OLD | NEW |
(Empty) | |
| 1 // Protocol Buffers - Google's data interchange format |
| 2 // Copyright 2008 Google Inc. All rights reserved. |
| 3 // https://developers.google.com/protocol-buffers/ |
| 4 // |
| 5 // Redistribution and use in source and binary forms, with or without |
| 6 // modification, are permitted provided that the following conditions are |
| 7 // met: |
| 8 // |
| 9 // * Redistributions of source code must retain the above copyright |
| 10 // notice, this list of conditions and the following disclaimer. |
| 11 // * Redistributions in binary form must reproduce the above |
| 12 // copyright notice, this list of conditions and the following disclaimer |
| 13 // in the documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // * Neither the name of Google Inc. nor the names of its |
| 16 // contributors may be used to endorse or promote products derived from |
| 17 // this software without specific prior written permission. |
| 18 // |
| 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 |
| 31 /** |
| 32 * @fileoverview This file contains helper code used by jspb.BinaryReader |
| 33 * and BinaryWriter. |
| 34 * |
| 35 * @author aappleby@google.com (Austin Appleby) |
| 36 */ |
| 37 |
| 38 goog.provide('jspb.utils'); |
| 39 |
| 40 goog.require('goog.asserts'); |
| 41 goog.require('goog.crypt.base64'); |
| 42 goog.require('goog.string'); |
| 43 goog.require('jspb.BinaryConstants'); |
| 44 |
| 45 |
| 46 /** |
| 47 * Javascript can't natively handle 64-bit data types, so to manipulate them we |
| 48 * have to split them into two 32-bit halves and do the math manually. |
| 49 * |
| 50 * Instead of instantiating and passing small structures around to do this, we |
| 51 * instead just use two global temporary values. This one stores the low 32 |
| 52 * bits of a split value - for example, if the original value was a 64-bit |
| 53 * integer, this temporary value will contain the low 32 bits of that integer. |
| 54 * If the original value was a double, this temporary value will contain the |
| 55 * low 32 bits of the binary representation of that double, etcetera. |
| 56 * @type {number} |
| 57 */ |
| 58 jspb.utils.split64Low = 0; |
| 59 |
| 60 |
| 61 /** |
| 62 * And correspondingly, this temporary variable will contain the high 32 bits |
| 63 * of whatever value was split. |
| 64 * @type {number} |
| 65 */ |
| 66 jspb.utils.split64High = 0; |
| 67 |
| 68 |
| 69 /** |
| 70 * Splits an unsigned Javascript integer into two 32-bit halves and stores it |
| 71 * in the temp values above. |
| 72 * @param {number} value The number to split. |
| 73 */ |
| 74 jspb.utils.splitUint64 = function(value) { |
| 75 // Extract low 32 bits and high 32 bits as unsigned integers. |
| 76 var lowBits = value >>> 0; |
| 77 var highBits = Math.floor((value - lowBits) / |
| 78 jspb.BinaryConstants.TWO_TO_32) >>> 0; |
| 79 |
| 80 jspb.utils.split64Low = lowBits; |
| 81 jspb.utils.split64High = highBits; |
| 82 }; |
| 83 |
| 84 |
| 85 /** |
| 86 * Splits a signed Javascript integer into two 32-bit halves and stores it in |
| 87 * the temp values above. |
| 88 * @param {number} value The number to split. |
| 89 */ |
| 90 jspb.utils.splitInt64 = function(value) { |
| 91 // Convert to sign-magnitude representation. |
| 92 var sign = (value < 0); |
| 93 value = Math.abs(value); |
| 94 |
| 95 // Extract low 32 bits and high 32 bits as unsigned integers. |
| 96 var lowBits = value >>> 0; |
| 97 var highBits = Math.floor((value - lowBits) / |
| 98 jspb.BinaryConstants.TWO_TO_32); |
| 99 highBits = highBits >>> 0; |
| 100 |
| 101 // Perform two's complement conversion if the sign bit was set. |
| 102 if (sign) { |
| 103 highBits = ~highBits >>> 0; |
| 104 lowBits = ~lowBits >>> 0; |
| 105 lowBits += 1; |
| 106 if (lowBits > 0xFFFFFFFF) { |
| 107 lowBits = 0; |
| 108 highBits++; |
| 109 if (highBits > 0xFFFFFFFF) highBits = 0; |
| 110 } |
| 111 } |
| 112 |
| 113 jspb.utils.split64Low = lowBits; |
| 114 jspb.utils.split64High = highBits; |
| 115 }; |
| 116 |
| 117 |
| 118 /** |
| 119 * Convers a signed Javascript integer into zigzag format, splits it into two |
| 120 * 32-bit halves, and stores it in the temp values above. |
| 121 * @param {number} value The number to split. |
