Index: crypto/encryptor_unittest.cc |
diff --git a/crypto/encryptor_unittest.cc b/crypto/encryptor_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..79fe2cca1a6758be1296cfe0fcc6d735351ab287 |
--- /dev/null |
+++ b/crypto/encryptor_unittest.cc |
@@ -0,0 +1,531 @@ |
+// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "crypto/encryptor.h" |
+ |
+#include <string> |
+ |
+#include "base/memory/scoped_ptr.h" |
+#include "base/strings/string_number_conversions.h" |
+#include "crypto/symmetric_key.h" |
+#include "testing/gtest/include/gtest/gtest.h" |
+ |
+TEST(EncryptorTest, EncryptDecrypt) { |
+ scoped_ptr<crypto::SymmetricKey> key( |
+ crypto::SymmetricKey::DeriveKeyFromPassword( |
+ crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); |
+ EXPECT_TRUE(key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long as the cipher block size. |
+ std::string iv("the iv: 16 bytes"); |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ std::string plaintext("this is the plaintext"); |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ |
+ EXPECT_LT(0U, ciphertext.size()); |
+ |
+ std::string decrypted; |
+ EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
+ |
+ EXPECT_EQ(plaintext, decrypted); |
+} |
+ |
+TEST(EncryptorTest, DecryptWrongKey) { |
+ scoped_ptr<crypto::SymmetricKey> key( |
+ crypto::SymmetricKey::DeriveKeyFromPassword( |
+ crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); |
+ EXPECT_TRUE(key.get()); |
+ |
+ // A wrong key that can be detected by implementations that validate every |
+ // byte in the padding. |
+ scoped_ptr<crypto::SymmetricKey> wrong_key( |
+ crypto::SymmetricKey::DeriveKeyFromPassword( |
+ crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256)); |
+ EXPECT_TRUE(wrong_key.get()); |
+ |
+ // A wrong key that can't be detected by any implementation. The password |
+ // "wrongword;" would also work. |
+ scoped_ptr<crypto::SymmetricKey> wrong_key2( |
+ crypto::SymmetricKey::DeriveKeyFromPassword( |
+ crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256)); |
+ EXPECT_TRUE(wrong_key2.get()); |
+ |
+ // A wrong key that can be detected by all implementations. |
+ scoped_ptr<crypto::SymmetricKey> wrong_key3( |
+ crypto::SymmetricKey::DeriveKeyFromPassword( |
+ crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256)); |
+ EXPECT_TRUE(wrong_key3.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long as the cipher block size. |
+ std::string iv("the iv: 16 bytes"); |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ std::string plaintext("this is the plaintext"); |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ |
+ static const unsigned char expected_ciphertext[] = { |
+ 0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27, |
+ 0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0, |
+ 0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8, |
+ 0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C |
+ }; |
+ |
+ ASSERT_EQ(arraysize(expected_ciphertext), ciphertext.size()); |
+ for (size_t i = 0; i < ciphertext.size(); ++i) { |
+ ASSERT_EQ(expected_ciphertext[i], |
+ static_cast<unsigned char>(ciphertext[i])); |
+ } |
+ |
+ std::string decrypted; |
+ |
+ // This wrong key causes the last padding byte to be 5, which is a valid |
+ // padding length, and the second to last padding byte to be 137, which is |
+ // invalid. If an implementation simply uses the last padding byte to |
+ // determine the padding length without checking every padding byte, |
+ // Encryptor::Decrypt() will still return true. This is the case for NSS |
+ // (crbug.com/124434). |
+#if !defined(USE_NSS_CERTS) && !defined(OS_WIN) && !defined(OS_MACOSX) |
+ crypto::Encryptor decryptor; |
+ EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv)); |
+ EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decrypted)); |
+#endif |
+ |
+ // This demonstrates that not all wrong keys can be detected by padding |
+ // error. This wrong key causes the last padding byte to be 1, which is |
+ // a valid padding block of length 1. |
+ crypto::Encryptor decryptor2; |
+ EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv)); |
+ EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decrypted)); |
+ |
+ // This wrong key causes the last padding byte to be 253, which should be |
+ // rejected by all implementations. |
+ crypto::Encryptor decryptor3; |
+ EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv)); |
+ EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decrypted)); |
+} |
+ |
+namespace { |
+ |
+// From NIST SP 800-38a test cast: |
+// - F.5.1 CTR-AES128.Encrypt |
+// - F.5.6 CTR-AES256.Encrypt |
+// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
+const unsigned char kAES128CTRKey[] = { |
+ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, |
+ 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c |
+}; |
+ |
+const unsigned char kAES256CTRKey[] = { |
+ 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, |
+ 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, |
+ 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, |
+ 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 |
+}; |
+ |
+const unsigned char kAESCTRInitCounter[] = { |
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff |
+}; |
+ |
+const unsigned char kAESCTRPlaintext[] = { |
+ // Block #1 |
+ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, |
+ 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, |
+ // Block #2 |
+ 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, |
+ 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, |
+ // Block #3 |
+ 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, |
+ 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, |
+ // Block #4 |
+ 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, |
+ 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 |
+}; |
+ |
+const unsigned char kAES128CTRCiphertext[] = { |
+ // Block #1 |
+ 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, |
+ 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, |
+ // Block #2 |
+ 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, |
+ 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, |
+ // Block #3 |
+ 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, |
+ 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, |
+ // Block #4 |
+ 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, |
+ 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee |
+}; |
+ |
+const unsigned char kAES256CTRCiphertext[] = { |
+ // Block #1 |
+ 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, |
+ 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, |
+ // Block #2 |
+ 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, |
+ 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, |
+ // Block #3 |
+ 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, |
+ 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, |
+ // Block #4 |
+ 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, |
+ 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 |
+}; |
+ |
+void TestAESCTREncrypt( |
+ const unsigned char* key, size_t key_size, |
+ const unsigned char* init_counter, size_t init_counter_size, |
+ const unsigned char* plaintext, size_t plaintext_size, |
+ const unsigned char* ciphertext, size_t ciphertext_size) { |
+ std::string key_str(reinterpret_cast<const char*>(key), key_size); |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key_str)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); |
+ |
+ base::StringPiece init_counter_str( |
+ reinterpret_cast<const char*>(init_counter), init_counter_size); |
+ base::StringPiece plaintext_str( |
+ reinterpret_cast<const char*>(plaintext), plaintext_size); |
+ |
+ EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); |
+ std::string encrypted; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext_str, &encrypted)); |
+ |
+ EXPECT_EQ(ciphertext_size, encrypted.size()); |
+ EXPECT_EQ(0, memcmp(encrypted.data(), ciphertext, encrypted.size())); |
+ |
+ std::string decrypted; |
+ EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); |
+ EXPECT_TRUE(encryptor.Decrypt(encrypted, &decrypted)); |
+ |
+ EXPECT_EQ(plaintext_str, decrypted); |
+} |
+ |
+void TestAESCTRMultipleDecrypt( |
+ const unsigned char* key, size_t key_size, |
+ const unsigned char* init_counter, size_t init_counter_size, |
+ const unsigned char* plaintext, size_t plaintext_size, |
+ const unsigned char* ciphertext, size_t ciphertext_size) { |
+ std::string key_str(reinterpret_cast<const char*>(key), key_size); |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key_str)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); |
+ |
+ // Counter is set only once. |
+ EXPECT_TRUE(encryptor.SetCounter(base::StringPiece( |
+ reinterpret_cast<const char*>(init_counter), init_counter_size))); |
+ |
+ std::string ciphertext_str(reinterpret_cast<const char*>(ciphertext), |
+ ciphertext_size); |
+ |
+ int kTestDecryptSizes[] = { 32, 16, 8 }; |
+ |
+ int offset = 0; |
+ for (size_t i = 0; i < arraysize(kTestDecryptSizes); ++i) { |
+ std::string decrypted; |
+ size_t len = kTestDecryptSizes[i]; |
+ EXPECT_TRUE( |
+ encryptor.Decrypt(ciphertext_str.substr(offset, len), &decrypted)); |
+ EXPECT_EQ(len, decrypted.size()); |
+ EXPECT_EQ(0, memcmp(decrypted.data(), plaintext + offset, len)); |
+ offset += len; |
+ } |
+} |
+ |
+} // namespace |
+ |
+TEST(EncryptorTest, EncryptAES128CTR) { |
