OLD | NEW |
(Empty) | |
| 1 // Protocol Buffers - Google's data interchange format |
| 2 // Copyright 2008 Google Inc. All rights reserved. |
| 3 // https://developers.google.com/protocol-buffers/ |
| 4 // |
| 5 // Redistribution and use in source and binary forms, with or without |
| 6 // modification, are permitted provided that the following conditions are |
| 7 // met: |
| 8 // |
| 9 // * Redistributions of source code must retain the above copyright |
| 10 // notice, this list of conditions and the following disclaimer. |
| 11 // * Redistributions in binary form must reproduce the above |
| 12 // copyright notice, this list of conditions and the following disclaimer |
| 13 // in the documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // * Neither the name of Google Inc. nor the names of its |
| 16 // contributors may be used to endorse or promote products derived from |
| 17 // this software without specific prior written permission. |
| 18 // |
| 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 |
| 31 /** |
| 32 * @fileoverview Test cases for jspb's helper functions. |
| 33 * |
| 34 * Test suite is written using Jasmine -- see http://jasmine.github.io/ |
| 35 * |
| 36 * @author aappleby@google.com (Austin Appleby) |
| 37 */ |
| 38 |
| 39 goog.require('goog.crypt.base64'); |
| 40 goog.require('goog.testing.asserts'); |
| 41 goog.require('jspb.BinaryConstants'); |
| 42 goog.require('jspb.BinaryWriter'); |
| 43 goog.require('jspb.utils'); |
| 44 |
| 45 |
| 46 /** |
| 47 * @param {number} x |
| 48 * @return {number} |
| 49 */ |
| 50 function truncate(x) { |
| 51 var temp = new Float32Array(1); |
| 52 temp[0] = x; |
| 53 return temp[0]; |
| 54 } |
| 55 |
| 56 |
| 57 /** |
| 58 * Converts an 64-bit integer in split representation to a 64-bit hash string |
| 59 * (8 bits encoded per character). |
| 60 * @param {number} bitsLow The low 32 bits of the split 64-bit integer. |
| 61 * @param {number} bitsHigh The high 32 bits of the split 64-bit integer. |
| 62 * @return {string} The encoded hash string, 8 bits per character. |
| 63 */ |
| 64 function toHashString(bitsLow, bitsHigh) { |
| 65 return String.fromCharCode((bitsLow >>> 0) & 0xFF, |
| 66 (bitsLow >>> 8) & 0xFF, |
| 67 (bitsLow >>> 16) & 0xFF, |
| 68 (bitsLow >>> 24) & 0xFF, |
| 69 (bitsHigh >>> 0) & 0xFF, |
| 70 (bitsHigh >>> 8) & 0xFF, |
| 71 (bitsHigh >>> 16) & 0xFF, |
| 72 (bitsHigh >>> 24) & 0xFF); |
| 73 } |
| 74 |
| 75 |
| 76 describe('binaryUtilsTest', function() { |
| 77 /** |
| 78 * Tests lossless binary-to-decimal conversion. |
| 79 */ |
| 80 it('testDecimalConversion', function() { |
| 81 // Check some magic numbers. |
| 82 var result = |
| 83 jspb.utils.joinUnsignedDecimalString(0x89e80001, 0x8ac72304); |
| 84 assertEquals('10000000000000000001', result); |
| 85 |
| 86 result = jspb.utils.joinUnsignedDecimalString(0xacd05f15, 0x1b69b4b); |
| 87 assertEquals('123456789123456789', result); |
| 88 |
| 89 result = jspb.utils.joinUnsignedDecimalString(0xeb1f0ad2, 0xab54a98c); |
| 90 assertEquals('12345678901234567890', result); |
| 91 |
| 92 result = jspb.utils.joinUnsignedDecimalString(0xe3b70cb1, 0x891087b8); |
| 93 assertEquals('9876543210987654321', result); |
| 94 |
| 95 // Check limits. |
| 96 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00000000); |
| 97 assertEquals('0', result); |
| 98 |
| 99 result = jspb.utils.joinUnsignedDecimalString(0xFFFFFFFF, 0xFFFFFFFF); |
| 100 assertEquals('18446744073709551615', result); |
| 101 |
| 102 // Check each bit of the low dword. |
| 103 for (var i = 0; i < 32; i++) { |
| 104 var low = (1 << i) >>> 0; |
| 105 result = jspb.utils.joinUnsignedDecimalString(low, 0); |
