Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// | 1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// |
| 2 // | 2 // |
| 3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
| 4 // | 4 // |
| 5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
| 6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
| 7 // | 7 // |
| 8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
| 9 /// | 9 /// |
| 10 /// \file | 10 /// \file |
| (...skipping 228 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 239 Bits[Pos] ^= ~ElementType(0); | 239 Bits[Pos] ^= ~ElementType(0); |
| 240 } else { | 240 } else { |
| 241 const ElementType Mask = | 241 const ElementType Mask = |
| 242 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; | 242 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; |
| 243 Bits[Pos] ^= Mask; | 243 Bits[Pos] ^= Mask; |
| 244 } | 244 } |
| 245 invert<Pos + 1>(); | 245 invert<Pos + 1>(); |
| 246 } | 246 } |
| 247 }; | 247 }; |
| 248 | 248 |
| 249 class BitVector { | 249 template <template <typename> class AT> class BitVectorTmpl { |
| 250 typedef unsigned long BitWord; | 250 typedef unsigned long BitWord; |
| 251 using Allocator = CfgLocalAllocator<BitWord>; | 251 using Allocator = AT<BitWord>; |
| 252 | 252 |
| 253 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; | 253 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
| 254 | 254 |
| 255 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, | 255 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
| 256 "Unsupported word size"); | 256 "Unsupported word size"); |
| 257 | 257 |
| 258 BitWord *Bits; // Actual bits. | 258 BitWord *Bits; // Actual bits. |
| 259 unsigned Size; // Size of bitvector in bits. | 259 unsigned Size; // Size of bitvector in bits. |
| 260 unsigned Capacity; // Size of allocated memory in BitWord. | 260 unsigned Capacity; // Size of allocated memory in BitWord. |
| 261 Allocator Alloc; | 261 Allocator Alloc; |
| 262 | 262 |
| 263 public: | 263 public: |
| 264 typedef unsigned size_type; | 264 typedef unsigned size_type; |
| 265 // Encapsulation of a single bit. | 265 // Encapsulation of a single bit. |
| 266 class reference { | 266 class reference { |
| 267 friend class BitVector; | 267 friend class BitVectorTmpl; |
| 268 | 268 |
| 269 BitWord *WordRef; | 269 BitWord *WordRef; |
| 270 unsigned BitPos; | 270 unsigned BitPos; |
| 271 | 271 |
| 272 reference(); // Undefined | 272 reference(); // Undefined |
| 273 | 273 |
| 274 public: | 274 public: |
| 275 reference(BitVector &b, unsigned Idx) { | 275 reference(BitVectorTmpl &b, unsigned Idx) { |
| 276 WordRef = &b.Bits[Idx / BITWORD_SIZE]; | 276 WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
| 277 BitPos = Idx % BITWORD_SIZE; | 277 BitPos = Idx % BITWORD_SIZE; |
| 278 } | 278 } |
| 279 | 279 |
| 280 reference(const reference &) = default; | 280 reference(const reference &) = default; |
| 281 | 281 |
| 282 reference &operator=(reference t) { | 282 reference &operator=(reference t) { |
| 283 *this = bool(t); | 283 *this = bool(t); |
| 284 return *this; | 284 return *this; |
| 285 } | 285 } |
| 286 | 286 |
| 287 reference &operator=(bool t) { | 287 reference &operator=(bool t) { |
| 288 if (t) | 288 if (t) |
| 289 *WordRef |= BitWord(1) << BitPos; | 289 *WordRef |= BitWord(1) << BitPos; |
| 290 else | 290 else |
| 291 *WordRef &= ~(BitWord(1) << BitPos); | 291 *WordRef &= ~(BitWord(1) << BitPos); |
| 292 return *this; | 292 return *this; |
| 293 } | 293 } |
| 294 | 294 |
| 295 operator bool() const { | 295 operator bool() const { |
