Index: src/compiler/simplified-lowering.cc |
diff --git a/src/compiler/simplified-lowering.cc b/src/compiler/simplified-lowering.cc |
index 6f3eb902622d3ad7e410ef45733f6c575b7e8843..a813d136646ac67c78de9018662a6373ddc0b27b 100644 |
--- a/src/compiler/simplified-lowering.cc |
+++ b/src/compiler/simplified-lowering.cc |
@@ -962,11 +962,26 @@ class RepresentationSelector { |
} |
break; |
} |
+ case IrOpcode::kNumberCeil: { |
+ VisitUnop(node, UseInfo::Float64(), MachineRepresentation::kFloat64); |
+ if (lower()) DeferReplacement(node, lowering->Float64Ceil(node)); |
+ break; |
+ } |
case IrOpcode::kNumberFloor: { |
VisitUnop(node, UseInfo::Float64(), MachineRepresentation::kFloat64); |
if (lower()) DeferReplacement(node, lowering->Float64Floor(node)); |
break; |
} |
+ case IrOpcode::kNumberRound: { |
+ VisitUnop(node, UseInfo::Float64(), MachineRepresentation::kFloat64); |
+ if (lower()) DeferReplacement(node, lowering->Float64Round(node)); |
+ break; |
+ } |
+ case IrOpcode::kNumberTrunc: { |
+ VisitUnop(node, UseInfo::Float64(), MachineRepresentation::kFloat64); |
+ if (lower()) DeferReplacement(node, lowering->Float64Trunc(node)); |
+ break; |
+ } |
case IrOpcode::kNumberToInt32: { |
// Just change representation if necessary. |
VisitUnop(node, UseInfo::TruncatingWord32(), |
@@ -1524,6 +1539,129 @@ void SimplifiedLowering::DoStoreBuffer(Node* node) { |
NodeProperties::ChangeOp(node, machine()->CheckedStore(rep)); |
} |
+Node* SimplifiedLowering::Float64Ceil(Node* const node) { |
+ Node* const one = jsgraph()->Float64Constant(1.0); |
+ Node* const zero = jsgraph()->Float64Constant(0.0); |
+ Node* const minus_zero = jsgraph()->Float64Constant(-0.0); |
+ Node* const two_52 = jsgraph()->Float64Constant(4503599627370496.0E0); |
+ Node* const minus_two_52 = jsgraph()->Float64Constant(-4503599627370496.0E0); |
+ Node* const input = node->InputAt(0); |
+ |
+ // Use fast hardware instruction if available. |
+ if (machine()->Float64RoundUp().IsSupported()) { |
+ return graph()->NewNode(machine()->Float64RoundUp().op(), input); |
+ } |
+ |
+ // General case for ceil. |
+ // |
+ // if 0.0 < input then |
+ // if 2^52 <= input then |
+ // input |
+ // else |
+ // let temp1 = (2^52 + input) - 2^52 in |
+ // if temp1 < input then |
+ // temp1 + 1 |
+ // else |
+ // temp1 |
+ // else |
+ // if input == 0 then |
+ // input |
+ // else |
+ // if input <= -2^52 then |
+ // input |
+ // else |
+ // let temp1 = -0 - input in |
+ // let temp2 = (2^52 + temp1) - 2^52 in |
+ // let temp3 = (if temp1 < temp2 then temp2 - 1 else temp2) in |
+ // -0 - temp3 |
+ // |
+ // Note: We do not use the Diamond helper class here, because it really hurts |
+ // readability with nested diamonds. |
+ |
+ Node* check0 = graph()->NewNode(machine()->Float64LessThan(), zero, input); |
+ Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, |
+ graph()->start()); |
+ |
+ Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0); |
+ Node* vtrue0; |
+ { |
+ Node* check1 = |
+ graph()->NewNode(machine()->Float64LessThanOrEqual(), two_52, input); |
+ Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0); |
+ |
+ Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1); |
+ Node* vtrue1 = input; |
+ |
+ Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1); |
+ Node* vfalse1; |
+ { |
+ Node* temp1 = graph()->NewNode( |
+ machine()->Float64Sub(), |
+ graph()->NewNode(machine()->Float64Add(), two_52, input), two_52); |
+ vfalse1 = graph()->NewNode( |
+ common()->Select(MachineRepresentation::kFloat64), |
+ graph()->NewNode(machine()->Float64LessThan(), temp1, input), |
+ graph()->NewNode(machine()->Float64Add(), temp1, one), temp1); |
+ } |
+ |
