| Index: runtime/third_party/double-conversion/src/ieee.h
|
| ===================================================================
|
| --- runtime/third_party/double-conversion/src/ieee.h (revision 0)
|
| +++ runtime/third_party/double-conversion/src/ieee.h (working copy)
|
| @@ -0,0 +1,402 @@
|
| +// Copyright 2012 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef DOUBLE_CONVERSION_DOUBLE_H_
|
| +#define DOUBLE_CONVERSION_DOUBLE_H_
|
| +
|
| +#include "diy-fp.h"
|
| +
|
| +namespace double_conversion {
|
| +
|
| +// We assume that doubles and uint64_t have the same endianness.
|
| +static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
|
| +static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
|
| +static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
|
| +static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
|
| +
|
| +// Helper functions for doubles.
|
| +class Double {
|
| + public:
|
| + static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
|
| + static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
|
| + static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
|
| + static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
|
| + static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
|
| + static const int kSignificandSize = 53;
|
| +
|
| + Double() : d64_(0) {}
|
| + explicit Double(double d) : d64_(double_to_uint64(d)) {}
|
| + explicit Double(uint64_t d64) : d64_(d64) {}
|
| + explicit Double(DiyFp diy_fp)
|
| + : d64_(DiyFpToUint64(diy_fp)) {}
|
| +
|
| + // The value encoded by this Double must be greater or equal to +0.0.
|
| + // It must not be special (infinity, or NaN).
|
| + DiyFp AsDiyFp() const {
|
| + ASSERT(Sign() > 0);
|
| + ASSERT(!IsSpecial());
|
| + return DiyFp(Significand(), Exponent());
|
| + }
|
| +
|
| + // The value encoded by this Double must be strictly greater than 0.
|
| + DiyFp AsNormalizedDiyFp() const {
|
| + ASSERT(value() > 0.0);
|
| + uint64_t f = Significand();
|
| + int e = Exponent();
|
| +
|
| + // The current double could be a denormal.
|
| + while ((f & kHiddenBit) == 0) {
|
| + f <<= 1;
|
| + e--;
|
| + }
|
| + // Do the final shifts in one go.
|
| + f <<= DiyFp::kSignificandSize - kSignificandSize;
|
| + e -= DiyFp::kSignificandSize - kSignificandSize;
|
| + return DiyFp(f, e);
|
| + }
|
| +
|
| + // Returns the double's bit as uint64.
|
| + uint64_t AsUint64() const {
|
| + return d64_;
|
| + }
|
| +
|
| + // Returns the next greater double. Returns +infinity on input +infinity.
|
| + double NextDouble() const {
|
| + if (d64_ == kInfinity) return Double(kInfinity).value();
|
| + if (Sign() < 0 && Significand() == 0) {
|
| + // -0.0
|
| + return 0.0;
|
| + }
|
| + if (Sign() < 0) {
|
| + return Double(d64_ - 1).value();
|
| + } else {
|
| + return Double(d64_ + 1).value();
|
| + }
|
| + }
|
| +
|
| + double PreviousDouble() const {
|
| + if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
|
| + if (Sign() < 0) {
|
| + return Double(d64_ + 1).value();
|
| + } else {
|
| + if (Significand() == 0) return -0.0;
|
| + return Double(d64_ - 1).value();
|
| + }
|
| + }
|
| +
|
| + int Exponent() const {
|
| + if (IsDenormal()) return kDenormalExponent;
|
| +
|
| + uint64_t d64 = AsUint64();
|
| + int biased_e =
|
| + static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
|
| + return biased_e - kExponentBias;
|
| + }
|
| +
|
| + uint64_t Significand() const {
|
| + uint64_t d64 = AsUint64();
|
| + uint64_t significand = d64 & kSignificandMask;
|
| + if (!IsDenormal()) {
|
| + return significand + kHiddenBit;
|
| + } else {
|
| + return significand;
|
| + }
|
| + }
|
| +
|
| + // Returns true if the double is a denormal.
|
| + bool IsDenormal() const {
|
| + uint64_t d64 = AsUint64();
|
| + return (d64 & kExponentMask) == 0;
|
| + }
|
| +
|
| + // We consider denormals not to be special.
|
| + // Hence only Infinity and NaN are special.