| 296 return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; | 296 return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; |
| 297 } | 297 } |
| 298 }; | 298 }; |
| 299 | 299 |
| 300 /// BitVector default ctor - Creates an empty bitvector. | 300 /// BitVectorTmpl default ctor - Creates an empty bitvector. |
| 301 BitVector(Allocator A = Allocator()) | 301 BitVectorTmpl(Allocator A = Allocator()) |
| 302 : Size(0), Capacity(0), Alloc(std::move(A)) { | 302 : Size(0), Capacity(0), Alloc(std::move(A)) { |
| 303 Bits = nullptr; | 303 Bits = nullptr; |
| 304 } | 304 } |
| 305 | 305 |
| 306 /// BitVector ctor - Creates a bitvector of specified number of bits. All | 306 /// BitVectorTmpl ctor - Creates a bitvector of specified number of bits. All |
| 307 /// bits are initialized to the specified value. | 307 /// bits are initialized to the specified value. |
| 308 explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) | 308 explicit BitVectorTmpl(unsigned s, bool t = false, Allocator A = Allocator()) |
| 309 : Size(s), Alloc(std::move(A)) { | 309 : Size(s), Alloc(std::move(A)) { |
| 310 Capacity = NumBitWords(s); | 310 Capacity = NumBitWords(s); |
| 311 Bits = Alloc.allocate(Capacity); | 311 Bits = Alloc.allocate(Capacity); |
| 312 init_words(Bits, Capacity, t); | 312 init_words(Bits, Capacity, t); |
| 313 if (t) | 313 if (t) |
| 314 clear_unused_bits(); | 314 clear_unused_bits(); |
| 315 } | 315 } |
| 316 | 316 |
| 317 /// BitVector copy ctor. | 317 /// BitVectorTmpl copy ctor. |
| 318 BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { | 318 BitVectorTmpl(const BitVectorTmpl &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { |
| 319 if (Size == 0) { | 319 if (Size == 0) { |
| 320 Bits = nullptr; | 320 Bits = nullptr; |
| 321 Capacity = 0; | 321 Capacity = 0; |
| 322 return; | 322 return; |
| 323 } | 323 } |
| 324 | 324 |
| 325 Capacity = NumBitWords(RHS.size()); | 325 Capacity = NumBitWords(RHS.size()); |
| 326 Bits = Alloc.allocate(Capacity); | 326 Bits = Alloc.allocate(Capacity); |
| 327 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); | 327 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); |
| 328 } | 328 } |
| 329 | 329 |
| 330 BitVector(BitVector &&RHS) | 330 BitVectorTmpl(BitVectorTmpl &&RHS) |
| 331 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), | 331 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), |
| 332 Alloc(std::move(RHS.Alloc)) { | 332 Alloc(std::move(RHS.Alloc)) { |
| 333 RHS.Bits = nullptr; | 333 RHS.Bits = nullptr; |
| 334 } | 334 } |
| 335 | 335 |
| 336 ~BitVector() { | 336 ~BitVectorTmpl() { |
| 337 if (Bits != nullptr) { | 337 if (Bits != nullptr) { |
| 338 Alloc.deallocate(Bits, Capacity); | 338 Alloc.deallocate(Bits, Capacity); |
| 339 } | 339 } |
| 340 } | 340 } |
| 341 | 341 |
| 342 /// empty - Tests whether there are no bits in this bitvector. | 342 /// empty - Tests whether there are no bits in this bitvector. |
| 343 bool empty() const { return Size == 0; } | 343 bool empty() const { return Size == 0; } |
| 344 | 344 |
| 345 /// size - Returns the number of bits in this bitvector. | 345 /// size - Returns the number of bits in this bitvector. |
| 346 size_type size() const { return Size; } | 346 size_type size() const { return Size; } |
| (...skipping 66 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 413 void clear() { Size = 0; } | 413 void clear() { Size = 0; } |
| 414 | 414 |
| 415 /// resize - Grow or shrink the bitvector. | 415 /// resize - Grow or shrink the bitvector. |