| 122 */ |
| 123 jspb.utils.splitZigzag64 = function(value) { |
| 124 // Convert to sign-magnitude and scale by 2 before we split the value. |
| 125 var sign = (value < 0); |
| 126 value = Math.abs(value) * 2; |
| 127 |
| 128 jspb.utils.splitUint64(value); |
| 129 var lowBits = jspb.utils.split64Low; |
| 130 var highBits = jspb.utils.split64High; |
| 131 |
| 132 // If the value is negative, subtract 1 from the split representation so we |
| 133 // don't lose the sign bit due to precision issues. |
| 134 if (sign) { |
| 135 if (lowBits == 0) { |
| 136 if (highBits == 0) { |
| 137 lowBits = 0xFFFFFFFF; |
| 138 highBits = 0xFFFFFFFF; |
| 139 } else { |
| 140 highBits--; |
| 141 lowBits = 0xFFFFFFFF; |
| 142 } |
| 143 } else { |
| 144 lowBits--; |
| 145 } |
| 146 } |
| 147 |
| 148 jspb.utils.split64Low = lowBits; |
| 149 jspb.utils.split64High = highBits; |
| 150 }; |
| 151 |
| 152 |
| 153 /** |
| 154 * Converts a floating-point number into 32-bit IEEE representation and stores |
| 155 * it in the temp values above. |
| 156 * @param {number} value |
| 157 */ |
| 158 jspb.utils.splitFloat32 = function(value) { |
| 159 var sign = (value < 0) ? 1 : 0; |
| 160 value = sign ? -value : value; |
| 161 var exp; |
| 162 var mant; |
| 163 |
| 164 // Handle zeros. |
| 165 if (value === 0) { |
| 166 if ((1 / value) > 0) { |
| 167 // Positive zero. |
| 168 jspb.utils.split64High = 0; |
| 169 jspb.utils.split64Low = 0x00000000; |
| 170 } else { |
| 171 // Negative zero. |
| 172 jspb.utils.split64High = 0; |
| 173 jspb.utils.split64Low = 0x80000000; |
| 174 } |
| 175 return; |
| 176 } |
| 177 |
| 178 // Handle nans. |
| 179 if (isNaN(value)) { |
| 180 jspb.utils.split64High = 0; |
| 181 jspb.utils.split64Low = 0x7FFFFFFF; |
| 182 return; |
| 183 } |
| 184 |
| 185 // Handle infinities. |
| 186 if (value > jspb.BinaryConstants.FLOAT32_MAX) { |
| 187 jspb.utils.split64High = 0; |
| 188 jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0; |
| 189 return; |
| 190 } |
| 191 |
| 192 // Handle denormals. |
| 193 if (value < jspb.BinaryConstants.FLOAT32_MIN) { |
| 194 // Number is a denormal. |
| 195 mant = Math.round(value / Math.pow(2, -149)); |
| 196 jspb.utils.split64High = 0; |
| 197 jspb.utils.split64Low = ((sign << 31) | mant) >>> 0; |
| 198 return; |
| 199 } |
| 200 |
| 201 exp = Math.floor(Math.log(value) / Math.LN2); |
| 202 mant = value * Math.pow(2, -exp); |
| 203 mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF; |
| 204 |
| 205 jspb.utils.split64High = 0; |
| 206 jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0; |
| 207 }; |
| 208 |
| 209 |
| 210 /** |
| 211 * Converts a floating-point number into 64-bit IEEE representation and stores |
| 212 * it in the temp values above. |
| 213 * @param {number} value |
| 214 */ |
| 215 jspb.utils.splitFloat64 = function(value) { |
| 216 var sign = (value < 0) ? 1 : 0; |
| 217 value = sign ? -value : value; |
| 218 |
| 219 // Handle zeros. |
| 220 if (value === 0) { |
| 221 if ((1 / value) > 0) { |
| 222 // Positive zero. |
| 223 jspb.utils.split64High = 0x00000000; |
| 224 jspb.utils.split64Low = 0x00000000; |
| 225 } else { |
| 226 // Negative zero. |
| 227 jspb.utils.split64High = 0x80000000; |
| 228 jspb.utils.split64Low = 0x00000000; |
| 229 } |
| 230 return; |
| 231 } |
| 232 |
| 233 // Handle nans. |
| 234 if (isNaN(value)) { |
| 235 jspb.utils.split64High = 0x7FFFFFFF; |
| 236 jspb.utils.split64Low = 0xFFFFFFFF; |
| 237 return; |
| 238 } |
| 239 |
| 240 // Handle infinities. |
| 241 if (value > jspb.BinaryConstants.FLOAT64_MAX) { |
| 242 jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0; |
| 243 jspb.utils.split64Low = 0; |
| 244 return; |
| 245 } |
| 246 |
| 247 // Handle denormals. |
| 248 if (value < jspb.BinaryConstants.FLOAT64_MIN) { |
| 249 // Number is a denormal. |
| 250 var mant = value / Math.pow(2, -1074); |
| 251 var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32); |
| 252 jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0; |
| 253 jspb.utils.split64Low = (mant >>> 0); |
| 254 return; |
| 255 } |
| 256 |
| 257 var exp = Math.floor(Math.log(value) / Math.LN2); |
| 258 if (exp == 1024) exp = 1023; |
| 259 var mant = value * Math.pow(2, -exp); |
| 260 |