|
| + bool IsSpecial() const {
|
| + uint64_t d64 = AsUint64();
|
| + return (d64 & kExponentMask) == kExponentMask;
|
| + }
|
| +
|
| + bool IsNan() const {
|
| + uint64_t d64 = AsUint64();
|
| + return ((d64 & kExponentMask) == kExponentMask) &&
|
| + ((d64 & kSignificandMask) != 0);
|
| + }
|
| +
|
| + bool IsInfinite() const {
|
| + uint64_t d64 = AsUint64();
|
| + return ((d64 & kExponentMask) == kExponentMask) &&
|
| + ((d64 & kSignificandMask) == 0);
|
| + }
|
| +
|
| + int Sign() const {
|
| + uint64_t d64 = AsUint64();
|
| + return (d64 & kSignMask) == 0? 1: -1;
|
| + }
|
| +
|
| + // Precondition: the value encoded by this Double must be greater or equal
|
| + // than +0.0.
|
| + DiyFp UpperBoundary() const {
|
| + ASSERT(Sign() > 0);
|
| + return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
| + }
|
| +
|
| + // Computes the two boundaries of this.
|
| + // The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
| + // exponent as m_plus.
|
| + // Precondition: the value encoded by this Double must be greater than 0.
|
| + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
| + ASSERT(value() > 0.0);
|
| + DiyFp v = this->AsDiyFp();
|
| + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
| + DiyFp m_minus;
|
| + if (LowerBoundaryIsCloser()) {
|
| + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
| + } else {
|
| + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
| + }
|
| + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
| + m_minus.set_e(m_plus.e());
|
| + *out_m_plus = m_plus;
|
| + *out_m_minus = m_minus;
|
| + }
|
| +
|
| + bool LowerBoundaryIsCloser() const {
|
| + // The boundary is closer if the significand is of the form f == 2^p-1 then
|
| + // the lower boundary is closer.
|
| + // Think of v = 1000e10 and v- = 9999e9.
|
| + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
| + // at a distance of 1e8.
|
| + // The only exception is for the smallest normal: the largest denormal is
|
| + // at the same distance as its successor.
|
| + // Note: denormals have the same exponent as the smallest normals.
|
| + bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
|
| + return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
| + }
|
| +
|
| + double value() const { return uint64_to_double(d64_); }
|
| +
|
| + // Returns the significand size for a given order of magnitude.
|
| + // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
|
| + // This function returns the number of significant binary digits v will have
|
| + // once it's encoded into a double. In almost all cases this is equal to
|
| + // kSignificandSize. The only exceptions are denormals. They start with
|
| + // leading zeroes and their effective significand-size is hence smaller.
|
| + static int SignificandSizeForOrderOfMagnitude(int order) {
|
| + if (order >= (kDenormalExponent + kSignificandSize)) {
|
| + return kSignificandSize;
|
| + }
|
| + if (order <= kDenormalExponent) return 0;
|
| + return order - kDenormalExponent;
|
| + }
|
| +
|
| + static double Infinity() {
|
| + return Double(kInfinity).value();
|
| + }
|
| +
|
| + static double NaN() {
|
| + return Double(kNaN).value();
|
| + }
|
| +
|
| + private:
|
| + static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
|
| + static const int kDenormalExponent = -kExponentBias + 1;
|
| + static const int kMaxExponent = 0x7FF - kExponentBias;
|
| + static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
|
| + static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
|
| +
|
| + const uint64_t d64_;
|
| +
|
| + static uint64_t DiyFpToUint64(DiyFp diy_fp) {
|
| + uint64_t significand = diy_fp.f();
|
| + int exponent = diy_fp.e();
|
| + while (significand > kHiddenBit + kSignificandMask) {
|
| + significand >>= 1;
|
| + exponent++;
|
| + }
|
| + if (exponent >= kMaxExponent) {
|
| + return kInfinity;
|
| + }
|
| + if (exponent < kDenormalExponent) {
|
| + return 0;
|
| + }
|
| + while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
|
| + significand <<= 1;
|
| + exponent--;
|
| + }
|
| + uint64_t biased_exponent;
|
| + if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
|
| + biased_exponent = 0;
|
| + } else {
|
| + biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
|
| + }
|
| + return (significand & kSignificandMask) |
|
| + (biased_exponent << kPhysicalSignificandSize);
|
| + }
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(Double);
|
| +};
|
| +
|
| +class Single {
|
| + public:
|
| + static const uint32_t kSignMask = 0x80000000;
|
| + static const uint32_t kExponentMask = 0x7F800000;
|
| + static const uint32_t kSignificandMask = 0x007FFFFF;
|
| + static const uint32_t kHiddenBit = 0x00800000;
|
| + static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
|
| + static const int kSignificandSize = 24;
|
| +
|
| + Single() : d32_(0) {}
|
| + explicit Single(float f) : d32_(float_to_uint32(f)) {}
|
| + explicit Single(uint32_t d32) : d32_(d32) {}
|
| +
|
| + // The value encoded by this Single must be greater or equal to +0.0.
