up the stack, past all of our
670 // code, back to Ruby.
671 return false;
672 }
673
674 static void stackenv_init(stackenv* se, const char* errmsg) {
675 se->ruby_error_template = errmsg;
676 upb_env_init(&se->env);
677 upb_seededalloc_init(&se->alloc, &se->allocbuf, STACK_ENV_STACKBYTES);
678 upb_env_setallocfunc(
679 &se->env, upb_seededalloc_getallocfunc(&se->alloc), &se->alloc);
680 upb_env_seterrorfunc(&se->env, env_error_func, se);
681 }
682
683 static void stackenv_uninit(stackenv* se) {
684 upb_env_uninit(&se->env);
685 upb_seededalloc_uninit(&se->alloc);
686 }
687
688 /*
689 * call-seq:
690 * MessageClass.decode(data) => message
691 *
692 * Decodes the given data (as a string containing bytes in protocol buffers wire
693 * format) under the interpretration given by this message class's definition
694 * and returns a message object with the corresponding field values.
695 */
696 VALUE Message_decode(VALUE klass, VALUE data) {
697 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
698 Descriptor* desc = ruby_to_Descriptor(descriptor);
699 VALUE msgklass = Descriptor_msgclass(descriptor);
700 VALUE msg_rb;
701 MessageHeader* msg;
702
703 if (TYPE(data) != T_STRING) {
704 rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
705 }
706
707 msg_rb = rb_class_new_instance(0, NULL, msgklass);
708 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
709
710 {
711 const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
712 const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
713 stackenv se;
714 upb_sink sink;
715 upb_pbdecoder* decoder;
716 stackenv_init(&se, "Error occurred during parsing: %s");
717
718 upb_sink_reset(&sink, h, msg);
719 decoder = upb_pbdecoder_create(&se.env, method, &sink);
720 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
721 upb_pbdecoder_input(decoder));
722
723 stackenv_uninit(&se);
724 }
725
726 return msg_rb;
727 }
728
729 /*
730 * call-seq:
731 * MessageClass.decode_json(data) => message
732 *
733 * Decodes the given data (as a string containing bytes in protocol buffers wire
734 * format) under the interpretration given by this message class's definition
735 * and returns a message object with the corresponding field values.
736 */
737 VALUE Message_decode_json(VALUE klass, VALUE data) {
738 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
739 Descriptor* desc = ruby_to_Descriptor(descriptor);
740 VALUE msgklass = Descriptor_msgclass(descriptor);
741 VALUE msg_rb;
742 MessageHeader* msg;
743
744 if (TYPE(data) != T_STRING) {
745 rb_raise(rb_eArgError, "Expected string for JSON data.");
746 }
747 // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
748 // convert, because string handlers pass data directly to message string
749 // fields.
750
751 msg_rb = rb_class_new_instance(0, NULL, msgklass);
752 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
753
754 {
755 stackenv se;
756 upb_sink sink;
757 upb_json_parser* parser;
758 stackenv_init(&se, "Error occurred during parsing: %s");
759
760 upb_sink_reset(&sink, get_fill_handlers(desc), msg);
761 parser = upb_json_parser_create(&se.env, &sink);
762 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
763 upb_json_parser_input(parser));
764
765 stackenv_uninit(&se);
766 }
767
768 return msg_rb;
769 }
770
771 // -----------------------------------------------------------------------------
772 // Serializing.
773 // -----------------------------------------------------------------------------
774 //
775 // The code below also comes from upb's prototype Ruby binding, developed by
776 // haberman@.
777
778 /* stringsink *****************************************************************/
779
780 // This should probably be factored into a common upb component.