| 261 var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF; |
| 262 var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0; |
| 263 |
| 264 jspb.utils.split64High = |
| 265 ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0; |
| 266 jspb.utils.split64Low = mantLow; |
| 267 }; |
| 268 |
| 269 |
| 270 /** |
| 271 * Converts an 8-character hash string into two 32-bit numbers and stores them |
| 272 * in the temp values above. |
| 273 * @param {string} hash |
| 274 */ |
| 275 jspb.utils.splitHash64 = function(hash) { |
| 276 var a = hash.charCodeAt(0); |
| 277 var b = hash.charCodeAt(1); |
| 278 var c = hash.charCodeAt(2); |
| 279 var d = hash.charCodeAt(3); |
| 280 var e = hash.charCodeAt(4); |
| 281 var f = hash.charCodeAt(5); |
| 282 var g = hash.charCodeAt(6); |
| 283 var h = hash.charCodeAt(7); |
| 284 |
| 285 jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0; |
| 286 jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0; |
| 287 }; |
| 288 |
| 289 |
| 290 /** |
| 291 * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be |
| 292 * lost if the result is greater than 2^52. |
| 293 * @param {number} bitsLow |
| 294 * @param {number} bitsHigh |
| 295 * @return {number} |
| 296 */ |
| 297 jspb.utils.joinUint64 = function(bitsLow, bitsHigh) { |
| 298 return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + bitsLow; |
| 299 }; |
| 300 |
| 301 |
| 302 /** |
| 303 * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost |
| 304 * if the result is greater than 2^52. |
| 305 * @param {number} bitsLow |
| 306 * @param {number} bitsHigh |
| 307 * @return {number} |
| 308 */ |
| 309 jspb.utils.joinInt64 = function(bitsLow, bitsHigh) { |
| 310 // If the high bit is set, do a manual two's complement conversion. |
| 311 var sign = (bitsHigh & 0x80000000); |
| 312 if (sign) { |
| 313 bitsLow = (~bitsLow + 1) >>> 0; |
| 314 bitsHigh = ~bitsHigh >>> 0; |
| 315 if (bitsLow == 0) { |
| 316 bitsHigh = (bitsHigh + 1) >>> 0; |
| 317 } |
| 318 } |
| 319 |
| 320 var result = jspb.utils.joinUint64(bitsLow, bitsHigh); |
| 321 return sign ? -result : result; |
| 322 }; |
| 323 |
| 324 |
| 325 /** |
| 326 * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag |
| 327 * decoding. Precision will be lost if the result is greater than 2^52. |
| 328 * @param {number} bitsLow |
| 329 * @param {number} bitsHigh |
| 330 * @return {number} |
| 331 */ |
| 332 jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) { |
| 333 // Extract the sign bit and shift right by one. |
| 334 var sign = bitsLow & 1; |
| 335 bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) >>> 0; |
| 336 bitsHigh = bitsHigh >>> 1; |
| 337 |
| 338 // Increment the split value if the sign bit was set. |
| 339 if (sign) { |
| 340 bitsLow = (bitsLow + 1) >>> 0; |
| 341 if (bitsLow == 0) { |
| 342 bitsHigh = (bitsHigh + 1) >>> 0; |
| 343 } |
| 344 } |
| 345 |
| 346 var result = jspb.utils.joinUint64(bitsLow, bitsHigh); |
| 347 return sign ? -result : result; |
| 348 }; |
| 349 |
| 350 |
| 351 /** |
| 352 * Joins two 32-bit values into a 32-bit IEEE floating point number and |
| 353 * converts it back into a Javascript number. |
| 354 * @param {number} bitsLow The low 32 bits of the binary number; |
| 355 * @param {number} bitsHigh The high 32 bits of the binary number. |
| 356 * @return {number} |
| 357 */ |
| 358 jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) { |
| 359 var sign = ((bitsLow >> 31) * 2 + 1); |
| 360 var exp = (bitsLow >>> 23) & 0xFF; |
| 361 var mant = bitsLow & 0x7FFFFF; |
| 362 |
| 363 if (exp == 0xFF) { |
| 364 if (mant) { |
| 365 return NaN; |
| 366 } else { |
| 367 return sign * Infinity; |
| 368 } |
| 369 } |
| 370 |
| 371 if (exp == 0) { |
| 372 // Denormal. |
| 373 return sign * Math.pow(2, -149) * mant; |
| 374 } else { |
| 375 return sign * Math.pow(2, exp - 150) * |
| 376 (mant + Math.pow(2, 23)); |
| 377 } |
| 378 }; |
| 379 |
| 380 |
| 381 /** |
| 382 * Joins two 32-bit values into a 64-bit IEEE floating point number and |
| 383 * converts it back into a Javascript number. |
| 384 * @param {number} bitsLow The low 32 bits of the binary number; |
| 385 * @param {number} bitsHigh The high 32 bits of the binary number. |
| 386 * @return {number} |
| 387 */ |
| 388 jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) { |