| 106 assertEquals('' + Math.pow(2, i), result); |
| 107 } |
| 108 |
| 109 // Check the first 20 bits of the high dword. |
| 110 for (var i = 0; i < 20; i++) { |
| 111 var high = (1 << i) >>> 0; |
| 112 result = jspb.utils.joinUnsignedDecimalString(0, high); |
| 113 assertEquals('' + Math.pow(2, 32 + i), result); |
| 114 } |
| 115 |
| 116 // V8's internal double-to-string conversion is inaccurate for values above |
| 117 // 2^52, even if they're representable integers - check the rest of the bits |
| 118 // manually against the correct string representations of 2^N. |
| 119 |
| 120 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00100000); |
| 121 assertEquals('4503599627370496', result); |
| 122 |
| 123 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00200000); |
| 124 assertEquals('9007199254740992', result); |
| 125 |
| 126 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00400000); |
| 127 assertEquals('18014398509481984', result); |
| 128 |
| 129 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00800000); |
| 130 assertEquals('36028797018963968', result); |
| 131 |
| 132 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x01000000); |
| 133 assertEquals('72057594037927936', result); |
| 134 |
| 135 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x02000000); |
| 136 assertEquals('144115188075855872', result); |
| 137 |
| 138 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x04000000); |
| 139 assertEquals('288230376151711744', result); |
| 140 |
| 141 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x08000000); |
| 142 assertEquals('576460752303423488', result); |
| 143 |
| 144 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x10000000); |
| 145 assertEquals('1152921504606846976', result); |
| 146 |
| 147 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x20000000); |
| 148 assertEquals('2305843009213693952', result); |
| 149 |
| 150 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x40000000); |
| 151 assertEquals('4611686018427387904', result); |
| 152 |
| 153 result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x80000000); |
| 154 assertEquals('9223372036854775808', result); |
| 155 }); |
| 156 |
| 157 |
| 158 /** |
| 159 * Going from hash strings to decimal strings should also be lossless. |
| 160 */ |
| 161 it('testHashToDecimalConversion', function() { |
| 162 var result; |
| 163 var convert = jspb.utils.hash64ToDecimalString; |
| 164 |
| 165 result = convert(toHashString(0x00000000, 0x00000000), false); |
| 166 assertEquals('0', result); |
| 167 |
| 168 result = convert(toHashString(0x00000000, 0x00000000), true); |
| 169 assertEquals('0', result); |
| 170 |
| 171 result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF), false); |
| 172 assertEquals('18446744073709551615', result); |
| 173 |
| 174 result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF), true); |
| 175 assertEquals('-1', result); |
| 176 |
| 177 result = convert(toHashString(0x00000000, 0x80000000), false); |
| 178 assertEquals('9223372036854775808', result); |
| 179 |
| 180 result = convert(toHashString(0x00000000, 0x80000000), true); |
| 181 assertEquals('-9223372036854775808', result); |
| 182 |
| 183 result = convert(toHashString(0xacd05f15, 0x01b69b4b), false); |
| 184 assertEquals('123456789123456789', result); |
| 185 |
| 186 result = convert(toHashString(~0xacd05f15 + 1, ~0x01b69b4b), true); |
| 187 assertEquals('-123456789123456789', result); |
| 188 |
| 189 // And converting arrays of hashes should work the same way. |
| 190 result = jspb.utils.hash64ArrayToDecimalStrings([ |
| 191 toHashString(0xFFFFFFFF, 0xFFFFFFFF), |
