| OLD | NEW |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a | 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. | 3 // BSD-style license that can be found in the LICENSE file. |
| 4 | 4 |
| 5 part of fixnum; | 5 part of fixnum; |
| 6 | 6 |
| 7 /** | 7 /** |
| 8 * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1]. | 8 * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1]. |
| 9 * Arithmetic operations may overflow in order to maintain this range. | 9 * Arithmetic operations may overflow in order to maintain this range. |
| 10 */ | 10 */ |
| (...skipping 12 matching lines...) Expand all Loading... |
| 23 | 23 |
| 24 final int _l, _m, _h; | 24 final int _l, _m, _h; |
| 25 | 25 |
| 26 // Note: several functions require _BITS == 22 -- do not change this value. | 26 // Note: several functions require _BITS == 22 -- do not change this value. |
| 27 static const int _BITS = 22; | 27 static const int _BITS = 22; |
| 28 static const int _BITS01 = 44; // 2 * _BITS | 28 static const int _BITS01 = 44; // 2 * _BITS |
| 29 static const int _BITS2 = 20; // 64 - _BITS01 | 29 static const int _BITS2 = 20; // 64 - _BITS01 |
| 30 static const int _MASK = 4194303; // (1 << _BITS) - 1 | 30 static const int _MASK = 4194303; // (1 << _BITS) - 1 |
| 31 static const int _MASK2 = 1048575; // (1 << _BITS2) - 1 | 31 static const int _MASK2 = 1048575; // (1 << _BITS2) - 1 |
| 32 static const int _SIGN_BIT = 19; // _BITS2 - 1 | 32 static const int _SIGN_BIT = 19; // _BITS2 - 1 |
| 33 static const int _SIGN_BIT_MASK = 524288; // 1 << _SIGN_BIT | 33 static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT; |
| 34 | 34 |
| 35 /** | 35 /** |
| 36 * The maximum positive value attainable by an [Int64], namely | 36 * The maximum positive value attainable by an [Int64], namely |
| 37 * 9,223,372,036,854,775,807. | 37 * 9,223,372,036,854,775,807. |
| 38 */ | 38 */ |
| 39 static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1); | 39 static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1); |
| 40 | 40 |
| 41 /** | 41 /** |
| 42 * The minimum positive value attainable by an [Int64], namely | 42 * The minimum positive value attainable by an [Int64], namely |
| 43 * -9,223,372,036,854,775,808. | 43 * -9,223,372,036,854,775,808. |
| (...skipping 19 matching lines...) Expand all Loading... |
| 63 * Constructs an [Int64] with a given bitwise representation. No validation | 63 * Constructs an [Int64] with a given bitwise representation. No validation |
| 64 * is performed. | 64 * is performed. |
| 65 */ | 65 */ |
| 66 const Int64._bits(int this._l, int this._m, int this._h); | 66 const Int64._bits(int this._l, int this._m, int this._h); |
| 67 | 67 |
| 68 /** | 68 /** |
| 69 * Parses a [String] in a given [radix] between 2 and 36 and returns an | 69 * Parses a [String] in a given [radix] between 2 and 36 and returns an |
| 70 * [Int64]. | 70 * [Int64]. |
| 71 */ | 71 */ |
| 72 static Int64 parseRadix(String s, int radix) { | 72 static Int64 parseRadix(String s, int radix) { |
| 73 if ((radix <= 1) || (radix > 36)) { | 73 return _parseRadix(s, Int32._validateRadix(radix)); |
| 74 throw new ArgumentError("Bad radix: $radix"); | |
| 75 } | |
| 76 return _parseRadix(s, radix); | |
| 77 } | 74 } |
| 78 | 75 |
| 79 static Int64 _parseRadix(String s, int radix) { | 76 static Int64 _parseRadix(String s, int radix) { |