| 389 var sign = ((bitsHigh >> 31) * 2 + 1); |
| 390 var exp = (bitsHigh >>> 20) & 0x7FF; |
| 391 var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow; |
| 392 |
| 393 if (exp == 0x7FF) { |
| 394 if (mant) { |
| 395 return NaN; |
| 396 } else { |
| 397 return sign * Infinity; |
| 398 } |
| 399 } |
| 400 |
| 401 if (exp == 0) { |
| 402 // Denormal. |
| 403 return sign * Math.pow(2, -1074) * mant; |
| 404 } else { |
| 405 return sign * Math.pow(2, exp - 1075) * |
| 406 (mant + jspb.BinaryConstants.TWO_TO_52); |
| 407 } |
| 408 }; |
| 409 |
| 410 |
| 411 /** |
| 412 * Joins two 32-bit values into an 8-character hash string. |
| 413 * @param {number} bitsLow |
| 414 * @param {number} bitsHigh |
| 415 * @return {string} |
| 416 */ |
| 417 jspb.utils.joinHash64 = function(bitsLow, bitsHigh) { |
| 418 var a = (bitsLow >>> 0) & 0xFF; |
| 419 var b = (bitsLow >>> 8) & 0xFF; |
| 420 var c = (bitsLow >>> 16) & 0xFF; |
| 421 var d = (bitsLow >>> 24) & 0xFF; |
| 422 var e = (bitsHigh >>> 0) & 0xFF; |
| 423 var f = (bitsHigh >>> 8) & 0xFF; |
| 424 var g = (bitsHigh >>> 16) & 0xFF; |
| 425 var h = (bitsHigh >>> 24) & 0xFF; |
| 426 |
| 427 return String.fromCharCode(a, b, c, d, e, f, g, h); |
| 428 }; |
| 429 |
| 430 |
| 431 /** |
| 432 * Individual digits for number->string conversion. |
| 433 * @const {!Array.<number>} |
| 434 */ |
| 435 jspb.utils.DIGITS = [ |
| 436 '0', '1', '2', '3', '4', '5', '6', '7', |
| 437 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| 438 ]; |
| 439 |
| 440 |
| 441 /** |
| 442 * Losslessly converts a 64-bit unsigned integer in 32:32 split representation |
| 443 * into a decimal string. |
| 444 * @param {number} bitsLow The low 32 bits of the binary number; |
| 445 * @param {number} bitsHigh The high 32 bits of the binary number. |
| 446 * @return {string} The binary number represented as a string. |
| 447 */ |
| 448 jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) { |
| 449 // Skip the expensive conversion if the number is small enough to use the |
| 450 // built-in conversions. |
| 451 if (bitsHigh <= 0x1FFFFF) { |
| 452 return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow); |
| 453 } |
| 454 |
| 455 // What this code is doing is essentially converting the input number from |
| 456 // base-2 to base-1e7, which allows us to represent the 64-bit range with |
| 457 // only 3 (very large) digits. Those digits are then trivial to convert to |
| 458 // a base-10 string. |
| 459 |
| 460 // The magic numbers used here are - |
| 461 // 2^24 = 16777216 = (1,6777216) in base-1e7. |
| 462 // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7. |
| 463 |
| 464 // Split 32:32 representation into 16:24:24 representation so our |
| 465 // intermediate digits don't overflow. |
| 466 var low = bitsLow & 0xFFFFFF; |
| 467 var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF; |
| 468 var high = (bitsHigh >> 16) & 0xFFFF; |
| 469 |
| 470 // Assemble our three base-1e7 digits, ignoring carries. The maximum |
| 471 // value in a digit at this step is representable as a 48-bit integer, which |
| 472 // can be stored in a 64-bit floating point number. |
| 473 var digitA = low + (mid * 6777216) + (high * 6710656); |
| 474 var digitB = mid + (high * 8147497); |
| 475 var digitC = (high * 2); |
| 476 |
| 477 // Apply carries from A to B and from B to C. |
| 478 var base = 10000000; |
| 479 if (digitA >= base) { |
| 480 digitB += Math.floor(digitA / base); |
| 481 digitA %= base; |
| 482 } |
| 483 |
| 484 if (digitB >= base) { |
| 485 digitC += Math.floor(digitB / base); |
| 486 digitB %= base; |
| 487 } |
| 488 |
| 489 // Convert base-1e7 digits to base-10, omitting leading zeroes. |
| 490 var table = jspb.utils.DIGITS; |
| 491 var start = false; |
| 492 var result = ''; |
| 493 |
| 494 function emit(digit) { |
| 495 var temp = base; |
| 496 for (var i = 0; i < 7; i++) { |
| 497 temp /= 10; |
| 498 var decimalDigit = ((digit / temp) % 10) >>> 0; |
| 499 if ((decimalDigit == 0) && !start) continue; |
| 500 start = true; |
| 501 result += table[decimalDigit]; |
| 502 } |
| 503 } |
| 504 |
| 505 if (digitC || start) emit(digitC); |
| 506 if (digitB || start) emit(digitB); |
| 507 if (digitA || start) emit(digitA); |