781
782 typedef struct {
783 upb_byteshandler handler;
784 upb_bytessink sink;
785 char *ptr;
786 size_t len, size;
787 } stringsink;
788
789 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
790 stringsink *sink = _sink;
791 sink->len = 0;
792 return sink;
793 }
794
795 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
796 size_t len, const upb_bufhandle *handle) {
797 stringsink *sink = _sink;
798 size_t new_size = sink->size;
799
800 UPB_UNUSED(hd);
801 UPB_UNUSED(handle);
802
803 while (sink->len + len > new_size) {
804 new_size *= 2;
805 }
806
807 if (new_size != sink->size) {
808 sink->ptr = realloc(sink->ptr, new_size);
809 sink->size = new_size;
810 }
811
812 memcpy(sink->ptr + sink->len, ptr, len);
813 sink->len += len;
814
815 return len;
816 }
817
818 void stringsink_init(stringsink *sink) {
819 upb_byteshandler_init(&sink->handler);
820 upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
821 upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
822
823 upb_bytessink_reset(&sink->sink, &sink->handler, sink);
824
825 sink->size = 32;
826 sink->ptr = malloc(sink->size);
827 sink->len = 0;
828 }
829
830 void stringsink_uninit(stringsink *sink) {
831 free(sink->ptr);
832 }
833
834 /* msgvisitor *****************************************************************/
835
836 // TODO: If/when we support proto2 semantics in addition to the current proto3
837 // semantics, which means that we have true field presence, we will want to
838 // modify msgvisitor so that it emits all present fields rather than all
839 // non-default-value fields.
840 //
841 // Likewise, when implementing JSON serialization, we may need to have a
842 // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only
843 // those with non-default values.
844
845 static void putmsg(VALUE msg, const Descriptor* desc,
846 upb_sink *sink, int depth);
847
848 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
849 upb_selector_t ret;
850 bool ok = upb_handlers_getselector(f, type, &ret);
851 UPB_ASSERT_VAR(ok, ok);
852 return ret;
853 }
854
855 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
856 upb_sink subsink;
857
858 if (str == Qnil) return;
859
860 assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
861
862 // Ensure that the string has the correct encoding. We also check at field-set
863 // time, but the user may have mutated the string object since then.
864 native_slot_validate_string_encoding(upb_fielddef_type(f), str);
865
866 upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
867 &subsink);
868 upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
869 RSTRING_LEN(str), NULL);
870 upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
871 }
872
873 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
874 int depth) {
875 upb_sink subsink;
876 VALUE descriptor;
877 Descriptor* subdesc;
878
879 if (submsg == Qnil) return;
880
881 descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
882 subdesc = ruby_to_Descriptor(descriptor);
883
884 upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
885 putmsg(submsg, subdesc, &subsink, depth + 1);
886 upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
887 }
888
889 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
890 int depth) {
891 upb_sink subsink;
892 upb_fieldtype_t type = upb_fielddef_type(f);
893 upb_selector_t sel = 0;
894 int size;
895
896 if (ary == Qnil) return;
897
898 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
899
900 if (upb_fielddef_isprimitive(f)) {
901 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
902 }
903
904 size = NUM2INT(RepeatedField_length(ary));
905 for (int i = 0; i < size; i++) {
906 void* memory = RepeatedField_index_native(ary, i);
907 switch (type) {
908 #define T(upbtypeconst, upbtype, ctype) \
909 case upbtypeconst: \
910 upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \
911 break;
912
913 T(UPB_TYPE_FLOAT, float, float)
914 T(UPB_TYPE_DOUBLE, double, double)
915 T(UPB_TYPE_BOOL, bool, int8_t)
916 case UPB_TYPE_ENUM:
917 T(UPB_TYPE_INT32, int32, int32_t)
918 T(UPB_TYPE_UINT32, uint32, uint32_t)