+ TestAESCTREncrypt( |
+ kAES128CTRKey, arraysize(kAES128CTRKey), |
+ kAESCTRInitCounter, arraysize(kAESCTRInitCounter), |
+ kAESCTRPlaintext, arraysize(kAESCTRPlaintext), |
+ kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); |
+} |
+ |
+TEST(EncryptorTest, EncryptAES256CTR) { |
+ TestAESCTREncrypt( |
+ kAES256CTRKey, arraysize(kAES256CTRKey), |
+ kAESCTRInitCounter, arraysize(kAESCTRInitCounter), |
+ kAESCTRPlaintext, arraysize(kAESCTRPlaintext), |
+ kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); |
+} |
+ |
+TEST(EncryptorTest, EncryptAES128CTR_MultipleDecrypt) { |
+ TestAESCTRMultipleDecrypt( |
+ kAES128CTRKey, arraysize(kAES128CTRKey), |
+ kAESCTRInitCounter, arraysize(kAESCTRInitCounter), |
+ kAESCTRPlaintext, arraysize(kAESCTRPlaintext), |
+ kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); |
+} |
+ |
+TEST(EncryptorTest, EncryptAES256CTR_MultipleDecrypt) { |
+ TestAESCTRMultipleDecrypt( |
+ kAES256CTRKey, arraysize(kAES256CTRKey), |
+ kAESCTRInitCounter, arraysize(kAESCTRInitCounter), |
+ kAESCTRPlaintext, arraysize(kAESCTRPlaintext), |
+ kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); |
+} |
+ |
+TEST(EncryptorTest, EncryptDecryptCTR) { |
+ scoped_ptr<crypto::SymmetricKey> key( |
+ crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 128)); |
+ |
+ EXPECT_TRUE(key.get()); |
+ const std::string kInitialCounter = "0000000000000000"; |
+ |
+ crypto::Encryptor encryptor; |
+ EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, "")); |
+ EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
+ |
+ std::string plaintext("normal plaintext of random length"); |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ EXPECT_LT(0U, ciphertext.size()); |
+ |
+ std::string decrypted; |
+ EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
+ EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
+ EXPECT_EQ(plaintext, decrypted); |
+ |
+ plaintext = "0123456789012345"; |
+ EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ EXPECT_LT(0U, ciphertext.size()); |
+ |
+ EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); |
+ EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
+ EXPECT_EQ(plaintext, decrypted); |
+} |
+ |
+TEST(EncryptorTest, CTRCounter) { |
+ const int kCounterSize = 16; |
+ const unsigned char kTest1[] = |
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
+ unsigned char buf[16]; |
+ |
+ // Increment 10 times. |
+ crypto::Encryptor::Counter counter1( |
+ std::string(reinterpret_cast<const char*>(kTest1), kCounterSize)); |
+ for (int i = 0; i < 10; ++i) |
+ counter1.Increment(); |
+ counter1.Write(buf); |
+ EXPECT_EQ(0, memcmp(buf, kTest1, 15)); |
+ EXPECT_TRUE(buf[15] == 10); |
+ |
+ // Check corner cases. |
+ const unsigned char kTest2[] = { |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
+ }; |
+ const unsigned char kExpect2[] = |
+ {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}; |
+ crypto::Encryptor::Counter counter2( |
+ std::string(reinterpret_cast<const char*>(kTest2), kCounterSize)); |
+ counter2.Increment(); |
+ counter2.Write(buf); |
+ EXPECT_EQ(0, memcmp(buf, kExpect2, kCounterSize)); |
+ |
+ const unsigned char kTest3[] = { |
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
+ }; |
+ const unsigned char kExpect3[] = |
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
+ crypto::Encryptor::Counter counter3( |
+ std::string(reinterpret_cast<const char*>(kTest3), kCounterSize)); |
+ counter3.Increment(); |
+ counter3.Write(buf); |
+ EXPECT_EQ(0, memcmp(buf, kExpect3, kCounterSize)); |
+} |
+ |
+// TODO(wtc): add more known-answer tests. Test vectors are available from |
+// http://www.ietf.org/rfc/rfc3602 |
+// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
+// http://gladman.plushost.co.uk/oldsite/AES/index.php |
+// http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip |
+ |
+// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. |
+TEST(EncryptorTest, EncryptAES256CBC) { |
+ // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt. |
+ static const unsigned char kRawKey[] = { |
+ 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, |
+ 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, |
+ 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, |
+ 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 |
+ }; |
+ static const unsigned char kRawIv[] = { |
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f |
+ }; |
+ static const unsigned char kRawPlaintext[] = { |
+ // Block #1 |
+ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, |
+ 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, |
+ // Block #2 |
+ 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, |