| 80 int i = 0; | 77 int i = 0; |
| 81 bool negative = false; | 78 bool negative = false; |
| 82 if (s[0] == '-') { | 79 if (s[0] == '-') { |
| 83 negative = true; | 80 negative = true; |
| 84 i++; | 81 i++; |
| 85 } | 82 } |
| 86 int d0 = 0, | 83 int d0 = 0, d1 = 0, d2 = 0; // low, middle, high components. |
| 87 d1 = 0, | |
| 88 d2 = 0; // low, middle, high components. | |
| 89 for (; i < s.length; i++) { | 84 for (; i < s.length; i++) { |
| 90 int c = s.codeUnitAt(i); | 85 int c = s.codeUnitAt(i); |
| 91 int digit = Int32._decodeDigit(c); | 86 int digit = Int32._decodeDigit(c); |
| 92 if (digit < 0 || digit >= radix) { | 87 if (digit < 0 || digit >= radix) { |
| 93 throw new FormatException("Non-radix char code: $c"); | 88 throw new FormatException("Non-radix char code: $c"); |
| 94 } | 89 } |
| 95 | 90 |
| 96 // [radix] and [digit] are at most 6 bits, component is 22, so we can | 91 // [radix] and [digit] are at most 6 bits, component is 22, so we can |
| 97 // multiply and add within 30 bit temporary values. | 92 // multiply and add within 30 bit temporary values. |
| 98 d0 = d0 * radix + digit; | 93 d0 = d0 * radix + digit; |
| 99 int carry = d0 >> _BITS; | 94 int carry = d0 >> _BITS; |
| 100 d0 = _MASK & d0; | 95 d0 = _MASK & d0; |
| 101 | 96 |
| 102 d1 = d1 * radix + carry; | 97 d1 = d1 * radix + carry; |
| 103 carry = d1 >> _BITS; | 98 carry = d1 >> _BITS; |
| 104 d1 = _MASK & d1; | 99 d1 = _MASK & d1; |
| 105 | 100 |
| 106 d2 = d2 * radix + carry; | 101 d2 = d2 * radix + carry; |
| 107 d2 = _MASK2 & d2; | 102 d2 = _MASK2 & d2; |
| 108 } | 103 } |
| 109 | 104 |
| 110 if (negative) return _negate(d0, d1, d2); | 105 if (negative) return _negate(d0, d1, d2); |
| 111 | 106 |
| 112 return new Int64._bits(d0, d1, d2); | 107 return Int64._masked(d0, d1, d2); |
| 113 } | 108 } |
| 114 | 109 |
| 115 /** | 110 /** |
| 116 * Parses a decimal [String] and returns an [Int64]. | 111 * Parses a decimal [String] and returns an [Int64]. |
| 117 */ | 112 */ |
| 118 static Int64 parseInt(String s) => _parseRadix(s, 10); | 113 static Int64 parseInt(String s) => _parseRadix(s, 10); |
| 119 | 114 |
| 120 /** | 115 /** |
| 121 * Parses a hexadecimal [String] and returns an [Int64]. | 116 * Parses a hexadecimal [String] and returns an [Int64]. |
| 122 */ | 117 */ |
| 123 static Int64 parseHex(String s) => _parseRadix(s, 16); | 118 static Int64 parseHex(String s) => _parseRadix(s, 16); |
| 124 | 119 |
| 125 // | 120 // |
| 126 // Public constructors | 121 // Public constructors |
| 127 // | 122 // |
| 128 | 123 |
| 129 /** | 124 /** |
| 130 * Constructs an [Int64] with a given [int] value; zero by default. | 125 * Constructs an [Int64] with a given [int] value; zero by default. |
| 131 */ | 126 */ |
| 132 factory Int64([int value = 0]) { | 127 factory Int64([int value=0]) { |
| 133 int v0 = 0, | 128 int v0 = 0, v1 = 0, v2 = 0; |
| 134 v1 = 0, | |
| 135 v2 = 0; | |
| 136 bool negative = false; | 129 bool negative = false; |
| 137 if (value < 0) { | 130 if (value < 0) { |
| 138 negative = true; | 131 negative = true; |
| 139 value = -value - 1; | 132 value = -value - 1; |
| 140 } | 133 } |
| 141 if (_haveBigInts) { | 134 // Avoid using bitwise operations that in JavaScript coerce their input to |
| 142 v0 = _MASK & value; | 135 // 32 bits. |