|
| + // It must not be special (infinity, or NaN).
|
| + DiyFp AsDiyFp() const {
|
| + ASSERT(Sign() > 0);
|
| + ASSERT(!IsSpecial());
|
| + return DiyFp(Significand(), Exponent());
|
| + }
|
| +
|
| + // Returns the single's bit as uint64.
|
| + uint32_t AsUint32() const {
|
| + return d32_;
|
| + }
|
| +
|
| + int Exponent() const {
|
| + if (IsDenormal()) return kDenormalExponent;
|
| +
|
| + uint32_t d32 = AsUint32();
|
| + int biased_e =
|
| + static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
|
| + return biased_e - kExponentBias;
|
| + }
|
| +
|
| + uint32_t Significand() const {
|
| + uint32_t d32 = AsUint32();
|
| + uint32_t significand = d32 & kSignificandMask;
|
| + if (!IsDenormal()) {
|
| + return significand + kHiddenBit;
|
| + } else {
|
| + return significand;
|
| + }
|
| + }
|
| +
|
| + // Returns true if the single is a denormal.
|
| + bool IsDenormal() const {
|
| + uint32_t d32 = AsUint32();
|
| + return (d32 & kExponentMask) == 0;
|
| + }
|
| +
|
| + // We consider denormals not to be special.
|
| + // Hence only Infinity and NaN are special.
|
| + bool IsSpecial() const {
|
| + uint32_t d32 = AsUint32();
|
| + return (d32 & kExponentMask) == kExponentMask;
|
| + }
|
| +
|
| + bool IsNan() const {
|
| + uint32_t d32 = AsUint32();
|
| + return ((d32 & kExponentMask) == kExponentMask) &&
|
| + ((d32 & kSignificandMask) != 0);
|
| + }
|
| +
|
| + bool IsInfinite() const {
|
| + uint32_t d32 = AsUint32();
|
| + return ((d32 & kExponentMask) == kExponentMask) &&
|
| + ((d32 & kSignificandMask) == 0);
|
| + }
|
| +
|
| + int Sign() const {
|
| + uint32_t d32 = AsUint32();
|
| + return (d32 & kSignMask) == 0? 1: -1;
|
| + }
|
| +
|
| + // Computes the two boundaries of this.
|
| + // The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
| + // exponent as m_plus.
|
| + // Precondition: the value encoded by this Single must be greater than 0.
|
| + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
| + ASSERT(value() > 0.0);
|
| + DiyFp v = this->AsDiyFp();
|
| + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
| + DiyFp m_minus;
|
| + if (LowerBoundaryIsCloser()) {
|
| + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
| + } else {
|
| + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
| + }
|
| + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
| + m_minus.set_e(m_plus.e());
|
| + *out_m_plus = m_plus;
|
| + *out_m_minus = m_minus;
|
| + }
|
| +
|
| + // Precondition: the value encoded by this Single must be greater or equal
|
| + // than +0.0.
|
| + DiyFp UpperBoundary() const {
|
| + ASSERT(Sign() > 0);
|
| + return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
| + }
|
| +
|
| + bool LowerBoundaryIsCloser() const {
|
| + // The boundary is closer if the significand is of the form f == 2^p-1 then
|
| + // the lower boundary is closer.
|
| + // Think of v = 1000e10 and v- = 9999e9.
|
| + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
| + // at a distance of 1e8.
|
| + // The only exception is for the smallest normal: the largest denormal is
|
| + // at the same distance as its successor.
|
| + // Note: denormals have the same exponent as the smallest normals.
|
| + bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
|
| + return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
| + }
|
| +
|
| + float value() const { return uint32_to_float(d32_); }
|
| +
|
| + static float Infinity() {
|
| + return Single(kInfinity).value();
|
| + }
|
| +
|
| + static float NaN() {
|
| + return Single(kNaN).value();
|
| + }
|
| +
|
| + private:
|
| + static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
|
| + static const int kDenormalExponent = -kExponentBias + 1;
|
| + static const int kMaxExponent = 0xFF - kExponentBias;
|
| + static const uint32_t kInfinity = 0x7F800000;
|
| + static const uint32_t kNaN = 0x7FC00000;
|
| +
|
| + const uint32_t d32_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(Single);
|
| +};
|
| +
|
| +} // namespace double_conversion
|
| +
|
| +#endif // DOUBLE_CONVERSION_DOUBLE_H_
|
|
|