| 416 void resize(unsigned N, bool t = false) { | 416 void resize(unsigned N, bool t = false) { |
| 417 if (N > Capacity * BITWORD_SIZE) { | 417 if (N > Capacity * BITWORD_SIZE) { |
| 418 unsigned OldCapacity = Capacity; | 418 unsigned OldCapacity = Capacity; |
| 419 grow(N); | 419 grow(N); |
| 420 init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); | 420 init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); |
| 421 } | 421 } |
| 422 | 422 |
| 423 // Set any old unused bits that are now included in the BitVector. This | 423 // Set any old unused bits that are now included in the BitVectorTmpl. This |
| 424 // may set bits that are not included in the new vector, but we will clear | 424 // may set bits that are not included in the new vector, but we will clear |
| 425 // them back out below. | 425 // them back out below. |
| 426 if (N > Size) | 426 if (N > Size) |
| 427 set_unused_bits(t); | 427 set_unused_bits(t); |
| 428 | 428 |
| 429 // Update the size, and clear out any bits that are now unused | 429 // Update the size, and clear out any bits that are now unused |
| 430 unsigned OldSize = Size; | 430 unsigned OldSize = Size; |
| 431 Size = N; | 431 Size = N; |
| 432 if (t || N < OldSize) | 432 if (t || N < OldSize) |
| 433 clear_unused_bits(); | 433 clear_unused_bits(); |
| 434 } | 434 } |
| 435 | 435 |
| 436 void reserve(unsigned N) { | 436 void reserve(unsigned N) { |
| 437 if (N > Capacity * BITWORD_SIZE) | 437 if (N > Capacity * BITWORD_SIZE) |
| 438 grow(N); | 438 grow(N); |
| 439 } | 439 } |
| 440 | 440 |
| 441 // Set, reset, flip | 441 // Set, reset, flip |
| 442 BitVector &set() { | 442 BitVectorTmpl &set() { |
| 443 init_words(Bits, Capacity, true); | 443 init_words(Bits, Capacity, true); |
| 444 clear_unused_bits(); | 444 clear_unused_bits(); |
| 445 return *this; | 445 return *this; |
| 446 } | 446 } |
| 447 | 447 |
| 448 BitVector &set(unsigned Idx) { | 448 BitVectorTmpl &set(unsigned Idx) { |
| 449 assert(Bits && "Bits never allocated"); | 449 assert(Bits && "Bits never allocated"); |
| 450 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); | 450 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
| 451 return *this; | 451 return *this; |
| 452 } | 452 } |
| 453 | 453 |
| 454 /// set - Efficiently set a range of bits in [I, E) | 454 /// set - Efficiently set a range of bits in [I, E) |
| 455 BitVector &set(unsigned I, unsigned E) { | 455 BitVectorTmpl &set(unsigned I, unsigned E) { |
| 456 assert(I <= E && "Attempted to set backwards range!"); | 456 assert(I <= E && "Attempted to set backwards range!"); |
| 457 assert(E <= size() && "Attempted to set out-of-bounds range!"); | 457 assert(E <= size() && "Attempted to set out-of-bounds range!"); |
| 458 | 458 |
| 459 if (I == E) | 459 if (I == E) |
| 460 return *this; | 460 return *this; |
| 461 | 461 |
| 462 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 462 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| 463 BitWord EMask = 1UL << (E % BITWORD_SIZE); | 463 BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| 464 BitWord IMask = 1UL << (I % BITWORD_SIZE); | 464 BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| 465 BitWord Mask = EMask - IMask; | 465 BitWord Mask = EMask - IMask; |
| 466 Bits[I / BITWORD_SIZE] |= Mask; | 466 Bits[I / BITWORD_SIZE] |= Mask; |
| 467 return *this; | 467 return *this; |
| 468 } | 468 } |
| 469 | 469 |
| 470 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 470 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| 471 Bits[I / BITWORD_SIZE] |= PrefixMask; | 471 Bits[I / BITWORD_SIZE] |= PrefixMask; |