+ if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1); |
+ vtrue0 = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue1, vfalse1, if_true0); |
+ } |
+ |
+ Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0); |
+ Node* vfalse0; |
+ { |
+ Node* check1 = graph()->NewNode(machine()->Float64Equal(), input, zero); |
+ Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kFalse), |
+ check1, if_false0); |
+ |
+ Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1); |
+ Node* vtrue1 = input; |
+ |
+ Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1); |
+ Node* vfalse1; |
+ { |
+ Node* check2 = graph()->NewNode(machine()->Float64LessThanOrEqual(), |
+ input, minus_two_52); |
+ Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse), |
+ check2, if_false1); |
+ |
+ Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2); |
+ Node* vtrue2 = input; |
+ |
+ Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2); |
+ Node* vfalse2; |
+ { |
+ Node* temp1 = |
+ graph()->NewNode(machine()->Float64Sub(), minus_zero, input); |
+ Node* temp2 = graph()->NewNode( |
+ machine()->Float64Sub(), |
+ graph()->NewNode(machine()->Float64Add(), two_52, temp1), two_52); |
+ Node* temp3 = graph()->NewNode( |
+ common()->Select(MachineRepresentation::kFloat64), |
+ graph()->NewNode(machine()->Float64LessThan(), temp1, temp2), |
+ graph()->NewNode(machine()->Float64Sub(), temp2, one), temp2); |
+ vfalse2 = graph()->NewNode(machine()->Float64Sub(), minus_zero, temp3); |
+ } |
+ |
+ if_false1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2); |
+ vfalse1 = |
+ graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue2, vfalse2, if_false1); |
+ } |
+ |
+ if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1); |
+ vfalse0 = |
+ graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue1, vfalse1, if_false0); |
+ } |
+ |
+ Node* merge0 = graph()->NewNode(common()->Merge(2), if_true0, if_false0); |
+ return graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue0, vfalse0, merge0); |
+} |
+ |
Node* SimplifiedLowering::Float64Floor(Node* const node) { |
Node* const one = jsgraph()->Float64Constant(1.0); |
Node* const zero = jsgraph()->Float64Constant(0.0); |
@@ -1650,6 +1788,144 @@ Node* SimplifiedLowering::Float64Floor(Node* const node) { |
vtrue0, vfalse0, merge0); |
} |
+Node* SimplifiedLowering::Float64Round(Node* const node) { |
+ Node* const one = jsgraph()->Float64Constant(1.0); |
+ Node* const one_half = jsgraph()->Float64Constant(0.5); |
+ Node* const input = node->InputAt(0); |
+ |
+ // Round up towards Infinity, and adjust if the difference exceeds 0.5. |
+ Node* result = Float64Ceil(node); |
+ return graph()->NewNode( |
+ common()->Select(MachineRepresentation::kFloat64), |
+ graph()->NewNode( |
+ machine()->Float64LessThanOrEqual(), |
+ graph()->NewNode(machine()->Float64Sub(), result, one_half), input), |
+ result, graph()->NewNode(machine()->Float64Sub(), result, one)); |
+} |
+ |
+Node* SimplifiedLowering::Float64Trunc(Node* const node) { |
+ Node* const one = jsgraph()->Float64Constant(1.0); |
+ Node* const zero = jsgraph()->Float64Constant(0.0); |
+ Node* const minus_zero = jsgraph()->Float64Constant(-0.0); |
+ Node* const two_52 = jsgraph()->Float64Constant(4503599627370496.0E0); |
+ Node* const minus_two_52 = jsgraph()->Float64Constant(-4503599627370496.0E0); |
+ Node* const input = node->InputAt(0); |
+ |
+ // Use fast hardware instruction if available. |
+ if (machine()->Float64RoundTruncate().IsSupported()) { |
+ return graph()->NewNode(machine()->Float64RoundTruncate().op(), input); |
+ } |
+ |
+ // General case for trunc. |
+ // |
+ // if 0.0 < input then |
+ // if 2^52 <= input then |