919 T(UPB_TYPE_INT64, int64, int64_t)
920 T(UPB_TYPE_UINT64, uint64, uint64_t)
921
922 case UPB_TYPE_STRING:
923 case UPB_TYPE_BYTES:
924 putstr(*((VALUE *)memory), f, &subsink);
925 break;
926 case UPB_TYPE_MESSAGE:
927 putsubmsg(*((VALUE *)memory), f, &subsink, depth);
928 break;
929
930 #undef T
931
932 }
933 }
934 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
935 }
936
937 static void put_ruby_value(VALUE value,
938 const upb_fielddef *f,
939 VALUE type_class,
940 int depth,
941 upb_sink *sink) {
942 upb_selector_t sel = 0;
943 if (upb_fielddef_isprimitive(f)) {
944 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
945 }
946
947 switch (upb_fielddef_type(f)) {
948 case UPB_TYPE_INT32:
949 upb_sink_putint32(sink, sel, NUM2INT(value));
950 break;
951 case UPB_TYPE_INT64:
952 upb_sink_putint64(sink, sel, NUM2LL(value));
953 break;
954 case UPB_TYPE_UINT32:
955 upb_sink_putuint32(sink, sel, NUM2UINT(value));
956 break;
957 case UPB_TYPE_UINT64:
958 upb_sink_putuint64(sink, sel, NUM2ULL(value));
959 break;
960 case UPB_TYPE_FLOAT:
961 upb_sink_putfloat(sink, sel, NUM2DBL(value));
962 break;
963 case UPB_TYPE_DOUBLE:
964 upb_sink_putdouble(sink, sel, NUM2DBL(value));
965 break;
966 case UPB_TYPE_ENUM: {
967 if (TYPE(value) == T_SYMBOL) {
968 value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
969 }
970 upb_sink_putint32(sink, sel, NUM2INT(value));
971 break;
972 }
973 case UPB_TYPE_BOOL:
974 upb_sink_putbool(sink, sel, value == Qtrue);
975 break;
976 case UPB_TYPE_STRING:
977 case UPB_TYPE_BYTES:
978 putstr(value, f, sink);
979 break;
980 case UPB_TYPE_MESSAGE:
981 putsubmsg(value, f, sink, depth);
982 }
983 }
984
985 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
986 int depth) {
987 Map* self;
988 upb_sink subsink;
989 const upb_fielddef* key_field;
990 const upb_fielddef* value_field;
991 Map_iter it;
992
993 if (map == Qnil) return;
994 self = ruby_to_Map(map);
995
996 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
997
998 assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
999 key_field = map_field_key(f);
1000 value_field = map_field_value(f);
1001
1002 for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
1003 VALUE key = Map_iter_key(&it);
1004 VALUE value = Map_iter_value(&it);
1005 upb_status status;
1006
1007 upb_sink entry_sink;
1008 upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
1009 &entry_sink);
1010 upb_sink_startmsg(&entry_sink);
1011
1012 put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);
1013 put_ruby_value(value, value_field, self->value_type_class, depth + 1,
1014 &entry_sink);
1015
1016 upb_sink_endmsg(&entry_sink, &status);
1017 upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
1018 }
1019
1020 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1021 }
1022
1023 static void putmsg(VALUE msg_rb, const Descriptor* desc,
1024 upb_sink *sink, int depth) {
1025 MessageHeader* msg;
1026 upb_msg_field_iter i;
1027 upb_status status;
1028
1029 upb_sink_startmsg(sink);
1030
1031 // Protect against cycles (possible because users may freely reassign message
1032 // and repeated fields) by imposing a maximum recursion depth.
1033 if (depth > ENCODE_MAX_NESTING) {
1034 rb_raise(rb_eRuntimeError,
1035 "Maximum recursion depth exceeded during encoding.");
1036 }
1037
1038 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1039
1040 for (upb_msg_field_begin(&i, desc->msgdef);
1041 !upb_msg_field_done(&i);
1042 upb_msg_field_next(&i)) {
1043 upb_fielddef *f = upb_msg_iter_field(&i);
1044 uint32_t offset =
1045 desc->layout->fields[upb_fielddef_index(f)].offset +
1046 sizeof(MessageHeader);
1047
1048 if (upb_fielddef_containingoneof(f)) {
1049 uint32_t oneof_case_offset =
1050 desc->layout->fields[upb_fielddef_index(f)].case_offset +
1051 sizeof(MessageHeader);
1052 // For a oneof, check that this field is actually present -- skip all the
1053 // below if not.
1054 if (DEREF(msg, oneof_case_offset, uint32_t) !=
1055 upb_fielddef_number(f)) {
1056 continue;
1057 }
1058 // Otherwise, fall through to the appropriate singular-field handler
1059 // below.