| 472 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | 472 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
| 473 | 473 |
| 474 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 474 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| 475 Bits[I / BITWORD_SIZE] = ~0UL; | 475 Bits[I / BITWORD_SIZE] = ~0UL; |
| 476 | 476 |
| 477 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 477 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| 478 if (I < E) | 478 if (I < E) |
| 479 Bits[I / BITWORD_SIZE] |= PostfixMask; | 479 Bits[I / BITWORD_SIZE] |= PostfixMask; |
| 480 | 480 |
| 481 return *this; | 481 return *this; |
| 482 } | 482 } |
| 483 | 483 |
| 484 BitVector &reset() { | 484 BitVectorTmpl &reset() { |
| 485 init_words(Bits, Capacity, false); | 485 init_words(Bits, Capacity, false); |
| 486 return *this; | 486 return *this; |
| 487 } | 487 } |
| 488 | 488 |
| 489 BitVector &reset(unsigned Idx) { | 489 BitVectorTmpl &reset(unsigned Idx) { |
| 490 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); | 490 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
| 491 return *this; | 491 return *this; |
| 492 } | 492 } |
| 493 | 493 |
| 494 /// reset - Efficiently reset a range of bits in [I, E) | 494 /// reset - Efficiently reset a range of bits in [I, E) |
| 495 BitVector &reset(unsigned I, unsigned E) { | 495 BitVectorTmpl &reset(unsigned I, unsigned E) { |
| 496 assert(I <= E && "Attempted to reset backwards range!"); | 496 assert(I <= E && "Attempted to reset backwards range!"); |
| 497 assert(E <= size() && "Attempted to reset out-of-bounds range!"); | 497 assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
| 498 | 498 |
| 499 if (I == E) | 499 if (I == E) |
| 500 return *this; | 500 return *this; |
| 501 | 501 |
| 502 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 502 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| 503 BitWord EMask = 1UL << (E % BITWORD_SIZE); | 503 BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| 504 BitWord IMask = 1UL << (I % BITWORD_SIZE); | 504 BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| 505 BitWord Mask = EMask - IMask; | 505 BitWord Mask = EMask - IMask; |
| 506 Bits[I / BITWORD_SIZE] &= ~Mask; | 506 Bits[I / BITWORD_SIZE] &= ~Mask; |
| 507 return *this; | 507 return *this; |
| 508 } | 508 } |
| 509 | 509 |
| 510 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 510 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| 511 Bits[I / BITWORD_SIZE] &= ~PrefixMask; | 511 Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
| 512 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | 512 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
| 513 | 513 |
| 514 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 514 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| 515 Bits[I / BITWORD_SIZE] = 0UL; | 515 Bits[I / BITWORD_SIZE] = 0UL; |
| 516 | 516 |
| 517 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 517 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| 518 if (I < E) | 518 if (I < E) |
| 519 Bits[I / BITWORD_SIZE] &= ~PostfixMask; | 519 Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
| 520 | 520 |
| 521 return *this; | 521 return *this; |
| 522 } | 522 } |
| 523 | 523 |
| 524 BitVector &flip() { | 524 BitVectorTmpl &flip() { |
| 525 for (unsigned i = 0; i < NumBitWords(size()); ++i) | 525 for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| 526 Bits[i] = ~Bits[i]; | 526 Bits[i] = ~Bits[i]; |