| 143 v1 = _MASK & (value >> _BITS); | 136 v2 = value ~/ 17592186044416; // 2^44 |
| 144 v2 = _MASK2 & (value >> _BITS01); | 137 value -= v2 * 17592186044416; |
| 145 } else { | 138 v1 = value ~/ 4194304; // 2^22 |
| 146 // Avoid using bitwise operations that coerce their input to 32 bits. | 139 value -= v1 * 4194304; |
| 147 v2 = value ~/ 17592186044416; // 2^44 | 140 v0 = value; |
| 148 value -= v2 * 17592186044416; | |
| 149 v1 = value ~/ 4194304; // 2^22 | |
| 150 value -= v1 * 4194304; | |
| 151 v0 = value; | |
| 152 } | |
| 153 | 141 |
| 154 if (negative) { | 142 if (negative) { |
| 155 v0 = ~v0; | 143 v0 = ~v0; |
| 156 v1 = ~v1; | 144 v1 = ~v1; |
| 157 v2 = ~v2; | 145 v2 = ~v2; |
| 158 } | 146 } |
| 159 return Int64._masked(v0, v1, v2); | 147 return Int64._masked(v0, v1, v2); |
| 160 } | 148 } |
| 161 | 149 |
| 162 factory Int64.fromBytes(List<int> bytes) { | 150 factory Int64.fromBytes(List<int> bytes) { |
| (...skipping 27 matching lines...) Expand all Loading... |
| 190 | 178 |
| 191 int bottom = bytes[4] & 0xff; | 179 int bottom = bytes[4] & 0xff; |
| 192 bottom <<= 8; | 180 bottom <<= 8; |
| 193 bottom |= bytes[5] & 0xff; | 181 bottom |= bytes[5] & 0xff; |
| 194 bottom <<= 8; | 182 bottom <<= 8; |
| 195 bottom |= bytes[6] & 0xff; | 183 bottom |= bytes[6] & 0xff; |
| 196 bottom <<= 8; | 184 bottom <<= 8; |
| 197 bottom |= bytes[7] & 0xff; | 185 bottom |= bytes[7] & 0xff; |
| 198 | 186 |
| 199 return new Int64.fromInts(top, bottom); | 187 return new Int64.fromInts(top, bottom); |
| 200 } | 188 } |
| 201 | 189 |
| 202 /** | 190 /** |
| 203 * Constructs an [Int64] from a pair of 32-bit integers having the value | 191 * Constructs an [Int64] from a pair of 32-bit integers having the value |
| 204 * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):]. | 192 * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):]. |
| 205 */ | 193 */ |
| 206 factory Int64.fromInts(int top, int bottom) { | 194 factory Int64.fromInts(int top, int bottom) { |
| 207 top &= 0xffffffff; | 195 top &= 0xffffffff; |
| 208 bottom &= 0xffffffff; | 196 bottom &= 0xffffffff; |
| 209 int d0 = bottom & _MASK; | 197 int d0 = _MASK & bottom; |
| 210 int d1 = ((top & 0xfff) << 10) | ((bottom >> _BITS) & 0x3ff); | 198 int d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS)); |
| 211 int d2 = (top >> 12) & _MASK2; | 199 int d2 = _MASK2 & (top >> 12); |
| 212 return new Int64._bits(d0, d1, d2); | 200 return Int64._masked(d0, d1, d2); |
| 213 } | 201 } |
| 214 | 202 |
| 215 // Returns the [Int64] representation of the specified value. Throws | 203 // Returns the [Int64] representation of the specified value. Throws |
| 216 // [ArgumentError] for non-integer arguments. | 204 // [ArgumentError] for non-integer arguments. |
| 217 static Int64 _promote(val) { | 205 static Int64 _promote(value) { |
| 218 if (val is Int64) { | 206 if (value is Int64) { |
| 219 return val; | 207 return value; |
| 220 } else if (val is int) { | 208 } else if (value is int) { |
| 221 return new Int64(val); | 209 return new Int64(value); |
| 222 } else if (val is Int32) { | 210 } else if (value is Int32) { |
| 223 return val.toInt64(); | 211 return value.toInt64(); |
| 224 } | 212 } |
| 225 throw new ArgumentError(val); | 213 throw new ArgumentError.value(value); |
| 226 } | 214 } |
| 227 | 215 |