| 192 toHashString(0x00000000, 0x80000000), |
| 193 toHashString(0xacd05f15, 0x01b69b4b)], false); |
| 194 assertEquals(3, result.length); |
| 195 assertEquals('18446744073709551615', result[0]); |
| 196 assertEquals('9223372036854775808', result[1]); |
| 197 assertEquals('123456789123456789', result[2]); |
| 198 }); |
| 199 |
| 200 |
| 201 /** |
| 202 * Going from hash strings to hex strings should be lossless. |
| 203 */ |
| 204 it('testHashToHexConversion', function() { |
| 205 var result; |
| 206 var convert = jspb.utils.hash64ToHexString; |
| 207 |
| 208 result = convert(toHashString(0x00000000, 0x00000000)); |
| 209 assertEquals('0x0000000000000000', result); |
| 210 |
| 211 result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF)); |
| 212 assertEquals('0xffffffffffffffff', result); |
| 213 |
| 214 result = convert(toHashString(0x12345678, 0x9ABCDEF0)); |
| 215 assertEquals('0x9abcdef012345678', result); |
| 216 }); |
| 217 |
| 218 |
| 219 /** |
| 220 * Going from hex strings to hash strings should be lossless. |
| 221 */ |
| 222 it('testHexToHashConversion', function() { |
| 223 var result; |
| 224 var convert = jspb.utils.hexStringToHash64; |
| 225 |
| 226 result = convert('0x0000000000000000'); |
| 227 assertEquals(String.fromCharCode.apply(null, |
| 228 [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), result); |
| 229 |
| 230 result = convert('0xffffffffffffffff'); |
| 231 assertEquals(String.fromCharCode.apply(null, |
| 232 [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]), result); |
| 233 |
| 234 // Hex string is big-endian, hash string is little-endian. |
| 235 result = convert('0x123456789ABCDEF0'); |
| 236 assertEquals(String.fromCharCode.apply(null, |
| 237 [0xF0, 0xDE, 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12]), result); |
| 238 |
| 239 // Capitalization should not matter. |
| 240 result = convert('0x0000abcdefABCDEF'); |
| 241 assertEquals(String.fromCharCode.apply(null, |
| 242 [0xEF, 0xCD, 0xAB, 0xEF, 0xCD, 0xAB, 0x00, 0x00]), result); |
| 243 }); |
| 244 |
| 245 |
| 246 /** |
| 247 * Going from numbers to hash strings should be lossless for up to 53 bits of |
| 248 * precision. |
| 249 */ |
| 250 it('testNumberToHashConversion', function() { |
| 251 var result; |
| 252 var convert = jspb.utils.numberToHash64; |
| 253 |
| 254 result = convert(0x0000000000000); |
| 255 assertEquals('0x0000000000000000', jspb.utils.hash64ToHexString(result)); |
| 256 |
| 257 result = convert(0xFFFFFFFFFFFFF); |
| 258 assertEquals('0x000fffffffffffff', jspb.utils.hash64ToHexString(result)); |
| 259 |
| 260 result = convert(0x123456789ABCD); |
| 261 assertEquals('0x000123456789abcd', jspb.utils.hash64ToHexString(result)); |
| 262 |
| 263 result = convert(0xDCBA987654321); |
| 264 assertEquals('0x000dcba987654321', jspb.utils.hash64ToHexString(result)); |
| 265 |
| 266 // 53 bits of precision should not be truncated. |
| 267 result = convert(0x10000000000001); |
| 268 assertEquals('0x0010000000000001', jspb.utils.hash64ToHexString(result)); |
| 269 |
| 270 // 54 bits of precision should be truncated. |
| 271 result = convert(0x20000000000001); |
| 272 assertNotEquals( |
| 273 '0x0020000000000001', jspb.utils.hash64ToHexString(result)); |
| 274 }); |
| 275 |
| 276 |
| 277 /** |
| 278 * Sanity check the behavior of Javascript's strings when doing funny things |
| 279 * with unicode characters. |
| 280 */ |
| 281 it('sanityCheckUnicodeStrings', function() { |
| 282 var strings = new Array(65536); |
| 283 |
| 284 // All possible unsigned 16-bit values should be storable in a string, they |
| 285 // shouldn't do weird things with the length of the string, and they should |
