| OLD | NEW | 
| (Empty) |  | 
 |    1 // Protocol Buffers - Google's data interchange format | 
 |    2 // Copyright 2008 Google Inc.  All rights reserved. | 
 |    3 // https://developers.google.com/protocol-buffers/ | 
 |    4 // | 
 |    5 // Redistribution and use in source and binary forms, with or without | 
 |    6 // modification, are permitted provided that the following conditions are | 
 |    7 // met: | 
 |    8 // | 
 |    9 //     * Redistributions of source code must retain the above copyright | 
 |   10 // notice, this list of conditions and the following disclaimer. | 
 |   11 //     * Redistributions in binary form must reproduce the above | 
 |   12 // copyright notice, this list of conditions and the following disclaimer | 
 |   13 // in the documentation and/or other materials provided with the | 
 |   14 // distribution. | 
 |   15 //     * Neither the name of Google Inc. nor the names of its | 
 |   16 // contributors may be used to endorse or promote products derived from | 
 |   17 // this software without specific prior written permission. | 
 |   18 // | 
 |   19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |   20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |   21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |   22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 |   23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |   24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 |   25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 |   26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 |   27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |   28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |   29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |   30  | 
 |   31 /** | 
 |   32  * @fileoverview This file contains helper code used by jspb.utils to | 
 |   33  * handle 64-bit integer conversion to/from strings. | 
 |   34  * | 
 |   35  * @author cfallin@google.com (Chris Fallin) | 
 |   36  * | 
 |   37  * TODO(haberman): move this to javascript/closure/math? | 
 |   38  */ | 
 |   39  | 
 |   40 goog.provide('jspb.arith.Int64'); | 
 |   41 goog.provide('jspb.arith.UInt64'); | 
 |   42  | 
 |   43 /** | 
 |   44  * UInt64 implements some 64-bit arithmetic routines necessary for properly | 
 |   45  * handling 64-bit integer fields. It implements lossless integer arithmetic on | 
 |   46  * top of JavaScript's number type, which has only 53 bits of precision, by | 
 |   47  * representing 64-bit integers as two 32-bit halves. | 
 |   48  * | 
 |   49  * @param {number} lo The low 32 bits. | 
 |   50  * @param {number} hi The high 32 bits. | 
 |   51  * @constructor | 
 |   52  */ | 
 |   53 jspb.arith.UInt64 = function(lo, hi) { | 
 |   54   /** | 
 |   55    * The low 32 bits. | 
 |   56    * @public {number} | 
 |   57    */ | 
 |   58   this.lo = lo; | 
 |   59   /** | 
 |   60    * The high 32 bits. | 
 |   61    * @public {number} | 
 |   62    */ | 
 |   63   this.hi = hi; | 
 |   64 }; | 
 |   65  | 
 |   66  | 
 |   67 /** | 
 |   68  * Compare two 64-bit numbers. Returns -1 if the first is | 
 |   69  * less, +1 if the first is greater, or 0 if both are equal. | 
 |   70  * @param {!jspb.arith.UInt64} other | 
 |   71  * @return {number} | 
 |   72  */ | 
 |   73 jspb.arith.UInt64.prototype.cmp = function(other) { | 
 |   74   if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) { | 
 |   75     return -1; | 
 |   76   } else if (this.hi == other.hi && this.lo == other.lo) { | 
 |   77     return 0; | 
 |   78   } else { | 
 |   79     return 1; | 
 |   80   } | 
 |   81 }; | 
 |   82  | 
 |   83  | 
 |   84 /** | 
 |   85  * Right-shift this number by one bit. | 
 |   86  * @return {!jspb.arith.UInt64} | 
 |   87  */ | 
 |   88 jspb.arith.UInt64.prototype.rightShift = function() { | 
 |   89   var hi = this.hi >>> 1; | 
 |   90   var lo = (this.lo >>> 1) | ((this.hi & 1) << 31); | 
 |   91   return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
 |   92 }; | 
 |   93  | 
 |   94  | 
 |   95 /** | 