| 228 Int64 operator +(other) { | 216 Int64 operator +(other) { |
| 229 Int64 o = _promote(other); | 217 Int64 o = _promote(other); |
| 230 int sum0 = _l + o._l; | 218 int sum0 = _l + o._l; |
| 231 int sum1 = _m + o._m + (sum0 >> _BITS); | 219 int sum1 = _m + o._m + (sum0 >> _BITS); |
| 232 int sum2 = _h + o._h + (sum1 >> _BITS); | 220 int sum2 = _h + o._h + (sum1 >> _BITS); |
| 233 return Int64._masked(sum0, sum1, sum2); | 221 return Int64._masked(sum0, sum1, sum2); |
| 234 } | 222 } |
| 235 | 223 |
| (...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 309 int c13 = (p3 & 0x1f) << 17; | 297 int c13 = (p3 & 0x1f) << 17; |
| 310 int c1 = c10 + c11 + c12 + c13; | 298 int c1 = c10 + c11 + c12 + c13; |
| 311 | 299 |
| 312 int c22 = p2 >> 18; | 300 int c22 = p2 >> 18; |
| 313 int c23 = p3 >> 5; | 301 int c23 = p3 >> 5; |
| 314 int c24 = (p4 & 0xfff) << 8; | 302 int c24 = (p4 & 0xfff) << 8; |
| 315 int c2 = c22 + c23 + c24; | 303 int c2 = c22 + c23 + c24; |
| 316 | 304 |
| 317 // Propagate high bits from c0 -> c1, c1 -> c2. | 305 // Propagate high bits from c0 -> c1, c1 -> c2. |
| 318 c1 += c0 >> _BITS; | 306 c1 += c0 >> _BITS; |
| 319 c0 &= _MASK; | |
| 320 c2 += c1 >> _BITS; | 307 c2 += c1 >> _BITS; |
| 321 c1 &= _MASK; | |
| 322 c2 &= _MASK2; | |
| 323 | 308 |
| 324 return new Int64._bits(c0, c1, c2); | 309 return Int64._masked(c0, c1, c2); |
| 325 } | 310 } |
| 326 | 311 |
| 327 Int64 operator %(other) => _divide(this, other, _RETURN_MOD); | 312 Int64 operator %(other) => _divide(this, other, _RETURN_MOD); |
| 328 | 313 |
| 329 Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV); | 314 Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV); |
| 330 | 315 |
| 331 Int64 remainder(other) => _divide(this, other, _RETURN_REM); | 316 Int64 remainder(other) => _divide(this, other, _RETURN_REM); |
| 332 | 317 |
| 333 Int64 operator &(other) { | 318 Int64 operator &(other) { |
| 334 Int64 o = _promote(other); | 319 Int64 o = _promote(other); |
| 335 int a0 = _l & o._l; | 320 int a0 = _l & o._l; |
| 336 int a1 = _m & o._m; | 321 int a1 = _m & o._m; |
| 337 int a2 = _h & o._h; | 322 int a2 = _h & o._h; |
| 338 return new Int64._bits(a0, a1, a2); | 323 return Int64._masked(a0, a1, a2); |
| 339 } | 324 } |
| 340 | 325 |
| 341 Int64 operator |(other) { | 326 Int64 operator |(other) { |
| 342 Int64 o = _promote(other); | 327 Int64 o = _promote(other); |
| 343 int a0 = _l | o._l; | 328 int a0 = _l | o._l; |
| 344 int a1 = _m | o._m; | 329 int a1 = _m | o._m; |
| 345 int a2 = _h | o._h; | 330 int a2 = _h | o._h; |
| 346 return new Int64._bits(a0, a1, a2); | 331 return Int64._masked(a0, a1, a2); |
| 347 } | 332 } |
| 348 | 333 |
| 349 Int64 operator ^(other) { | 334 Int64 operator ^(other) { |
| 350 Int64 o = _promote(other); | 335 Int64 o = _promote(other); |
| 351 int a0 = _l ^ o._l; | 336 int a0 = _l ^ o._l; |
| 352 int a1 = _m ^ o._m; | 337 int a1 = _m ^ o._m; |
| 353 int a2 = _h ^ o._h; | 338 int a2 = _h ^ o._h; |
| 354 return new Int64._bits(a0, a1, a2); | 339 return Int64._masked(a0, a1, a2); |
| 355 } | 340 } |
| 356 | 341 |
| 357 Int64 operator ~() { | 342 Int64 operator ~() { |
| 358 return Int64._masked(~_l, ~_m, ~_h); | 343 return Int64._masked(~_l, ~_m, ~_h); |
| 359 } | 344 } |
| 360 | 345 |
| 361 Int64 operator <<(int n) { | 346 Int64 operator <<(int n) { |
| 362 if (n < 0) { | 347 if (n < 0) { |