| 286 // come back out of the string unchanged. |
| 287 for (var i = 0; i < 65536; i++) { |
| 288 strings[i] = 'a' + String.fromCharCode(i) + 'a'; |
| 289 if (3 != strings[i].length) throw 'fail!'; |
| 290 if (i != strings[i].charCodeAt(1)) throw 'fail!'; |
| 291 } |
| 292 |
| 293 // Each unicode character should compare equal to itself and not equal to a |
| 294 // different unicode character. |
| 295 for (var i = 0; i < 65536; i++) { |
| 296 if (strings[i] != strings[i]) throw 'fail!'; |
| 297 if (strings[i] == strings[(i + 1) % 65536]) throw 'fail!'; |
| 298 } |
| 299 }); |
| 300 |
| 301 |
| 302 /** |
| 303 * Tests conversion from 32-bit floating point numbers to split64 numbers. |
| 304 */ |
| 305 it('testFloat32ToSplit64', function() { |
| 306 var f32_eps = jspb.BinaryConstants.FLOAT32_EPS; |
| 307 var f32_min = jspb.BinaryConstants.FLOAT32_MIN; |
| 308 var f32_max = jspb.BinaryConstants.FLOAT32_MAX; |
| 309 |
| 310 // NaN. |
| 311 jspb.utils.splitFloat32(NaN); |
| 312 if (!isNaN(jspb.utils.joinFloat32(jspb.utils.split64Low, |
| 313 jspb.utils.split64High))) { |
| 314 throw 'fail!'; |
| 315 } |
| 316 |
| 317 /** |
| 318 * @param {number} x |
| 319 * @param {number=} opt_bits |
| 320 */ |
| 321 function test(x, opt_bits) { |
| 322 jspb.utils.splitFloat32(x); |
| 323 if (goog.isDef(opt_bits)) { |
| 324 if (opt_bits != jspb.utils.split64Low) throw 'fail!'; |
| 325 } |
| 326 if (truncate(x) != jspb.utils.joinFloat32(jspb.utils.split64Low, |
| 327 jspb.utils.split64High)) { |
| 328 throw 'fail!'; |
| 329 } |
| 330 } |
| 331 |
| 332 // Positive and negative infinity. |
| 333 test(Infinity, 0x7f800000); |
| 334 test(-Infinity, 0xff800000); |
| 335 |
| 336 // Positive and negative zero. |
| 337 test(0, 0x00000000); |
| 338 test(-0, 0x80000000); |
| 339 |
| 340 // Positive and negative epsilon. |
| 341 test(f32_eps, 0x00000001); |
| 342 test(-f32_eps, 0x80000001); |
| 343 |
| 344 // Positive and negative min. |
| 345 test(f32_min, 0x00800000); |
| 346 test(-f32_min, 0x80800000); |
| 347 |
| 348 // Positive and negative max. |
| 349 test(f32_max, 0x7F7FFFFF); |
| 350 test(-f32_max, 0xFF7FFFFF); |
| 351 |
| 352 // Various positive values. |
| 353 var cursor = f32_eps * 10; |
| 354 while (cursor != Infinity) { |
| 355 test(cursor); |
| 356 cursor *= 1.1; |
| 357 } |
| 358 |
| 359 // Various negative values. |
| 360 cursor = -f32_eps * 10; |
| 361 while (cursor != -Infinity) { |
| 362 test(cursor); |
| 363 cursor *= 1.1; |
| 364 } |
| 365 }); |
| 366 |
| 367 |
| 368 /** |
| 369 * Tests conversion from 64-bit floating point numbers to split64 numbers. |
| 370 */ |
| 371 it('testFloat64ToSplit64', function() { |
| 372 var f64_eps = jspb.BinaryConstants.FLOAT64_EPS; |
| 373 var f64_min = jspb.BinaryConstants.FLOAT64_MIN; |
| 374 var f64_max = jspb.BinaryConstants.FLOAT64_MAX; |
| 375 |
| 376 // NaN. |
| 377 jspb.utils.splitFloat64(NaN); |
| 378 if (!isNaN(jspb.utils.joinFloat64(jspb.utils.split64Low, |
| 379 jspb.utils.split64High))) { |
| 380 throw 'fail!'; |
| 381 } |
| 382 |
| 383 /** |
| 384 * @param {number} x |
| 385 * @param {number=} opt_highBits |
| 386 * @param {number=} opt_lowBits |
| 387 */ |
| 388 function test(x, opt_highBits, opt_lowBits) { |
| 389 jspb.utils.splitFloat64(x); |
| 390 if (goog.isDef(opt_highBits)) { |
| 391 if (opt_highBits != jspb.utils.split64High) throw 'fail!'; |
| 392 } |
| 393 if (goog.isDef(opt_lowBits)) { |
| 394 if (opt_lowBits != jspb.utils.split64Low) throw 'fail!'; |
| 395 } |
| 396 if (x != jspb.utils.joinFloat64(jspb.utils.split64Low, |
| 397 jspb.utils.split64High)) { |
| 398 throw 'fail!'; |
| 399 } |
| 400 } |
| 401 |
| 402 // Positive and negative infinity. |