 |   96  * Left-shift this number by one bit. | 
 |   97  * @return {!jspb.arith.UInt64} | 
 |   98  */ | 
 |   99 jspb.arith.UInt64.prototype.leftShift = function() { | 
 |  100   var lo = this.lo << 1; | 
 |  101   var hi = (this.hi << 1) | (this.lo >>> 31); | 
 |  102   return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
 |  103 }; | 
 |  104  | 
 |  105  | 
 |  106 /** | 
 |  107  * Test the MSB. | 
 |  108  * @return {boolean} | 
 |  109  */ | 
 |  110 jspb.arith.UInt64.prototype.msb = function() { | 
 |  111   return !!(this.hi & 0x80000000); | 
 |  112 }; | 
 |  113  | 
 |  114  | 
 |  115 /** | 
 |  116  * Test the LSB. | 
 |  117  * @return {boolean} | 
 |  118  */ | 
 |  119 jspb.arith.UInt64.prototype.lsb = function() { | 
 |  120   return !!(this.lo & 1); | 
 |  121 }; | 
 |  122  | 
 |  123  | 
 |  124 /** | 
 |  125  * Test whether this number is zero. | 
 |  126  * @return {boolean} | 
 |  127  */ | 
 |  128 jspb.arith.UInt64.prototype.zero = function() { | 
 |  129   return this.lo == 0 && this.hi == 0; | 
 |  130 }; | 
 |  131  | 
 |  132  | 
 |  133 /** | 
 |  134  * Add two 64-bit numbers to produce a 64-bit number. | 
 |  135  * @param {!jspb.arith.UInt64} other | 
 |  136  * @return {!jspb.arith.UInt64} | 
 |  137  */ | 
 |  138 jspb.arith.UInt64.prototype.add = function(other) { | 
 |  139   var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; | 
 |  140   var hi = | 
 |  141       (((this.hi + other.hi) & 0xffffffff) >>> 0) + | 
 |  142       (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); | 
 |  143   return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
 |  144 }; | 
 |  145  | 
 |  146  | 
 |  147 /** | 
 |  148  * Subtract two 64-bit numbers to produce a 64-bit number. | 
 |  149  * @param {!jspb.arith.UInt64} other | 
 |  150  * @return {!jspb.arith.UInt64} | 
 |  151  */ | 
 |  152 jspb.arith.UInt64.prototype.sub = function(other) { | 
 |  153   var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; | 
 |  154   var hi = | 
 |  155       (((this.hi - other.hi) & 0xffffffff) >>> 0) - | 
 |  156       (((this.lo - other.lo) < 0) ? 1 : 0); | 
 |  157   return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); | 
 |  158 }; | 
 |  159  | 
 |  160  | 
 |  161 /** | 
 |  162  * Multiply two 32-bit numbers to produce a 64-bit number. | 
 |  163  * @param {number} a The first integer:  must be in [0, 2^32-1). | 
 |  164  * @param {number} b The second integer: must be in [0, 2^32-1). | 
 |  165  * @return {!jspb.arith.UInt64} | 
 |  166  */ | 
 |  167 jspb.arith.UInt64.mul32x32 = function(a, b) { | 
 |  168   // Directly multiplying two 32-bit numbers may produce up to 64 bits of | 
 |  169   // precision, thus losing precision because of the 53-bit mantissa of | 
 |  170   // JavaScript numbers. So we multiply with 16-bit digits (radix 65536) | 
 |  171   // instead. | 
 |  172   var aLow = (a & 0xffff); | 
 |  173   var aHigh = (a >>> 16); | 
 |  174   var bLow = (b & 0xffff); | 
 |  175   var bHigh = (b >>> 16); | 
 |  176   var productLow = | 
 |  177       // 32-bit result, result bits 0-31, take all 32 bits | 
 |  178       (aLow * bLow) + | 
 |  179       // 32-bit result, result bits 16-47, take bottom 16 as our top 16 | 
 |  180       ((aLow * bHigh) & 0xffff) * 0x10000 + | 
 |  181       // 32-bit result, result bits 16-47, take bottom 16 as our top 16 | 
 |  182       ((aHigh * bLow) & 0xffff) * 0x10000; | 
 |  183   var productHigh = | 
 |  184       // 32-bit result, result bits 32-63, take all 32 bits | 
 |  185       (aHigh * bHigh) + | 
 |  186       // 32-bit result, result bits 16-47, take top 16 as our bottom 16 | 
 |  187       ((aLow * bHigh) >>> 16) + | 
 |  188       // 32-bit result, result bits 16-47, take top 16 as our bottom 16 | 
 |  189       ((aHigh * bLow) >>> 16); | 
 |  190  | 
 |  191   // Carry. Note that we actually have up to *two* carries due to addition of | 
 |  192   // three terms. | 
 |  193   while (productLow >= 0x100000000) { | 
 |  194     productLow -= 0x100000000; | 
 |  195     productHigh += 1; | 
 |  196   } | 