| 508 |
| 509 return result; |
| 510 }; |
| 511 |
| 512 |
| 513 /** |
| 514 * Losslessly converts a 64-bit signed integer in 32:32 split representation |
| 515 * into a decimal string. |
| 516 * @param {number} bitsLow The low 32 bits of the binary number; |
| 517 * @param {number} bitsHigh The high 32 bits of the binary number. |
| 518 * @return {string} The binary number represented as a string. |
| 519 */ |
| 520 jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) { |
| 521 // If we're treating the input as a signed value and the high bit is set, do |
| 522 // a manual two's complement conversion before the decimal conversion. |
| 523 var negative = (bitsHigh & 0x80000000); |
| 524 if (negative) { |
| 525 bitsLow = (~bitsLow + 1) >>> 0; |
| 526 var carry = (bitsLow == 0) ? 1 : 0; |
| 527 bitsHigh = (~bitsHigh + carry) >>> 0; |
| 528 } |
| 529 |
| 530 var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); |
| 531 return negative ? '-' + result : result; |
| 532 }; |
| 533 |
| 534 |
| 535 /** |
| 536 * Convert an 8-character hash string representing either a signed or unsigned |
| 537 * 64-bit integer into its decimal representation without losing accuracy. |
| 538 * @param {string} hash The hash string to convert. |
| 539 * @param {boolean} signed True if we should treat the hash string as encoding |
| 540 * a signed integer. |
| 541 * @return {string} |
| 542 */ |
| 543 jspb.utils.hash64ToDecimalString = function(hash, signed) { |
| 544 jspb.utils.splitHash64(hash); |
| 545 var bitsLow = jspb.utils.split64Low; |
| 546 var bitsHigh = jspb.utils.split64High; |
| 547 return signed ? |
| 548 jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) : |
| 549 jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); |
| 550 }; |
| 551 |
| 552 |
| 553 /** |
| 554 * Converts an array of 8-character hash strings into their decimal |
| 555 * representations. |
| 556 * @param {!Array.<string>} hashes The array of hash strings to convert. |
| 557 * @param {boolean} signed True if we should treat the hash string as encoding |
| 558 * a signed integer. |
| 559 * @return {!Array.<string>} |
| 560 */ |
| 561 jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) { |
| 562 var result = new Array(hashes.length); |
| 563 for (var i = 0; i < hashes.length; i++) { |
| 564 result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed); |
| 565 } |
| 566 return result; |
| 567 }; |
| 568 |
| 569 |
| 570 /** |
| 571 * Converts an 8-character hash string into its hexadecimal representation. |
| 572 * @param {string} hash |
| 573 * @return {string} |
| 574 */ |
| 575 jspb.utils.hash64ToHexString = function(hash) { |
| 576 var temp = new Array(18); |
| 577 temp[0] = '0'; |
| 578 temp[1] = 'x'; |
| 579 |
| 580 for (var i = 0; i < 8; i++) { |
| 581 var c = hash.charCodeAt(7 - i); |
| 582 temp[i * 2 + 2] = jspb.utils.DIGITS[c >> 4]; |
| 583 temp[i * 2 + 3] = jspb.utils.DIGITS[c & 0xF]; |
| 584 } |
| 585 |
| 586 var result = temp.join(''); |
| 587 return result; |
| 588 }; |
| 589 |
| 590 |
| 591 /** |
| 592 * Converts a '0x<16 digits>' hex string into its hash string representation. |
| 593 * @param {string} hex |
| 594 * @return {string} |
| 595 */ |
| 596 jspb.utils.hexStringToHash64 = function(hex) { |
| 597 hex = hex.toLowerCase(); |
| 598 goog.asserts.assert(hex.length == 18); |
| 599 goog.asserts.assert(hex[0] == '0'); |
| 600 goog.asserts.assert(hex[1] == 'x'); |
| 601 |
| 602 var result = ''; |
| 603 for (var i = 0; i < 8; i++) { |
| 604 var hi = jspb.utils.DIGITS.indexOf(hex[i * 2 + 2]); |
| 605 var lo = jspb.utils.DIGITS.indexOf(hex[i * 2 + 3]); |
| 606 result = String.fromCharCode(hi * 16 + lo) + result; |
| 607 } |
| 608 |
| 609 return result; |
| 610 }; |
| 611 |
| 612 |
| 613 /** |
| 614 * Convert an 8-character hash string representing either a signed or unsigned |
| 615 * 64-bit integer into a Javascript number. Will lose accuracy if the result is |
| 616 * larger than 2^52. |
| 617 * @param {string} hash The hash string to convert. |
| 618 * @param {boolean} signed True if the has should be interpreted as a signed |
| 619 * number. |
| 620 * @return {number} |
| 621 */ |
| 622 jspb.utils.hash64ToNumber = function(hash, signed) { |
| 623 jspb.utils.splitHash64(hash); |