| 527 clear_unused_bits(); | 527 clear_unused_bits(); |
| 528 return *this; | 528 return *this; |
| 529 } | 529 } |
| 530 | 530 |
| 531 BitVector &flip(unsigned Idx) { | 531 BitVectorTmpl &flip(unsigned Idx) { |
| 532 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); | 532 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
| 533 return *this; | 533 return *this; |
| 534 } | 534 } |
| 535 | 535 |
| 536 // Indexing. | 536 // Indexing. |
| 537 reference operator[](unsigned Idx) { | 537 reference operator[](unsigned Idx) { |
| 538 assert(Idx < Size && "Out-of-bounds Bit access."); | 538 assert(Idx < Size && "Out-of-bounds Bit access."); |
| 539 return reference(*this, Idx); | 539 return reference(*this, Idx); |
| 540 } | 540 } |
| 541 | 541 |
| 542 bool operator[](unsigned Idx) const { | 542 bool operator[](unsigned Idx) const { |
| 543 assert(Idx < Size && "Out-of-bounds Bit access."); | 543 assert(Idx < Size && "Out-of-bounds Bit access."); |
| 544 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); | 544 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
| 545 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; | 545 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
| 546 } | 546 } |
| 547 | 547 |
| 548 bool test(unsigned Idx) const { return (*this)[Idx]; } | 548 bool test(unsigned Idx) const { return (*this)[Idx]; } |
| 549 | 549 |
| 550 /// Test if any common bits are set. | 550 /// Test if any common bits are set. |
| 551 bool anyCommon(const BitVector &RHS) const { | 551 bool anyCommon(const BitVectorTmpl &RHS) const { |
| 552 unsigned ThisWords = NumBitWords(size()); | 552 unsigned ThisWords = NumBitWords(size()); |
| 553 unsigned RHSWords = NumBitWords(RHS.size()); | 553 unsigned RHSWords = NumBitWords(RHS.size()); |
| 554 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) | 554 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
| 555 if (Bits[i] & RHS.Bits[i]) | 555 if (Bits[i] & RHS.Bits[i]) |
| 556 return true; | 556 return true; |
| 557 return false; | 557 return false; |
| 558 } | 558 } |
| 559 | 559 |
| 560 // Comparison operators. | 560 // Comparison operators. |
| 561 bool operator==(const BitVector &RHS) const { | 561 bool operator==(const BitVectorTmpl &RHS) const { |
| 562 unsigned ThisWords = NumBitWords(size()); | 562 unsigned ThisWords = NumBitWords(size()); |
| 563 unsigned RHSWords = NumBitWords(RHS.size()); | 563 unsigned RHSWords = NumBitWords(RHS.size()); |
| 564 unsigned i; | 564 unsigned i; |
| 565 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 565 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| 566 if (Bits[i] != RHS.Bits[i]) | 566 if (Bits[i] != RHS.Bits[i]) |
| 567 return false; | 567 return false; |
| 568 | 568 |
| 569 // Verify that any extra words are all zeros. | 569 // Verify that any extra words are all zeros. |
| 570 if (i != ThisWords) { | 570 if (i != ThisWords) { |
| 571 for (; i != ThisWords; ++i) | 571 for (; i != ThisWords; ++i) |
| 572 if (Bits[i]) | 572 if (Bits[i]) |
| 573 return false; | 573 return false; |
| 574 } else if (i != RHSWords) { | 574 } else if (i != RHSWords) { |
| 575 for (; i != RHSWords; ++i) | 575 for (; i != RHSWords; ++i) |
| 576 if (RHS.Bits[i]) | 576 if (RHS.Bits[i]) |
| 577 return false; | 577 return false; |
| 578 } | 578 } |
| 579 return true; | 579 return true; |
| 580 } | 580 } |
| 581 | 581 |
| 582 bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } | 582 bool operator!=(const BitVectorTmpl &RHS) const { return !(*this == RHS); } |