+ 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, |
+ // Block #3 |
+ 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, |
+ 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, |
+ // Block #4 |
+ 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, |
+ 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10, |
+ }; |
+ static const unsigned char kRawCiphertext[] = { |
+ // Block #1 |
+ 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, |
+ 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, |
+ // Block #2 |
+ 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, |
+ 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, |
+ // Block #3 |
+ 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, |
+ 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, |
+ // Block #4 |
+ 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, |
+ 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, |
+ // PKCS #5 padding, encrypted. |
+ 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, |
+ 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44 |
+ }; |
+ |
+ std::string key(reinterpret_cast<const char*>(kRawKey), sizeof(kRawKey)); |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long a the cipher block size. |
+ std::string iv(reinterpret_cast<const char*>(kRawIv), sizeof(kRawIv)); |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ std::string plaintext(reinterpret_cast<const char*>(kRawPlaintext), |
+ sizeof(kRawPlaintext)); |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ |
+ EXPECT_EQ(sizeof(kRawCiphertext), ciphertext.size()); |
+ EXPECT_EQ(0, memcmp(ciphertext.data(), kRawCiphertext, ciphertext.size())); |
+ |
+ std::string decrypted; |
+ EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
+ |
+ EXPECT_EQ(plaintext, decrypted); |
+} |
+ |
+// Expected output derived from the NSS implementation. |
+TEST(EncryptorTest, EncryptAES128CBCRegression) { |
+ std::string key = "128=SixteenBytes"; |
+ std::string iv = "Sweet Sixteen IV"; |
+ std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; |
+ std::string expected_ciphertext_hex = |
+ "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" |
+ "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; |
+ |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long a the cipher block size. |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), |
+ ciphertext.size())); |
+ |
+ std::string decrypted; |
+ EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); |
+ EXPECT_EQ(plaintext, decrypted); |
+} |
+ |
+// Symmetric keys with an unsupported size should be rejected. Whether they are |
+// rejected by SymmetricKey::Import or Encryptor::Init depends on the platform. |
+TEST(EncryptorTest, UnsupportedKeySize) { |
+ std::string key = "7 = bad"; |
+ std::string iv = "Sweet Sixteen IV"; |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ if (!sym_key.get()) |
+ return; |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long as the cipher block size. |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+} |
+ |
+TEST(EncryptorTest, UnsupportedIV) { |
+ std::string key = "128=SixteenBytes"; |
+ std::string iv = "OnlyForteen :("; |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+} |
+ |
+TEST(EncryptorTest, EmptyEncrypt) { |
+ std::string key = "128=SixteenBytes"; |
+ std::string iv = "Sweet Sixteen IV"; |
+ std::string plaintext; |
+ std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; |
+ |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long a the cipher block size. |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ std::string ciphertext; |
+ EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); |
+ EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), |
+ ciphertext.size())); |
+} |
+ |
+TEST(EncryptorTest, CipherTextNotMultipleOfBlockSize) { |
+ std::string key = "128=SixteenBytes"; |
+ std::string iv = "Sweet Sixteen IV"; |
+ |
+ scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( |
+ crypto::SymmetricKey::AES, key)); |
+ ASSERT_TRUE(sym_key.get()); |
+ |
+ crypto::Encryptor encryptor; |
+ // The IV must be exactly as long a the cipher block size. |
+ EXPECT_EQ(16U, iv.size()); |
+ EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); |
+ |
+ // Use a separately allocated array to improve the odds of the memory tools |
+ // catching invalid accesses. |
+ // |
+ // Otherwise when using std::string as the other tests do, accesses several |
+ // bytes off the end of the buffer may fall inside the reservation of |
+ // the string and not be detected. |
+ scoped_ptr<char[]> ciphertext(new char[1]); |
+ |
+ std::string plaintext; |
+ EXPECT_FALSE( |
+ encryptor.Decrypt(base::StringPiece(ciphertext.get(), 1), &plaintext)); |
+} |