| 624 var bitsLow = jspb.utils.split64Low; |
| 625 var bitsHigh = jspb.utils.split64High; |
| 626 return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) : |
| 627 jspb.utils.joinUint64(bitsLow, bitsHigh); |
| 628 }; |
| 629 |
| 630 |
| 631 /** |
| 632 * Convert a Javascript number into an 8-character hash string. Will lose |
| 633 * precision if the value is non-integral or greater than 2^64. |
| 634 * @param {number} value The integer to convert. |
| 635 * @return {string} |
| 636 */ |
| 637 jspb.utils.numberToHash64 = function(value) { |
| 638 jspb.utils.splitInt64(value); |
| 639 return jspb.utils.joinHash64(jspb.utils.split64Low, |
| 640 jspb.utils.split64High); |
| 641 }; |
| 642 |
| 643 |
| 644 /** |
| 645 * Counts the number of contiguous varints in a buffer. |
| 646 * @param {!Uint8Array} buffer The buffer to scan. |
| 647 * @param {number} start The starting point in the buffer to scan. |
| 648 * @param {number} end The end point in the buffer to scan. |
| 649 * @return {number} The number of varints in the buffer. |
| 650 */ |
| 651 jspb.utils.countVarints = function(buffer, start, end) { |
| 652 // Count how many high bits of each byte were set in the buffer. |
| 653 var count = 0; |
| 654 for (var i = start; i < end; i++) { |
| 655 count += buffer[i] >> 7; |
| 656 } |
| 657 |
| 658 // The number of varints in the buffer equals the size of the buffer minus |
| 659 // the number of non-terminal bytes in the buffer (those with the high bit |
| 660 // set). |
| 661 return (end - start) - count; |
| 662 }; |
| 663 |
| 664 |
| 665 /** |
| 666 * Counts the number of contiguous varint fields with the given field number in |
| 667 * the buffer. |
| 668 * @param {!Uint8Array} buffer The buffer to scan. |
| 669 * @param {number} start The starting point in the buffer to scan. |
| 670 * @param {number} end The end point in the buffer to scan. |
| 671 * @param {number} field The field number to count. |
| 672 * @return {number} The number of matching fields in the buffer. |
| 673 */ |
| 674 jspb.utils.countVarintFields = function(buffer, start, end, field) { |
| 675 var count = 0; |
| 676 var cursor = start; |
| 677 var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT; |
| 678 |
| 679 if (tag < 128) { |
| 680 // Single-byte field tag, we can use a slightly quicker count. |
| 681 while (cursor < end) { |
| 682 // Skip the field tag, or exit if we find a non-matching tag. |
| 683 if (buffer[cursor++] != tag) return count; |
| 684 |
| 685 // Field tag matches, we've found a valid field. |
| 686 count++; |
| 687 |
| 688 // Skip the varint. |
| 689 while (1) { |
| 690 var x = buffer[cursor++]; |
| 691 if ((x & 0x80) == 0) break; |
| 692 } |
| 693 } |
| 694 } else { |
| 695 while (cursor < end) { |
| 696 // Skip the field tag, or exit if we find a non-matching tag. |
| 697 var temp = tag; |
| 698 while (temp > 128) { |
| 699 if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count; |
| 700 cursor++; |
| 701 temp >>= 7; |
| 702 } |
| 703 if (buffer[cursor++] != temp) return count; |
| 704 |
| 705 // Field tag matches, we've found a valid field. |
| 706 count++; |
| 707 |
| 708 // Skip the varint. |
| 709 while (1) { |
| 710 var x = buffer[cursor++]; |
| 711 if ((x & 0x80) == 0) break; |
| 712 } |
| 713 } |
| 714 } |
| 715 return count; |
| 716 }; |
| 717 |
| 718 |
| 719 /** |
| 720 * Counts the number of contiguous fixed32 fields with the given tag in the |
| 721 * buffer. |
| 722 * @param {!Uint8Array} buffer The buffer to scan. |
| 723 * @param {number} start The starting point in the buffer to scan. |
| 724 * @param {number} end The end point in the buffer to scan. |
| 725 * @param {number} tag The tag value to count. |
| 726 * @param {number} stride The number of bytes to skip per field. |
| 727 * @return {number} The number of fields with a matching tag in the buffer. |
| 728 * @private |
| 729 */ |
| 730 jspb.utils.countFixedFields_ = |
| 731 function(buffer, start, end, tag, stride) { |
| 732 var count = 0; |
| 733 var cursor = start; |
| 734 |
| 735 if (tag < 128) { |
| 736 // Single-byte field tag, we can use a slightly quicker count. |
| 737 while (cursor < end) { |
| 738 // Skip the field tag, or exit if we find a non-matching tag. |