| 583 | 583 |
| 584 /// Intersection, union, disjoint union. | 584 /// Intersection, union, disjoint union. |
| 585 BitVector &operator&=(const BitVector &RHS) { | 585 BitVectorTmpl &operator&=(const BitVectorTmpl &RHS) { |
| 586 unsigned ThisWords = NumBitWords(size()); | 586 unsigned ThisWords = NumBitWords(size()); |
| 587 unsigned RHSWords = NumBitWords(RHS.size()); | 587 unsigned RHSWords = NumBitWords(RHS.size()); |
| 588 unsigned i; | 588 unsigned i; |
| 589 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 589 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| 590 Bits[i] &= RHS.Bits[i]; | 590 Bits[i] &= RHS.Bits[i]; |
| 591 | 591 |
| 592 // Any bits that are just in this bitvector become zero, because they aren't | 592 // Any bits that are just in this bitvector become zero, because they aren't |
| 593 // in the RHS bit vector. Any words only in RHS are ignored because they | 593 // in the RHS bit vector. Any words only in RHS are ignored because they |
| 594 // are already zero in the LHS. | 594 // are already zero in the LHS. |
| 595 for (; i != ThisWords; ++i) | 595 for (; i != ThisWords; ++i) |
| 596 Bits[i] = 0; | 596 Bits[i] = 0; |
| 597 | 597 |
| 598 return *this; | 598 return *this; |
| 599 } | 599 } |
| 600 | 600 |
| 601 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. | 601 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
| 602 BitVector &reset(const BitVector &RHS) { | 602 BitVectorTmpl &reset(const BitVectorTmpl &RHS) { |
| 603 unsigned ThisWords = NumBitWords(size()); | 603 unsigned ThisWords = NumBitWords(size()); |
| 604 unsigned RHSWords = NumBitWords(RHS.size()); | 604 unsigned RHSWords = NumBitWords(RHS.size()); |
| 605 unsigned i; | 605 unsigned i; |
| 606 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 606 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| 607 Bits[i] &= ~RHS.Bits[i]; | 607 Bits[i] &= ~RHS.Bits[i]; |
| 608 return *this; | 608 return *this; |
| 609 } | 609 } |
| 610 | 610 |
| 611 /// test - Check if (This - RHS) is zero. | 611 /// test - Check if (This - RHS) is zero. |
| 612 /// This is the same as reset(RHS) and any(). | 612 /// This is the same as reset(RHS) and any(). |
| 613 bool test(const BitVector &RHS) const { | 613 bool test(const BitVectorTmpl &RHS) const { |
| 614 unsigned ThisWords = NumBitWords(size()); | 614 unsigned ThisWords = NumBitWords(size()); |
| 615 unsigned RHSWords = NumBitWords(RHS.size()); | 615 unsigned RHSWords = NumBitWords(RHS.size()); |
| 616 unsigned i; | 616 unsigned i; |
| 617 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 617 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| 618 if ((Bits[i] & ~RHS.Bits[i]) != 0) | 618 if ((Bits[i] & ~RHS.Bits[i]) != 0) |
| 619 return true; | 619 return true; |
| 620 | 620 |
| 621 for (; i != ThisWords; ++i) | 621 for (; i != ThisWords; ++i) |
| 622 if (Bits[i] != 0) | 622 if (Bits[i] != 0) |
| 623 return true; | 623 return true; |
| 624 | 624 |
| 625 return false; | 625 return false; |
| 626 } | 626 } |
| 627 | 627 |
| 628 BitVector &operator|=(const BitVector &RHS) { | 628 BitVectorTmpl &operator|=(const BitVectorTmpl &RHS) { |
| 629 if (size() < RHS.size()) | 629 if (size() < RHS.size()) |
| 630 resize(RHS.size()); | 630 resize(RHS.size()); |
| 631 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 631 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| 632 Bits[i] |= RHS.Bits[i]; | 632 Bits[i] |= RHS.Bits[i]; |
| 633 return *this; | 633 return *this; |
| 634 } | 634 } |
| 635 | 635 |
