OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "crypto/hmac.h" |
| 6 |
| 7 #include <windows.h> |
| 8 |
| 9 #include <algorithm> |
| 10 #include <vector> |
| 11 |
| 12 #include "base/logging.h" |
| 13 #include "crypto/scoped_capi_types.h" |
| 14 #include "crypto/third_party/nss/chromium-blapi.h" |
| 15 #include "crypto/third_party/nss/chromium-sha256.h" |
| 16 #include "crypto/wincrypt_shim.h" |
| 17 |
| 18 namespace crypto { |
| 19 |
| 20 namespace { |
| 21 |
| 22 // Implementation of HMAC-SHA-256: |
| 23 // |
| 24 // SHA-256 is supported in Windows XP SP3 or later. We still need to support |
| 25 // Windows XP SP2, so unfortunately we have to implement HMAC-SHA-256 here. |
| 26 |
| 27 enum { |
| 28 SHA256_BLOCK_SIZE = 64 // Block size (in bytes) of the input to SHA-256. |
| 29 }; |
| 30 |
| 31 // NSS doesn't accept size_t for text size, divide the data into smaller |
| 32 // chunks as needed. |
| 33 void Wrapped_SHA256_Update(SHA256Context* ctx, const unsigned char* text, |
| 34 size_t text_len) { |
| 35 const unsigned int kChunkSize = 1 << 30; |
| 36 while (text_len > kChunkSize) { |
| 37 SHA256_Update(ctx, text, kChunkSize); |
| 38 text += kChunkSize; |
| 39 text_len -= kChunkSize; |
| 40 } |
| 41 SHA256_Update(ctx, text, (unsigned int)text_len); |
| 42 } |
| 43 |
| 44 // See FIPS 198: The Keyed-Hash Message Authentication Code (HMAC). |
| 45 void ComputeHMACSHA256(const unsigned char* key, size_t key_len, |
| 46 const unsigned char* text, size_t text_len, |
| 47 unsigned char* output, size_t output_len) { |
| 48 SHA256Context ctx; |
| 49 |
| 50 // Pre-process the key, if necessary. |
| 51 unsigned char key0[SHA256_BLOCK_SIZE]; |
| 52 if (key_len > SHA256_BLOCK_SIZE) { |
| 53 SHA256_Begin(&ctx); |
| 54 Wrapped_SHA256_Update(&ctx, key, key_len); |
| 55 SHA256_End(&ctx, key0, NULL, SHA256_LENGTH); |
| 56 memset(key0 + SHA256_LENGTH, 0, SHA256_BLOCK_SIZE - SHA256_LENGTH); |
| 57 } else { |
| 58 memcpy(key0, key, key_len); |
| 59 if (key_len < SHA256_BLOCK_SIZE) |
| 60 memset(key0 + key_len, 0, SHA256_BLOCK_SIZE - key_len); |
| 61 } |
| 62 |
| 63 unsigned char padded_key[SHA256_BLOCK_SIZE]; |
| 64 unsigned char inner_hash[SHA256_LENGTH]; |
| 65 |
| 66 // XOR key0 with ipad. |
| 67 for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) |
| 68 padded_key[i] = key0[i] ^ 0x36; |
| 69 |
| 70 // Compute the inner hash. |
| 71 SHA256_Begin(&ctx); |
| 72 SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); |
| 73 Wrapped_SHA256_Update(&ctx, text, text_len); |
| 74 SHA256_End(&ctx, inner_hash, NULL, SHA256_LENGTH); |
| 75 |
| 76 // XOR key0 with opad. |
| 77 for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) |
| 78 padded_key[i] = key0[i] ^ 0x5c; |
| 79 |
| 80 // Compute the outer hash. |
| 81 SHA256_Begin(&ctx); |
| 82 SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); |
| 83 SHA256_Update(&ctx, inner_hash, SHA256_LENGTH); |
| 84 SHA256_End(&ctx, output, NULL, (unsigned int) output_len); |
| 85 } |
| 86 |
| 87 } // namespace |
| 88 |
| 89 struct HMACPlatformData { |
| 90 ~HMACPlatformData() { |
| 91 if (!raw_key_.empty()) { |
| 92 SecureZeroMemory(&raw_key_[0], raw_key_.size()); |
| 93 } |
| 94 |
| 95 // Destroy the key before releasing the provider. |
| 96 key_.reset(); |
| 97 } |
| 98 |
| 99 ScopedHCRYPTPROV provider_; |
| 100 ScopedHCRYPTKEY key_; |
| 101 |
| 102 // For HMAC-SHA-256 only. |
| 103 std::vector<unsigned char> raw_key_; |
| 104 }; |
| 105 |
| 106 HMAC::HMAC(HashAlgorithm hash_alg) |
| 107 : hash_alg_(hash_alg), plat_(new HMACPlatformData()) { |
| 108 // Only SHA-1 and SHA-256 hash algorithms are supported now. |