| 363 throw new ArgumentError(n); | 348 throw new ArgumentError.value(n); |
| 364 } | 349 } |
| 365 n &= 63; | 350 n &= 63; |
| 366 | 351 |
| 367 int res0, res1, res2; | 352 int res0, res1, res2; |
| 368 if (n < _BITS) { | 353 if (n < _BITS) { |
| 369 res0 = _l << n; | 354 res0 = _l << n; |
| 370 res1 = (_m << n) | (_l >> (_BITS - n)); | 355 res1 = (_m << n) | (_l >> (_BITS - n)); |
| 371 res2 = (_h << n) | (_m >> (_BITS - n)); | 356 res2 = (_h << n) | (_m >> (_BITS - n)); |
| 372 } else if (n < _BITS01) { | 357 } else if (n < _BITS01) { |
| 373 res0 = 0; | 358 res0 = 0; |
| 374 res1 = _l << (n - _BITS); | 359 res1 = _l << (n - _BITS); |
| 375 res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n)); | 360 res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n)); |
| 376 } else { | 361 } else { |
| 377 res0 = 0; | 362 res0 = 0; |
| 378 res1 = 0; | 363 res1 = 0; |
| 379 res2 = _l << (n - _BITS01); | 364 res2 = _l << (n - _BITS01); |
| 380 } | 365 } |
| 381 | 366 |
| 382 return Int64._masked(res0, res1, res2); | 367 return Int64._masked(res0, res1, res2); |
| 383 } | 368 } |
| 384 | 369 |
| 385 Int64 operator >>(int n) { | 370 Int64 operator >>(int n) { |
| 386 if (n < 0) { | 371 if (n < 0) { |
| 387 throw new ArgumentError(n); | 372 throw new ArgumentError.value(n); |
| 388 } | 373 } |
| 389 n &= 63; | 374 n &= 63; |
| 390 | 375 |
| 391 int res0, res1, res2; | 376 int res0, res1, res2; |
| 392 | 377 |
| 393 // Sign extend h(a). | 378 // Sign extend h(a). |
| 394 int a2 = _h; | 379 int a2 = _h; |
| 395 bool negative = (a2 & _SIGN_BIT_MASK) != 0; | 380 bool negative = (a2 & _SIGN_BIT_MASK) != 0; |
| 396 if (negative && _MASK > _MASK2) { | 381 if (negative && _MASK > _MASK2) { |
| 397 // Add extra one bits on the left so the sign gets shifted into the wider | 382 // Add extra one bits on the left so the sign gets shifted into the wider |
| (...skipping 22 matching lines...) Expand all Loading... |
| 420 if (negative) { | 405 if (negative) { |
| 421 res0 |= _MASK & ~(_MASK >> (n - _BITS01)); | 406 res0 |= _MASK & ~(_MASK >> (n - _BITS01)); |
| 422 } | 407 } |
| 423 } | 408 } |
| 424 | 409 |
| 425 return Int64._masked(res0, res1, res2); | 410 return Int64._masked(res0, res1, res2); |
| 426 } | 411 } |
| 427 | 412 |
| 428 Int64 shiftRightUnsigned(int n) { | 413 Int64 shiftRightUnsigned(int n) { |
| 429 if (n < 0) { | 414 if (n < 0) { |
| 430 throw new ArgumentError(n); | 415 throw new ArgumentError.value(n); |
| 431 } | 416 } |
| 432 n &= 63; | 417 n &= 63; |
| 433 | 418 |
| 434 int res0, res1, res2; | 419 int res0, res1, res2; |
| 435 int a2 = _MASK2 & _h; // Ensure a2 is positive. | 420 int a2 = _MASK2 & _h; // Ensure a2 is positive. |
| 436 if (n < _BITS) { | 421 if (n < _BITS) { |
| 437 res2 = a2 >> n; | 422 res2 = a2 >> n; |
| 438 res1 = (_m >> n) | (a2 << (_BITS - n)); | 423 res1 = (_m >> n) | (a2 << (_BITS - n)); |
| 439 res0 = (_l >> n) | (_m << (_BITS - n)); | 424 res0 = (_l >> n) | (_m << (_BITS - n)); |
| 440 } else if (n < _BITS01) { | 425 } else if (n < _BITS01) { |
| (...skipping 25 matching lines...) Expand all Loading... |
| 466 o = new Int64(other); | 451 o = new Int64(other); |
| 467 } else if (other is Int32) { | 452 } else if (other is Int32) { |
| 468 o = other.toInt64(); | 453 o = other.toInt64(); |
| 469 } | 454 } |