 |  197  | 
 |  198   return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0); | 
 |  199 }; | 
 |  200  | 
 |  201  | 
 |  202 /** | 
 |  203  * Multiply this number by a 32-bit number, producing a 96-bit number, then | 
 |  204  * truncate the top 32 bits. | 
 |  205  * @param {number} a The multiplier. | 
 |  206  * @return {!jspb.arith.UInt64} | 
 |  207  */ | 
 |  208 jspb.arith.UInt64.prototype.mul = function(a) { | 
 |  209   // Produce two parts: at bits 0-63, and 32-95. | 
 |  210   var lo = jspb.arith.UInt64.mul32x32(this.lo, a); | 
 |  211   var hi = jspb.arith.UInt64.mul32x32(this.hi, a); | 
 |  212   // Left-shift hi by 32 bits, truncating its top bits. The parts will then be | 
 |  213   // aligned for addition. | 
 |  214   hi.hi = hi.lo; | 
 |  215   hi.lo = 0; | 
 |  216   return lo.add(hi); | 
 |  217 }; | 
 |  218  | 
 |  219  | 
 |  220 /** | 
 |  221  * Divide a 64-bit number by a 32-bit number to produce a | 
 |  222  * 64-bit quotient and a 32-bit remainder. | 
 |  223  * @param {number} _divisor | 
 |  224  * @return {Array.<jspb.arith.UInt64>} array of [quotient, remainder], | 
 |  225  * unless divisor is 0, in which case an empty array is returned. | 
 |  226  */ | 
 |  227 jspb.arith.UInt64.prototype.div = function(_divisor) { | 
 |  228   if (_divisor == 0) { | 
 |  229     return []; | 
 |  230   } | 
 |  231  | 
 |  232   // We perform long division using a radix-2 algorithm, for simplicity (i.e., | 
 |  233   // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care | 
 |  234   // to get the variable shifts right. | 
 |  235   var quotient = new jspb.arith.UInt64(0, 0); | 
 |  236   var remainder = new jspb.arith.UInt64(this.lo, this.hi); | 
 |  237   var divisor = new jspb.arith.UInt64(_divisor, 0); | 
 |  238   var unit = new jspb.arith.UInt64(1, 0); | 
 |  239  | 
 |  240   // Left-shift the divisor and unit until the high bit of divisor is set. | 
 |  241   while (!divisor.msb()) { | 
 |  242     divisor = divisor.leftShift(); | 
 |  243     unit = unit.leftShift(); | 
 |  244   } | 
 |  245  | 
 |  246   // Perform long division one bit at a time. | 
 |  247   while (!unit.zero()) { | 
 |  248     // If divisor < remainder, add unit to quotient and subtract divisor from | 
 |  249     // remainder. | 
 |  250     if (divisor.cmp(remainder) <= 0) { | 
 |  251       quotient = quotient.add(unit); | 
 |  252       remainder = remainder.sub(divisor); | 
 |  253     } | 
 |  254     // Right-shift the divisor and unit. | 
 |  255     divisor = divisor.rightShift(); | 
 |  256     unit = unit.rightShift(); | 
 |  257   } | 
 |  258  | 
 |  259   return [quotient, remainder]; | 
 |  260 }; | 
 |  261  | 
 |  262  | 
 |  263 /** | 
 |  264  * Convert a 64-bit number to a string. | 
 |  265  * @return {string} | 
 |  266  * @override | 
 |  267  */ | 
 |  268 jspb.arith.UInt64.prototype.toString = function() { | 
 |  269   var result = ''; | 
 |  270   var num = this; | 
 |  271   while (!num.zero()) { | 
 |  272     var divResult = num.div(10); | 
 |  273     var quotient = divResult[0], remainder = divResult[1]; | 
 |  274     result = remainder.lo + result; | 
 |  275     num = quotient; | 
 |  276   } | 
 |  277   if (result == '') { | 
 |  278     result = '0'; | 
 |  279   } | 
 |  280   return result; | 
 |  281 }; | 
 |  282  | 
 |  283  | 
 |  284 /** | 
 |  285  * Parse a string into a 64-bit number. Returns `null` on a parse error. | 
 |  286  * @param {string} s | 
 |  287  * @return {?jspb.arith.UInt64} | 
 |  288  */ | 
 |  289 jspb.arith.UInt64.fromString = function(s) { | 
 |  290   var result = new jspb.arith.UInt64(0, 0); | 
 |  291   // optimization: reuse this instance for each digit. | 
 |  292   var digit64 = new jspb.arith.UInt64(0, 0); | 
 |  293   for (var i = 0; i < s.length; i++) { | 
 |  294     if (s[i] < '0' || s[i] > '9') { | 
 |  295       return null; | 
 |  296     } | 
 |  297     var digit = parseInt(s[i], 10); | 
 |  298     digit64.lo = digit; | 
 |  299     result = result.mul(10).add(digit64); | 
 |  300   } | 
 |  301   return result; | 