| 403 test(Infinity, 0x7ff00000, 0x00000000); |
| 404 test(-Infinity, 0xfff00000, 0x00000000); |
| 405 |
| 406 // Positive and negative zero. |
| 407 test(0, 0x00000000, 0x00000000); |
| 408 test(-0, 0x80000000, 0x00000000); |
| 409 |
| 410 // Positive and negative epsilon. |
| 411 test(f64_eps, 0x00000000, 0x00000001); |
| 412 test(-f64_eps, 0x80000000, 0x00000001); |
| 413 |
| 414 // Positive and negative min. |
| 415 test(f64_min, 0x00100000, 0x00000000); |
| 416 test(-f64_min, 0x80100000, 0x00000000); |
| 417 |
| 418 // Positive and negative max. |
| 419 test(f64_max, 0x7FEFFFFF, 0xFFFFFFFF); |
| 420 test(-f64_max, 0xFFEFFFFF, 0xFFFFFFFF); |
| 421 |
| 422 // Various positive values. |
| 423 var cursor = f64_eps * 10; |
| 424 while (cursor != Infinity) { |
| 425 test(cursor); |
| 426 cursor *= 1.1; |
| 427 } |
| 428 |
| 429 // Various negative values. |
| 430 cursor = -f64_eps * 10; |
| 431 while (cursor != -Infinity) { |
| 432 test(cursor); |
| 433 cursor *= 1.1; |
| 434 } |
| 435 }); |
| 436 |
| 437 |
| 438 /** |
| 439 * Tests counting packed varints. |
| 440 */ |
| 441 it('testCountVarints', function() { |
| 442 var writer = new jspb.BinaryWriter(); |
| 443 |
| 444 var count = 0; |
| 445 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 446 writer.rawWriteVarint(Math.floor(i)); |
| 447 count++; |
| 448 } |
| 449 |
| 450 var buffer = new Uint8Array(writer.getResultBuffer()); |
| 451 assertEquals(count, jspb.utils.countVarints(buffer, 0, buffer.length)); |
| 452 }); |
| 453 |
| 454 |
| 455 /** |
| 456 * Tests counting matching varint fields. |
| 457 */ |
| 458 it('testCountVarintFields', function() { |
| 459 var writer = new jspb.BinaryWriter(); |
| 460 |
| 461 var count = 0; |
| 462 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 463 writer.writeUint64(1, Math.floor(i)); |
| 464 count++; |
| 465 } |
| 466 writer.writeString(2, 'terminator'); |
| 467 |
| 468 var buffer = new Uint8Array(writer.getResultBuffer()); |
| 469 assertEquals(count, |
| 470 jspb.utils.countVarintFields(buffer, 0, buffer.length, 1)); |
| 471 |
| 472 writer = new jspb.BinaryWriter(); |
| 473 |
| 474 count = 0; |
| 475 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 476 writer.writeUint64(123456789, Math.floor(i)); |
| 477 count++; |
| 478 } |
| 479 writer.writeString(2, 'terminator'); |
| 480 |
| 481 buffer = new Uint8Array(writer.getResultBuffer()); |
| 482 assertEquals(count, |
| 483 jspb.utils.countVarintFields(buffer, 0, buffer.length, 123456789)); |
| 484 }); |
| 485 |
| 486 |
| 487 /** |
| 488 * Tests counting matching fixed32 fields. |
| 489 */ |
| 490 it('testCountFixed32Fields', function() { |
| 491 var writer = new jspb.BinaryWriter(); |
| 492 |
| 493 var count = 0; |
| 494 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 495 writer.writeFixed32(1, Math.floor(i)); |
| 496 count++; |
| 497 } |
| 498 writer.writeString(2, 'terminator'); |
| 499 |
| 500 var buffer = new Uint8Array(writer.getResultBuffer()); |
| 501 assertEquals(count, |
| 502 jspb.utils.countFixed32Fields(buffer, 0, buffer.length, 1)); |
| 503 |
| 504 writer = new jspb.BinaryWriter(); |
| 505 |
| 506 count = 0; |
| 507 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 508 writer.writeFixed32(123456789, Math.floor(i)); |
| 509 count++; |
| 510 } |
| 511 writer.writeString(2, 'terminator'); |
| 512 |
| 513 buffer = new Uint8Array(writer.getResultBuffer()); |
| 514 assertEquals(count, |
| 515 jspb.utils.countFixed32Fields(buffer, 0, buffer.length, 123456789)); |
| 516 }); |
| 517 |
| 518 |
| 519 /** |
| 520 * Tests counting matching fixed64 fields. |
| 521 */ |
| 522 it('testCountFixed64Fields', function() { |