| 739 if (buffer[cursor++] != tag) return count; |
| 740 |
| 741 // Field tag matches, we've found a valid field. |
| 742 count++; |
| 743 |
| 744 // Skip the value. |
| 745 cursor += stride; |
| 746 } |
| 747 } else { |
| 748 while (cursor < end) { |
| 749 // Skip the field tag, or exit if we find a non-matching tag. |
| 750 var temp = tag; |
| 751 while (temp > 128) { |
| 752 if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; |
| 753 temp >>= 7; |
| 754 } |
| 755 if (buffer[cursor++] != temp) return count; |
| 756 |
| 757 // Field tag matches, we've found a valid field. |
| 758 count++; |
| 759 |
| 760 // Skip the value. |
| 761 cursor += stride; |
| 762 } |
| 763 } |
| 764 return count; |
| 765 }; |
| 766 |
| 767 |
| 768 /** |
| 769 * Counts the number of contiguous fixed32 fields with the given field number |
| 770 * in the buffer. |
| 771 * @param {!Uint8Array} buffer The buffer to scan. |
| 772 * @param {number} start The starting point in the buffer to scan. |
| 773 * @param {number} end The end point in the buffer to scan. |
| 774 * @param {number} field The field number to count. |
| 775 * @return {number} The number of matching fields in the buffer. |
| 776 */ |
| 777 jspb.utils.countFixed32Fields = function(buffer, start, end, field) { |
| 778 var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32; |
| 779 return jspb.utils.countFixedFields_(buffer, start, end, tag, 4); |
| 780 }; |
| 781 |
| 782 |
| 783 /** |
| 784 * Counts the number of contiguous fixed64 fields with the given field number |
| 785 * in the buffer. |
| 786 * @param {!Uint8Array} buffer The buffer to scan. |
| 787 * @param {number} start The starting point in the buffer to scan. |
| 788 * @param {number} end The end point in the buffer to scan. |
| 789 * @param {number} field The field number to count |
| 790 * @return {number} The number of matching fields in the buffer. |
| 791 */ |
| 792 jspb.utils.countFixed64Fields = function(buffer, start, end, field) { |
| 793 var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64; |
| 794 return jspb.utils.countFixedFields_(buffer, start, end, tag, 8); |
| 795 }; |
| 796 |
| 797 |
| 798 /** |
| 799 * Counts the number of contiguous delimited fields with the given field number |
| 800 * in the buffer. |
| 801 * @param {!Uint8Array} buffer The buffer to scan. |
| 802 * @param {number} start The starting point in the buffer to scan. |
| 803 * @param {number} end The end point in the buffer to scan. |
| 804 * @param {number} field The field number to count. |
| 805 * @return {number} The number of matching fields in the buffer. |
| 806 */ |
| 807 jspb.utils.countDelimitedFields = function(buffer, start, end, field) { |
| 808 var count = 0; |
| 809 var cursor = start; |
| 810 var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED; |
| 811 |
| 812 while (cursor < end) { |
| 813 // Skip the field tag, or exit if we find a non-matching tag. |
| 814 var temp = tag; |
| 815 while (temp > 128) { |
| 816 if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; |
| 817 temp >>= 7; |
| 818 } |
| 819 if (buffer[cursor++] != temp) return count; |
| 820 |
| 821 // Field tag matches, we've found a valid field. |
| 822 count++; |
| 823 |
| 824 // Decode the length prefix. |
| 825 var length = 0; |
| 826 var shift = 1; |
| 827 while (1) { |
| 828 temp = buffer[cursor++]; |
| 829 length += (temp & 0x7f) * shift; |
| 830 shift *= 128; |
| 831 if ((temp & 0x80) == 0) break; |
| 832 } |
| 833 |
| 834 // Advance the cursor past the blob. |
| 835 cursor += length; |
| 836 } |
| 837 return count; |
| 838 }; |
| 839 |
| 840 |
| 841 /** |
| 842 * Clones a scalar field. Pulling this out to a helper method saves us a few |
| 843 * bytes of generated code. |
| 844 * @param {Array} array |
| 845 * @return {Array} |
| 846 */ |
| 847 jspb.utils.cloneRepeatedScalarField = function(array) { |
| 848 return array ? array.slice() : null; |
| 849 }; |
| 850 |
| 851 |
| 852 /** |
| 853 * Clones an array of messages using the provided cloner function. |
| 854 * @param {Array.<jspb.BinaryMessage>} messages |
| 855 * @param {jspb.ClonerFunction} cloner |
| 856 * @return {Array.<jspb.BinaryMessage>} |
| 857 */ |
| 858 jspb.utils.cloneRepeatedMessageField = function(messages, cloner) { |