+ // input |
+ // else |
+ // let temp1 = (2^52 + input) - 2^52 in |
+ // if input < temp1 then |
+ // temp1 - 1 |
+ // else |
+ // temp1 |
+ // else |
+ // if input == 0 then |
+ // input |
+ // else |
+ // if input <= -2^52 then |
+ // input |
+ // else |
+ // let temp1 = -0 - input in |
+ // let temp2 = (2^52 + temp1) - 2^52 in |
+ // let temp3 = (if temp1 < temp2 then temp2 - 1 else temp2) in |
+ // -0 - temp3 |
+ // |
+ // Note: We do not use the Diamond helper class here, because it really hurts |
+ // readability with nested diamonds. |
+ |
+ Node* check0 = graph()->NewNode(machine()->Float64LessThan(), zero, input); |
+ Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, |
+ graph()->start()); |
+ |
+ Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0); |
+ Node* vtrue0; |
+ { |
+ Node* check1 = |
+ graph()->NewNode(machine()->Float64LessThanOrEqual(), two_52, input); |
+ Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0); |
+ |
+ Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1); |
+ Node* vtrue1 = input; |
+ |
+ Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1); |
+ Node* vfalse1; |
+ { |
+ Node* temp1 = graph()->NewNode( |
+ machine()->Float64Sub(), |
+ graph()->NewNode(machine()->Float64Add(), two_52, input), two_52); |
+ vfalse1 = graph()->NewNode( |
+ common()->Select(MachineRepresentation::kFloat64), |
+ graph()->NewNode(machine()->Float64LessThan(), input, temp1), |
+ graph()->NewNode(machine()->Float64Sub(), temp1, one), temp1); |
+ } |
+ |
+ if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1); |
+ vtrue0 = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue1, vfalse1, if_true0); |
+ } |
+ |
+ Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0); |
+ Node* vfalse0; |
+ { |
+ Node* check1 = graph()->NewNode(machine()->Float64Equal(), input, zero); |
+ Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kFalse), |
+ check1, if_false0); |
+ |
+ Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1); |
+ Node* vtrue1 = input; |
+ |
+ Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1); |
+ Node* vfalse1; |
+ { |
+ Node* check2 = graph()->NewNode(machine()->Float64LessThanOrEqual(), |
+ input, minus_two_52); |
+ Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse), |
+ check2, if_false1); |
+ |
+ Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2); |
+ Node* vtrue2 = input; |
+ |
+ Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2); |
+ Node* vfalse2; |
+ { |
+ Node* temp1 = |
+ graph()->NewNode(machine()->Float64Sub(), minus_zero, input); |
+ Node* temp2 = graph()->NewNode( |
+ machine()->Float64Sub(), |
+ graph()->NewNode(machine()->Float64Add(), two_52, temp1), two_52); |
+ Node* temp3 = graph()->NewNode( |
+ common()->Select(MachineRepresentation::kFloat64), |
+ graph()->NewNode(machine()->Float64LessThan(), temp1, temp2), |
+ graph()->NewNode(machine()->Float64Sub(), temp2, one), temp2); |
+ vfalse2 = graph()->NewNode(machine()->Float64Sub(), minus_zero, temp3); |
+ } |
+ |
+ if_false1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2); |
+ vfalse1 = |
+ graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue2, vfalse2, if_false1); |
+ } |
+ |
+ if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1); |
+ vfalse0 = |
+ graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue1, vfalse1, if_false0); |
+ } |
+ |
+ Node* merge0 = graph()->NewNode(common()->Merge(2), if_true0, if_false0); |
+ return graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2), |
+ vtrue0, vfalse0, merge0); |
+} |
+ |
Node* SimplifiedLowering::Int32Div(Node* const node) { |
Int32BinopMatcher m(node); |
Node* const zero = jsgraph()->Int32Constant(0); |