| 523 var writer = new jspb.BinaryWriter(); |
| 524 |
| 525 var count = 0; |
| 526 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 527 writer.writeDouble(1, i); |
| 528 count++; |
| 529 } |
| 530 writer.writeString(2, 'terminator'); |
| 531 |
| 532 var buffer = new Uint8Array(writer.getResultBuffer()); |
| 533 assertEquals(count, |
| 534 jspb.utils.countFixed64Fields(buffer, 0, buffer.length, 1)); |
| 535 |
| 536 writer = new jspb.BinaryWriter(); |
| 537 |
| 538 count = 0; |
| 539 for (var i = 1; i < 1000000000; i *= 1.1) { |
| 540 writer.writeDouble(123456789, i); |
| 541 count++; |
| 542 } |
| 543 writer.writeString(2, 'terminator'); |
| 544 |
| 545 buffer = new Uint8Array(writer.getResultBuffer()); |
| 546 assertEquals(count, |
| 547 jspb.utils.countFixed64Fields(buffer, 0, buffer.length, 123456789)); |
| 548 }); |
| 549 |
| 550 |
| 551 /** |
| 552 * Tests counting matching delimited fields. |
| 553 */ |
| 554 it('testCountDelimitedFields', function() { |
| 555 var writer = new jspb.BinaryWriter(); |
| 556 |
| 557 var count = 0; |
| 558 for (var i = 1; i < 1000; i *= 1.1) { |
| 559 writer.writeBytes(1, [Math.floor(i)]); |
| 560 count++; |
| 561 } |
| 562 writer.writeString(2, 'terminator'); |
| 563 |
| 564 var buffer = new Uint8Array(writer.getResultBuffer()); |
| 565 assertEquals(count, |
| 566 jspb.utils.countDelimitedFields(buffer, 0, buffer.length, 1)); |
| 567 |
| 568 writer = new jspb.BinaryWriter(); |
| 569 |
| 570 count = 0; |
| 571 for (var i = 1; i < 1000; i *= 1.1) { |
| 572 writer.writeBytes(123456789, [Math.floor(i)]); |
| 573 count++; |
| 574 } |
| 575 writer.writeString(2, 'terminator'); |
| 576 |
| 577 buffer = new Uint8Array(writer.getResultBuffer()); |
| 578 assertEquals(count, |
| 579 jspb.utils.countDelimitedFields(buffer, 0, buffer.length, 123456789)); |
| 580 }); |
| 581 |
| 582 |
| 583 /** |
| 584 * Tests byte format for debug strings. |
| 585 */ |
| 586 it('testDebugBytesToTextFormat', function() { |
| 587 assertEquals('""', jspb.utils.debugBytesToTextFormat(null)); |
| 588 assertEquals('"\\x00\\x10\\xff"', |
| 589 jspb.utils.debugBytesToTextFormat([0, 16, 255])); |
| 590 }); |
| 591 |
| 592 |
| 593 /** |
| 594 * Tests converting byte blob sources into byte blobs. |
| 595 */ |
| 596 it('testByteSourceToUint8Array', function() { |
| 597 var convert = jspb.utils.byteSourceToUint8Array; |
| 598 |
| 599 var sourceData = []; |
| 600 for (var i = 0; i < 256; i++) { |
| 601 sourceData.push(i); |
| 602 } |
| 603 |
| 604 var sourceBytes = new Uint8Array(sourceData); |
| 605 var sourceBuffer = sourceBytes.buffer; |
| 606 var sourceBase64 = goog.crypt.base64.encodeByteArray(sourceData); |
| 607 var sourceString = String.fromCharCode.apply(null, sourceData); |
| 608 |
| 609 function check(result) { |
| 610 assertEquals(Uint8Array, result.constructor); |
| 611 assertEquals(sourceData.length, result.length); |
| 612 for (var i = 0; i < result.length; i++) { |
| 613 assertEquals(sourceData[i], result[i]); |
| 614 } |
| 615 } |
| 616 |
| 617 // Converting Uint8Arrays into Uint8Arrays should be a no-op. |
| 618 assertEquals(sourceBytes, convert(sourceBytes)); |
| 619 |
| 620 // Converting Array.<numbers> into Uint8Arrays should work. |
| 621 check(convert(sourceData)); |
| 622 |
| 623 // Converting ArrayBuffers into Uint8Arrays should work. |
| 624 check(convert(sourceBuffer)); |
| 625 |
| 626 // Converting base64-encoded strings into Uint8Arrays should work. |
| 627 check(convert(sourceBase64)); |
| 628 |
| 629 // Converting binary-data strings into Uint8Arrays should work. |
| 630 check(convert(sourceString, /* opt_stringIsRawBytes = */ true)); |
| 631 }); |
| 632 }); |
OLD | NEW |