OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 // Scopers help you manage ownership of a pointer, helping you easily manage a | 5 // scoped_ptr is just a type alias for std::unique_ptr. Mass conversion coming |
6 // pointer within a scope, and automatically destroying the pointer at the end | 6 // soon (stay tuned for the PSA!), but until then, please continue using |
7 // of a scope. There are two main classes you will use, which correspond to the | 7 // scoped_ptr. |
8 // operators new/delete and new[]/delete[]. | |
9 // | |
10 // Example usage (scoped_ptr<T>): | |
11 // { | |
12 // scoped_ptr<Foo> foo(new Foo("wee")); | |
13 // } // foo goes out of scope, releasing the pointer with it. | |
14 // | |
15 // { | |
16 // scoped_ptr<Foo> foo; // No pointer managed. | |
17 // foo.reset(new Foo("wee")); // Now a pointer is managed. | |
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. | |
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. | |
20 // foo->Method(); // Foo::Method() called. | |
21 // foo.get()->Method(); // Foo::Method() called. | |
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer | |
23 // // manages a pointer. | |
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again. | |
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer | |
26 // // manages a pointer. | |
27 // } // foo wasn't managing a pointer, so nothing was destroyed. | |
28 // | |
29 // Example usage (scoped_ptr<T[]>): | |
30 // { | |
31 // scoped_ptr<Foo[]> foo(new Foo[100]); | |
32 // foo.get()->Method(); // Foo::Method on the 0th element. | |
33 // foo[10].Method(); // Foo::Method on the 10th element. | |
34 // } | |
35 // | |
36 // Scopers are testable as booleans: | |
37 // { | |
38 // scoped_ptr<Foo> foo; | |
39 // if (!foo) | |
40 // foo.reset(new Foo()); | |
41 // if (foo) | |
42 // LOG(INFO) << "This code is reached." | |
43 // } | |
44 // | |
45 // These scopers also implement part of the functionality of C++11 unique_ptr | |
46 // in that they are "movable but not copyable." You can use the scopers in | |
47 // the parameter and return types of functions to signify ownership transfer | |
48 // in to and out of a function. When calling a function that has a scoper | |
49 // as the argument type, it must be called with an rvalue of a scoper, which | |
50 // can be created by using std::move(), or the result of another function that | |
51 // generates a temporary; passing by copy will NOT work. Here is an example | |
52 // using scoped_ptr: | |
53 // | |
54 // void TakesOwnership(scoped_ptr<Foo> arg) { | |
55 // // Do something with arg. | |
56 // } | |
57 // scoped_ptr<Foo> CreateFoo() { | |
58 // // No need for calling std::move() for returning a move-only value, or | |
59 // // when you already have an rvalue as we do here. | |
60 // return scoped_ptr<Foo>(new Foo("new")); | |
61 // } | |
62 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { | |
63 // return arg; | |
64 // } | |
65 // | |
66 // { | |
67 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). | |
68 // TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). | |
69 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. | |
70 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. | |
71 // PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. | |
72 // } | |
73 // | |
74 // Notice that if you do not call std::move() when returning from PassThru(), or | |
75 // when invoking TakesOwnership(), the code will not compile because scopers | |
76 // are not copyable; they only implement move semantics which require calling | |
77 // the std::move() function to signify a destructive transfer of state. | |
78 // CreateFoo() is different though because we are constructing a temporary on | |
79 // the return line and thus can avoid needing to call std::move(). | |
80 // | |
81 // The conversion move-constructor properly handles upcast in initialization, | |
82 // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>: | |
83 // | |
84 // scoped_ptr<Foo> foo(new Foo()); | |
85 // scoped_ptr<FooParent> parent(std::move(foo)); | |
86 | 8 |
87 #ifndef BASE_MEMORY_SCOPED_PTR_H_ | 9 #ifndef BASE_MEMORY_SCOPED_PTR_H_ |
88 #define BASE_MEMORY_SCOPED_PTR_H_ | 10 #define BASE_MEMORY_SCOPED_PTR_H_ |
89 | 11 |
90 // This is an implementation designed to match the anticipated future TR2 | |
91 // implementation of the scoped_ptr class. | |
92 | |
93 // TODO(dcheng): Clean up these headers, but there are likely lots of existing | |
94 // IWYU violations. | |
95 #include <stdlib.h> | |
96 | |
97 #include <memory> | 12 #include <memory> |
98 | 13 |
99 template <typename T, typename D = std::default_delete<T>> | 14 template <typename T, typename D = std::default_delete<T>> |
100 using scoped_ptr = std::unique_ptr<T, D>; | 15 using scoped_ptr = std::unique_ptr<T, D>; |
101 | 16 |
102 // A function to convert T* into scoped_ptr<T> | 17 // A function to convert T* into scoped_ptr<T> |
103 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation | 18 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation |
104 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) | 19 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) |
105 template <typename T> | 20 template <typename T> |
106 scoped_ptr<T> make_scoped_ptr(T* ptr) { | 21 scoped_ptr<T> make_scoped_ptr(T* ptr) { |
107 return scoped_ptr<T>(ptr); | 22 return scoped_ptr<T>(ptr); |
108 } | 23 } |
109 | 24 |
110 #endif // BASE_MEMORY_SCOPED_PTR_H_ | 25 #endif // BASE_MEMORY_SCOPED_PTR_H_ |
OLD | NEW |