| 470 if (o != null) { | 455 if (o != null) { |
| 471 return _l == o._l && _m == o._m && _h == o._h; | 456 return _l == o._l && _m == o._m && _h == o._h; |
| 472 } | 457 } |
| 473 return false; | 458 return false; |
| 474 } | 459 } |
| 475 | 460 |
| 476 int compareTo(Comparable other) { | 461 int compareTo(Comparable other) =>_compareTo(other); |
| 462 |
| 463 int _compareTo(other) { |
| 477 Int64 o = _promote(other); | 464 Int64 o = _promote(other); |
| 478 int signa = _h >> (_BITS2 - 1); | 465 int signa = _h >> (_BITS2 - 1); |
| 479 int signb = o._h >> (_BITS2 - 1); | 466 int signb = o._h >> (_BITS2 - 1); |
| 480 if (signa != signb) { | 467 if (signa != signb) { |
| 481 return signa == 0 ? 1 : -1; | 468 return signa == 0 ? 1 : -1; |
| 482 } | 469 } |
| 483 if (_h > o._h) { | 470 if (_h > o._h) { |
| 484 return 1; | 471 return 1; |
| 485 } else if (_h < o._h) { | 472 } else if (_h < o._h) { |
| 486 return -1; | 473 return -1; |
| 487 } | 474 } |
| 488 if (_m > o._m) { | 475 if (_m > o._m) { |
| 489 return 1; | 476 return 1; |
| 490 } else if (_m < o._m) { | 477 } else if (_m < o._m) { |
| 491 return -1; | 478 return -1; |
| 492 } | 479 } |
| 493 if (_l > o._l) { | 480 if (_l > o._l) { |
| 494 return 1; | 481 return 1; |
| 495 } else if (_l < o._l) { | 482 } else if (_l < o._l) { |
| 496 return -1; | 483 return -1; |
| 497 } | 484 } |
| 498 return 0; | 485 return 0; |
| 499 } | 486 } |
| 500 | 487 |
| 501 bool operator <(other) { | 488 bool operator <(other) => _compareTo(other) < 0; |
| 502 return this.compareTo(other) < 0; | 489 bool operator <=(other) => _compareTo(other) <= 0; |
| 503 } | 490 bool operator >(other) => this._compareTo(other) > 0; |
| 504 | 491 bool operator >=(other) => _compareTo(other) >= 0; |
| 505 bool operator <=(other) { | |
| 506 return this.compareTo(other) <= 0; | |
| 507 } | |
| 508 | |
| 509 bool operator >(other) { | |
| 510 return this.compareTo(other) > 0; | |
| 511 } | |
| 512 | |
| 513 bool operator >=(other) { | |
| 514 return this.compareTo(other) >= 0; | |
| 515 } | |
| 516 | 492 |
| 517 bool get isEven => (_l & 0x1) == 0; | 493 bool get isEven => (_l & 0x1) == 0; |
| 518 bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK; | 494 bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK; |
| 519 bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0; | 495 bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0; |
| 520 bool get isNegative => (_h & _SIGN_BIT_MASK) != 0; | 496 bool get isNegative => (_h & _SIGN_BIT_MASK) != 0; |
| 521 bool get isOdd => (_l & 0x1) == 1; | 497 bool get isOdd => (_l & 0x1) == 1; |
| 522 bool get isZero => _h == 0 && _m == 0 && _l == 0; | 498 bool get isZero => _h == 0 && _m == 0 && _l == 0; |
| 523 | 499 |
| 524 int get bitLength { | 500 int get bitLength { |
| 525 if (isZero) return 0; | 501 if (isZero) return 0; |
| 526 int a0 = _l, | 502 int a0 = _l, a1 = _m, a2 = _h; |
| 527 a1 = _m, | |
| 528 a2 = _h; | |
| 529 if (isNegative) { | 503 if (isNegative) { |
| 530 a0 = _MASK & ~a0; | 504 a0 = _MASK & ~a0; |
| 531 a1 = _MASK & ~a1; | 505 a1 = _MASK & ~a1; |
| 532 a2 = _MASK2 & ~a2; | 506 a2 = _MASK2 & ~a2; |
| 533 } | 507 } |
| 534 if (a2 != 0) return _BITS01 + a2.bitLength; | 508 if (a2 != 0) return _BITS01 + a2.bitLength; |
| 535 if (a1 != 0) return _BITS + a1.bitLength; | 509 if (a1 != 0) return _BITS + a1.bitLength; |