1060 }
1061
1062 if (is_map_field(f)) {
1063 VALUE map = DEREF(msg, offset, VALUE);
1064 if (map != Qnil) {
1065 putmap(map, f, sink, depth);
1066 }
1067 } else if (upb_fielddef_isseq(f)) {
1068 VALUE ary = DEREF(msg, offset, VALUE);
1069 if (ary != Qnil) {
1070 putary(ary, f, sink, depth);
1071 }
1072 } else if (upb_fielddef_isstring(f)) {
1073 VALUE str = DEREF(msg, offset, VALUE);
1074 if (RSTRING_LEN(str) > 0) {
1075 putstr(str, f, sink);
1076 }
1077 } else if (upb_fielddef_issubmsg(f)) {
1078 putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);
1079 } else {
1080 upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1081
1082 #define T(upbtypeconst, upbtype, ctype, default_value) \
1083 case upbtypeconst: { \
1084 ctype value = DEREF(msg, offset, ctype); \
1085 if (value != default_value) { \
1086 upb_sink_put##upbtype(sink, sel, value); \
1087 } \
1088 } \
1089 break;
1090
1091 switch (upb_fielddef_type(f)) {
1092 T(UPB_TYPE_FLOAT, float, float, 0.0)
1093 T(UPB_TYPE_DOUBLE, double, double, 0.0)
1094 T(UPB_TYPE_BOOL, bool, uint8_t, 0)
1095 case UPB_TYPE_ENUM:
1096 T(UPB_TYPE_INT32, int32, int32_t, 0)
1097 T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
1098 T(UPB_TYPE_INT64, int64, int64_t, 0)
1099 T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
1100
1101 case UPB_TYPE_STRING:
1102 case UPB_TYPE_BYTES:
1103 case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
1104 }
1105
1106 #undef T
1107
1108 }
1109 }
1110
1111 upb_sink_endmsg(sink, &status);
1112 }
1113
1114 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
1115 if (desc->pb_serialize_handlers == NULL) {
1116 desc->pb_serialize_handlers =
1117 upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
1118 }
1119 return desc->pb_serialize_handlers;
1120 }
1121
1122 static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) {
1123 if (desc->json_serialize_handlers == NULL) {
1124 desc->json_serialize_handlers =
1125 upb_json_printer_newhandlers(
1126 desc->msgdef, &desc->json_serialize_handlers);
1127 }
1128 return desc->json_serialize_handlers;
1129 }
1130
1131 /*
1132 * call-seq:
1133 * MessageClass.encode(msg) => bytes
1134 *
1135 * Encodes the given message object to its serialized form in protocol buffers
1136 * wire format.
1137 */
1138 VALUE Message_encode(VALUE klass, VALUE msg_rb) {
1139 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1140 Descriptor* desc = ruby_to_Descriptor(descriptor);
1141
1142 stringsink sink;
1143 stringsink_init(&sink);
1144
1145 {
1146 const upb_handlers* serialize_handlers =
1147 msgdef_pb_serialize_handlers(desc);
1148
1149 stackenv se;
1150 upb_pb_encoder* encoder;
1151 VALUE ret;
1152
1153 stackenv_init(&se, "Error occurred during encoding: %s");
1154 encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
1155
1156 putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0);
1157
1158 ret = rb_str_new(sink.ptr, sink.len);
1159
1160 stackenv_uninit(&se);
1161 stringsink_uninit(&sink);
1162
1163 return ret;
1164 }
1165 }
1166
1167 /*
1168 * call-seq:
1169 * MessageClass.encode_json(msg) => json_string
1170 *
1171 * Encodes the given message object into its serialized JSON representation.
1172 */
1173 VALUE Message_encode_json(VALUE klass, VALUE msg_rb) {
1174 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1175 Descriptor* desc = ruby_to_Descriptor(descriptor);
1176
1177 stringsink sink;
1178 stringsink_init(&sink);
1179
1180 {
1181 const upb_handlers* serialize_handlers =
1182 msgdef_json_serialize_handlers(desc);
1183 upb_json_printer* printer;
1184 stackenv se;
1185 VALUE ret;
1186
1187 stackenv_init(&se, "Error occurred during encoding: %s");
1188 printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
1189
1190 putmsg(msg_rb, desc, upb_json_printer_input(printer), 0);
1191
1192 ret = rb_str_new(sink.ptr, sink.len);
1193
1194 stackenv_uninit(&se);
1195 stringsink_uninit(&sink);
1196
1197 return ret;
1198 }
1199 }
1200
OLDNEW
« no previous file with comments | « third_party/protobuf/ruby/ext/google/protobuf_c/defs.c ('k') | third_party/protobuf/ruby/ext/google/protobuf_c/extconf.rb » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698