 |  302 }; | 
 |  303  | 
 |  304  | 
 |  305 /** | 
 |  306  * Make a copy of the uint64. | 
 |  307  * @return {!jspb.arith.UInt64} | 
 |  308  */ | 
 |  309 jspb.arith.UInt64.prototype.clone = function() { | 
 |  310   return new jspb.arith.UInt64(this.lo, this.hi); | 
 |  311 }; | 
 |  312  | 
 |  313  | 
 |  314 /** | 
 |  315  * Int64 is like UInt64, but modifies string conversions to interpret the stored | 
 |  316  * 64-bit value as a twos-complement-signed integer. It does *not* support the | 
 |  317  * full range of operations that UInt64 does: only add, subtract, and string | 
 |  318  * conversions. | 
 |  319  * | 
 |  320  * N.B. that multiply and divide routines are *NOT* supported. They will throw | 
 |  321  * exceptions. (They are not necessary to implement string conversions, which | 
 |  322  * are the only operations we really need in jspb.) | 
 |  323  * | 
 |  324  * @param {number} lo The low 32 bits. | 
 |  325  * @param {number} hi The high 32 bits. | 
 |  326  * @constructor | 
 |  327  */ | 
 |  328 jspb.arith.Int64 = function(lo, hi) { | 
 |  329   /** | 
 |  330    * The low 32 bits. | 
 |  331    * @public {number} | 
 |  332    */ | 
 |  333   this.lo = lo; | 
 |  334   /** | 
 |  335    * The high 32 bits. | 
 |  336    * @public {number} | 
 |  337    */ | 
 |  338   this.hi = hi; | 
 |  339 }; | 
 |  340  | 
 |  341  | 
 |  342 /** | 
 |  343  * Add two 64-bit numbers to produce a 64-bit number. | 
 |  344  * @param {!jspb.arith.Int64} other | 
 |  345  * @return {!jspb.arith.Int64} | 
 |  346  */ | 
 |  347 jspb.arith.Int64.prototype.add = function(other) { | 
 |  348   var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; | 
 |  349   var hi = | 
 |  350       (((this.hi + other.hi) & 0xffffffff) >>> 0) + | 
 |  351       (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); | 
 |  352   return new jspb.arith.Int64(lo >>> 0, hi >>> 0); | 
 |  353 }; | 
 |  354  | 
 |  355  | 
 |  356 /** | 
 |  357  * Subtract two 64-bit numbers to produce a 64-bit number. | 
 |  358  * @param {!jspb.arith.Int64} other | 
 |  359  * @return {!jspb.arith.Int64} | 
 |  360  */ | 
 |  361 jspb.arith.Int64.prototype.sub = function(other) { | 
 |  362   var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; | 
 |  363   var hi = | 
 |  364       (((this.hi - other.hi) & 0xffffffff) >>> 0) - | 
 |  365       (((this.lo - other.lo) < 0) ? 1 : 0); | 
 |  366   return new jspb.arith.Int64(lo >>> 0, hi >>> 0); | 
 |  367 }; | 
 |  368  | 
 |  369  | 
 |  370 /** | 
 |  371  * Make a copy of the int64. | 
 |  372  * @return {!jspb.arith.Int64} | 
 |  373  */ | 
 |  374 jspb.arith.Int64.prototype.clone = function() { | 
 |  375   return new jspb.arith.Int64(this.lo, this.hi); | 
 |  376 }; | 
 |  377  | 
 |  378  | 
 |  379 /** | 
 |  380  * Convert a 64-bit number to a string. | 
 |  381  * @return {string} | 
 |  382  * @override | 
 |  383  */ | 
 |  384 jspb.arith.Int64.prototype.toString = function() { | 
 |  385   // If the number is negative, find its twos-complement inverse. | 
 |  386   var sign = (this.hi & 0x80000000) != 0; | 
 |  387   var num = new jspb.arith.UInt64(this.lo, this.hi); | 
 |  388   if (sign) { | 
 |  389     num = new jspb.arith.UInt64(0, 0).sub(num); | 
 |  390   } | 
 |  391   return (sign ? '-' : '') + num.toString(); | 
 |  392 }; | 
 |  393  | 
 |  394  | 
 |  395 /** | 
 |  396  * Parse a string into a 64-bit number. Returns `null` on a parse error. | 
 |  397  * @param {string} s | 
 |  398  * @return {?jspb.arith.Int64} | 
 |  399  */ | 
 |  400 jspb.arith.Int64.fromString = function(s) { | 
 |  401   var hasNegative = (s.length > 0 && s[0] == '-'); | 
 |  402   if (hasNegative) { | 
 |  403     s = s.substring(1); | 
 |  404   } | 
 |  405   var num = jspb.arith.UInt64.fromString(s); | 
 |  406   if (num === null) { | 
 |  407     return null; | 
 |  408   } | 
 |  409   if (hasNegative) { | 
 |  410     num = new jspb.arith.UInt64(0, 0).sub(num); | 
 |  411   } | 
 |  412   return new jspb.arith.Int64(num.lo, num.hi); | 
 |  413 }; | 
| OLD | NEW |