| 636 BitVector &operator^=(const BitVector &RHS) { | 636 BitVectorTmpl &operator^=(const BitVectorTmpl &RHS) { |
| 637 if (size() < RHS.size()) | 637 if (size() < RHS.size()) |
| 638 resize(RHS.size()); | 638 resize(RHS.size()); |
| 639 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 639 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| 640 Bits[i] ^= RHS.Bits[i]; | 640 Bits[i] ^= RHS.Bits[i]; |
| 641 return *this; | 641 return *this; |
| 642 } | 642 } |
| 643 | 643 |
| 644 // Assignment operator. | 644 // Assignment operator. |
| 645 const BitVector &operator=(const BitVector &RHS) { | 645 const BitVectorTmpl &operator=(const BitVectorTmpl &RHS) { |
| 646 if (this == &RHS) | 646 if (this == &RHS) |
| 647 return *this; | 647 return *this; |
| 648 | 648 |
| 649 Size = RHS.size(); | 649 Size = RHS.size(); |
| 650 unsigned RHSWords = NumBitWords(Size); | 650 unsigned RHSWords = NumBitWords(Size); |
| 651 if (Size <= Capacity * BITWORD_SIZE) { | 651 if (Size <= Capacity * BITWORD_SIZE) { |
| 652 if (Size) | 652 if (Size) |
| 653 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); | 653 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); |
| 654 clear_unused_bits(); | 654 clear_unused_bits(); |
| 655 return *this; | 655 return *this; |
| 656 } | 656 } |
| 657 | 657 |
| 658 // Currently, BitVector is only used by liveness analysis. With the | 658 // Currently, BitVectorTmpl is only used by liveness analysis. With the |
| 659 // following assert, we make sure BitVectors grow in a single step from 0 to | 659 // following assert, we make sure BitVectorTmpls grow in a single step from |
|
Jim Stichnoth
2016/03/31 16:23:20
reflow comment
John
2016/04/01 13:52:04
Done.
| |
| 660 // 0 to | |
| 660 // their final capacity, rather than growing slowly and "leaking" memory in | 661 // their final capacity, rather than growing slowly and "leaking" memory in |
| 661 // the process. | 662 // the process. |
| 662 assert(Capacity == 0); | 663 assert(Capacity == 0); |
| 663 | 664 |
| 664 // Grow the bitvector to have enough elements. | 665 // Grow the bitvector to have enough elements. |
| 665 const auto OldCapacity = Capacity; | 666 const auto OldCapacity = Capacity; |
| 666 Capacity = RHSWords; | 667 Capacity = RHSWords; |
| 667 assert(Capacity > 0 && "negative capacity?"); | 668 assert(Capacity > 0 && "negative capacity?"); |
| 668 BitWord *NewBits = Alloc.allocate(Capacity); | 669 BitWord *NewBits = Alloc.allocate(Capacity); |
| 669 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); | 670 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); |
| 670 | 671 |
| 671 // Destroy the old bits. | 672 // Destroy the old bits. |
| 672 Alloc.deallocate(Bits, OldCapacity); | 673 Alloc.deallocate(Bits, OldCapacity); |
| 673 Bits = NewBits; | 674 Bits = NewBits; |
| 674 | 675 |
| 675 return *this; | 676 return *this; |
| 676 } | 677 } |
| 677 | 678 |
| 678 const BitVector &operator=(BitVector &&RHS) { | 679 const BitVectorTmpl &operator=(BitVectorTmpl &&RHS) { |
| 679 if (this == &RHS) | 680 if (this == &RHS) |
| 680 return *this; | 681 return *this; |
| 681 | 682 |
| 682 Alloc.deallocate(Bits, Capacity); | 683 Alloc.deallocate(Bits, Capacity); |
| 683 Bits = RHS.Bits; | 684 Bits = RHS.Bits; |
| 684 Size = RHS.Size; | 685 Size = RHS.Size; |
| 685 Capacity = RHS.Capacity; | 686 Capacity = RHS.Capacity; |
| 686 | 687 |
| 687 RHS.Bits = nullptr; | 688 RHS.Bits = nullptr; |
| 688 | 689 |
| 689 return *this; | 690 return *this; |
| 690 } | 691 } |
| 691 | 692 |