| 859 if (messages === null) return null; |
| 860 var result = []; |
| 861 for (var i = 0; i < messages.length; i++) { |
| 862 result.push(cloner(messages[i])); |
| 863 } |
| 864 return result; |
| 865 }; |
| 866 |
| 867 |
| 868 /** |
| 869 * Clones an array of byte blobs. |
| 870 * @param {Array.<Uint8Array>} blobs |
| 871 * @return {Array.<Uint8Array>} |
| 872 */ |
| 873 jspb.utils.cloneRepeatedBlobField = function(blobs) { |
| 874 if (blobs === null) return null; |
| 875 var result = []; |
| 876 for (var i = 0; i < blobs.length; i++) { |
| 877 result.push(new Uint8Array(blobs[i])); |
| 878 } |
| 879 return result; |
| 880 }; |
| 881 |
| 882 |
| 883 /** |
| 884 * String-ify bytes for text format. Should be optimized away in non-debug. |
| 885 * The returned string uses \xXX escapes for all values and is itself quoted. |
| 886 * [1, 31] serializes to '"\x01\x1f"'. |
| 887 * @param {jspb.ByteSource} byteSource The bytes to serialize. |
| 888 * @param {boolean=} opt_stringIsRawBytes The string is interpreted as a series |
| 889 * of raw bytes rather than base64 data. |
| 890 * @return {string} Stringified bytes for text format. |
| 891 */ |
| 892 jspb.utils.debugBytesToTextFormat = function(byteSource, |
| 893 opt_stringIsRawBytes) { |
| 894 var s = '"'; |
| 895 if (byteSource) { |
| 896 var bytes = |
| 897 jspb.utils.byteSourceToUint8Array(byteSource, opt_stringIsRawBytes); |
| 898 for (var i = 0; i < bytes.length; i++) { |
| 899 s += '\\x'; |
| 900 if (bytes[i] < 16) s += '0'; |
| 901 s += bytes[i].toString(16); |
| 902 } |
| 903 } |
| 904 return s + '"'; |
| 905 }; |
| 906 |
| 907 |
| 908 /** |
| 909 * String-ify a scalar for text format. Should be optimized away in non-debug. |
| 910 * @param {string|number|boolean} scalar The scalar to stringify. |
| 911 * @return {string} Stringified scalar for text format. |
| 912 */ |
| 913 jspb.utils.debugScalarToTextFormat = function(scalar) { |
| 914 if (goog.isString(scalar)) { |
| 915 return goog.string.quote(scalar); |
| 916 } else { |
| 917 return scalar.toString(); |
| 918 } |
| 919 }; |
| 920 |
| 921 |
| 922 /** |
| 923 * Utility function: convert a string with codepoints 0--255 inclusive to a |
| 924 * Uint8Array. If any codepoints greater than 255 exist in the string, throws an |
| 925 * exception. |
| 926 * @param {string} str |
| 927 * @return {!Uint8Array} |
| 928 * @private |
| 929 */ |
| 930 jspb.utils.stringToByteArray_ = function(str) { |
| 931 var arr = new Uint8Array(str.length); |
| 932 for (var i = 0; i < str.length; i++) { |
| 933 var codepoint = str.charCodeAt(i); |
| 934 if (codepoint > 255) { |
| 935 throw new Error('Conversion error: string contains codepoint ' + |
| 936 'outside of byte range'); |
| 937 } |
| 938 arr[i] = codepoint; |
| 939 } |
| 940 return arr; |
| 941 }; |
| 942 |
| 943 |
| 944 /** |
| 945 * Converts any type defined in jspb.ByteSource into a Uint8Array. |
| 946 * @param {!jspb.ByteSource} data |
| 947 * @param {boolean=} opt_stringIsRawBytes Interpret a string as a series of raw |
| 948 * bytes (encoded as codepoints 0--255 inclusive) rather than base64 data |
| 949 * (default behavior). |
| 950 * @return {!Uint8Array} |
| 951 * @suppress {invalidCasts} |
| 952 */ |
| 953 jspb.utils.byteSourceToUint8Array = function(data, opt_stringIsRawBytes) { |
| 954 if (data.constructor === Uint8Array) { |
| 955 return /** @type {!Uint8Array} */(data); |
| 956 } |
| 957 |
| 958 if (data.constructor === ArrayBuffer) { |
| 959 data = /** @type {!ArrayBuffer} */(data); |
| 960 return /** @type {!Uint8Array} */(new Uint8Array(data)); |
| 961 } |
| 962 |
| 963 if (data.constructor === Array) { |
| 964 data = /** @type {!Array.<number>} */(data); |
| 965 return /** @type {!Uint8Array} */(new Uint8Array(data)); |
| 966 } |
| 967 |
| 968 if (data.constructor === String) { |
| 969 data = /** @type {string} */(data); |
| 970 if (opt_stringIsRawBytes) { |
| 971 return jspb.utils.stringToByteArray_(data); |
| 972 } else { |
| 973 return goog.crypt.base64.decodeStringToUint8Array(data); |
| 974 } |
| 975 } |
| 976 |
| 977 goog.asserts.fail('Type not convertible to Uint8Array.'); |
| 978 return /** @type {!Uint8Array} */(new Uint8Array(0)); |
| 979 }; |
OLD | NEW |