| 109 DCHECK(hash_alg_ == SHA1 || hash_alg_ == SHA256); |
| 110 } |
| 111 |
| 112 bool HMAC::Init(const unsigned char* key, size_t key_length) { |
| 113 if (plat_->provider_ || plat_->key_ || !plat_->raw_key_.empty()) { |
| 114 // Init must not be called more than once on the same HMAC object. |
| 115 NOTREACHED(); |
| 116 return false; |
| 117 } |
| 118 |
| 119 if (hash_alg_ == SHA256) { |
| 120 plat_->raw_key_.assign(key, key + key_length); |
| 121 return true; |
| 122 } |
| 123 |
| 124 if (!CryptAcquireContext(plat_->provider_.receive(), NULL, NULL, |
| 125 PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { |
| 126 NOTREACHED(); |
| 127 return false; |
| 128 } |
| 129 |
| 130 // This code doesn't work on Win2k because PLAINTEXTKEYBLOB and |
| 131 // CRYPT_IPSEC_HMAC_KEY are not supported on Windows 2000. PLAINTEXTKEYBLOB |
| 132 // allows the import of an unencrypted key. For Win2k support, a cubmbersome |
| 133 // exponent-of-one key procedure must be used: |
| 134 // http://support.microsoft.com/kb/228786/en-us |
| 135 // CRYPT_IPSEC_HMAC_KEY allows keys longer than 16 bytes. |
| 136 |
| 137 struct KeyBlob { |
| 138 BLOBHEADER header; |
| 139 DWORD key_size; |
| 140 BYTE key_data[1]; |
| 141 }; |
| 142 size_t key_blob_size = std::max(offsetof(KeyBlob, key_data) + key_length, |
| 143 sizeof(KeyBlob)); |
| 144 std::vector<BYTE> key_blob_storage = std::vector<BYTE>(key_blob_size); |
| 145 KeyBlob* key_blob = reinterpret_cast<KeyBlob*>(&key_blob_storage[0]); |
| 146 key_blob->header.bType = PLAINTEXTKEYBLOB; |
| 147 key_blob->header.bVersion = CUR_BLOB_VERSION; |
| 148 key_blob->header.reserved = 0; |
| 149 key_blob->header.aiKeyAlg = CALG_RC2; |
| 150 key_blob->key_size = static_cast<DWORD>(key_length); |
| 151 memcpy(key_blob->key_data, key, key_length); |
| 152 |
| 153 if (!CryptImportKey(plat_->provider_, &key_blob_storage[0], |
| 154 (DWORD)key_blob_storage.size(), 0, |
| 155 CRYPT_IPSEC_HMAC_KEY, plat_->key_.receive())) { |
| 156 NOTREACHED(); |
| 157 return false; |
| 158 } |
| 159 |
| 160 // Destroy the copy of the key. |
| 161 SecureZeroMemory(key_blob->key_data, key_length); |
| 162 |
| 163 return true; |
| 164 } |
| 165 |
| 166 HMAC::~HMAC() { |
| 167 } |
| 168 |
| 169 bool HMAC::Sign(const base::StringPiece& data, |
| 170 unsigned char* digest, |
| 171 size_t digest_length) const { |
| 172 if (hash_alg_ == SHA256) { |
| 173 if (plat_->raw_key_.empty()) |
| 174 return false; |
| 175 ComputeHMACSHA256(&plat_->raw_key_[0], plat_->raw_key_.size(), |
| 176 reinterpret_cast<const unsigned char*>(data.data()), |
| 177 data.size(), digest, digest_length); |
| 178 return true; |
| 179 } |
| 180 |
| 181 if (!plat_->provider_ || !plat_->key_) |
| 182 return false; |
| 183 |
| 184 if (hash_alg_ != SHA1) { |
| 185 NOTREACHED(); |
| 186 return false; |
| 187 } |
| 188 |
| 189 ScopedHCRYPTHASH hash; |
| 190 if (!CryptCreateHash(plat_->provider_, CALG_HMAC, plat_->key_, 0, |
| 191 hash.receive())) |
| 192 return false; |
| 193 |
| 194 HMAC_INFO hmac_info; |
| 195 memset(&hmac_info, 0, sizeof(hmac_info)); |
| 196 hmac_info.HashAlgid = CALG_SHA1; |
| 197 if (!CryptSetHashParam(hash, HP_HMAC_INFO, |
| 198 reinterpret_cast<BYTE*>(&hmac_info), 0)) |
| 199 return false; |
| 200 |
| 201 if (!CryptHashData(hash, reinterpret_cast<const BYTE*>(data.data()), |
| 202 static_cast<DWORD>(data.size()), 0)) |
| 203 return false; |
| 204 |
| 205 DWORD sha1_size = static_cast<DWORD>(digest_length); |
| 206 return !!CryptGetHashParam(hash, HP_HASHVAL, digest, &sha1_size, 0); |
| 207 } |
| 208 |
| 209 } // namespace crypto |
OLD | NEW |