| 692 void swap(BitVector &RHS) { | 693 void swap(BitVectorTmpl &RHS) { |
| 693 std::swap(Bits, RHS.Bits); | 694 std::swap(Bits, RHS.Bits); |
| 694 std::swap(Size, RHS.Size); | 695 std::swap(Size, RHS.Size); |
| 695 std::swap(Capacity, RHS.Capacity); | 696 std::swap(Capacity, RHS.Capacity); |
| 696 } | 697 } |
| 697 | 698 |
| 698 //===--------------------------------------------------------------------===// | 699 //===--------------------------------------------------------------------===// |
| 699 // Portable bit mask operations. | 700 // Portable bit mask operations. |
| 700 //===--------------------------------------------------------------------===// | 701 //===--------------------------------------------------------------------===// |
| 701 // | 702 // |
| 702 // These methods all operate on arrays of uint32_t, each holding 32 bits. The | 703 // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
| 703 // fixed word size makes it easier to work with literal bit vector constants | 704 // fixed word size makes it easier to work with literal bit vector constants |
| 704 // in portable code. | 705 // in portable code. |
| 705 // | 706 // |
| 706 // The LSB in each word is the lowest numbered bit. The size of a portable | 707 // The LSB in each word is the lowest numbered bit. The size of a portable |
| 707 // bit mask is always a whole multiple of 32 bits. If no bit mask size is | 708 // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
| 708 // given, the bit mask is assumed to cover the entire BitVector. | 709 // given, the bit mask is assumed to cover the entire BitVectorTmpl. |
| 709 | 710 |
| 710 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. | 711 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
| 711 /// This computes "*this |= Mask". | 712 /// This computes "*this |= Mask". |
| 712 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 713 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 713 applyMask<true, false>(Mask, MaskWords); | 714 applyMask<true, false>(Mask, MaskWords); |
| 714 } | 715 } |
| 715 | 716 |
| 716 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. | 717 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
| 717 /// Don't resize. This computes "*this &= ~Mask". | 718 /// Don't resize. This computes "*this &= ~Mask". |
| 718 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 719 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| (...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 800 if (AddBits) | 801 if (AddBits) |
| 801 Bits[i] |= BitWord(M) << b; | 802 Bits[i] |= BitWord(M) << b; |
| 802 else | 803 else |
| 803 Bits[i] &= ~(BitWord(M) << b); | 804 Bits[i] &= ~(BitWord(M) << b); |
| 804 } | 805 } |
| 805 if (AddBits) | 806 if (AddBits) |
| 806 clear_unused_bits(); | 807 clear_unused_bits(); |
| 807 } | 808 } |
| 808 }; | 809 }; |
| 809 | 810 |
| 811 using BitVector = BitVectorTmpl<CfgLocalAllocator>; | |
| 812 | |
| 810 } // end of namespace Ice | 813 } // end of namespace Ice |
| 811 | 814 |
| 812 namespace std { | 815 namespace std { |
| 813 /// Implement std::swap in terms of BitVector swap. | 816 /// Implement std::swap in terms of BitVectorTmpl swap. |
| 814 inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } | 817 template <template <typename> class AT> |
| 818 inline void swap(Ice::BitVectorTmpl<AT> &LHS, Ice::BitVectorTmpl<AT> &RHS) { | |
| 819 LHS.swap(RHS); | |
| 820 } | |
| 815 } | 821 } |
| 816 | 822 |
| 817 #endif // SUBZERO_SRC_ICEBITVECTOR_H | 823 #endif // SUBZERO_SRC_ICEBITVECTOR_H |
| OLD | NEW |