| 536 return a0.bitLength; | 510 return a0.bitLength; |
| 537 } | 511 } |
| 538 | 512 |
| (...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 594 | 568 |
| 595 zeros = Int32._numberOfTrailingZeros(_h); | 569 zeros = Int32._numberOfTrailingZeros(_h); |
| 596 if (zeros < 32) { | 570 if (zeros < 32) { |
| 597 return _BITS01 + zeros; | 571 return _BITS01 + zeros; |
| 598 } | 572 } |
| 599 // All zeros | 573 // All zeros |
| 600 return 64; | 574 return 64; |
| 601 } | 575 } |
| 602 | 576 |
| 603 Int64 toSigned(int width) { | 577 Int64 toSigned(int width) { |
| 604 if (width < 1 || width > 64) throw new ArgumentError(width); | 578 if (width < 1 || width > 64) throw new RangeError.range(width, 1, 64); |
| 605 if (width > _BITS01) { | 579 if (width > _BITS01) { |
| 606 return Int64._masked(_l, _m, _h.toSigned(width - _BITS01)); | 580 return Int64._masked(_l, _m, _h.toSigned(width - _BITS01)); |
| 607 } else if (width > _BITS) { | 581 } else if (width > _BITS) { |
| 608 int m = _m.toSigned(width - _BITS); | 582 int m = _m.toSigned(width - _BITS); |
| 609 return m.isNegative | 583 return m.isNegative |
| 610 ? Int64._masked(_l, m, _MASK2) | 584 ? Int64._masked(_l, m, _MASK2) |
| 611 : Int64._masked(_l, m, 0); // Masking for type inferrer. | 585 : Int64._masked(_l, m, 0); // Masking for type inferrer. |
| 612 } else { | 586 } else { |
| 613 int l = _l.toSigned(width); | 587 int l = _l.toSigned(width); |
| 614 return l.isNegative | 588 return l.isNegative |
| 615 ? Int64._masked(l, _MASK, _MASK2) | 589 ? Int64._masked(l, _MASK, _MASK2) |
| 616 : Int64._masked(l, 0, 0); // Masking for type inferrer. | 590 : Int64._masked(l, 0, 0); // Masking for type inferrer. |
| 617 } | 591 } |
| 618 } | 592 } |
| 619 | 593 |
| 620 Int64 toUnsigned(int width) { | 594 Int64 toUnsigned(int width) { |
| 621 if (width < 0 || width > 64) throw new ArgumentError(width); | 595 if (width < 0 || width > 64) throw new RangeError.range(width, 0, 64); |
| 622 if (width > _BITS01) { | 596 if (width > _BITS01) { |
| 623 int h = _h.toUnsigned(width - _BITS01); | 597 int h = _h.toUnsigned(width - _BITS01); |
| 624 return Int64._masked(_l, _m, h); | 598 return Int64._masked(_l, _m, h); |
| 625 } else if (width > _BITS) { | 599 } else if (width > _BITS) { |
| 626 int m = _m.toUnsigned(width - _BITS); | 600 int m = _m.toUnsigned(width - _BITS); |
| 627 return Int64._masked(_l, m, 0); | 601 return Int64._masked(_l, m, 0); |
| 628 } else { | 602 } else { |
| 629 int l = _l.toUnsigned(width); | 603 int l = _l.toUnsigned(width); |
| 630 return Int64._masked(l, 0, 0); | 604 return Int64._masked(l, 0, 0); |
| 631 } | 605 } |
| (...skipping 11 matching lines...) Expand all Loading... |
| 643 result[7] = (_h >> 12) & 0xff; | 617 result[7] = (_h >> 12) & 0xff; |
| 644 return result; | 618 return result; |
| 645 } | 619 } |
| 646 | 620 |
| 647 double toDouble() => toInt().toDouble(); | 621 double toDouble() => toInt().toDouble(); |
| 648 | 622 |
| 649 int toInt() { | 623 int toInt() { |
| 650 int l = _l; | 624 int l = _l; |
| 651 int m = _m; | 625 int m = _m; |
| 652 int h = _h; | 626 int h = _h; |
| 653 bool negative = false; | 627 // In the sum we add least significant to most significant so that in |
| 628 // JavaScript double arithmetic rounding occurs on only the last addition. |
| 654 if ((_h & _SIGN_BIT_MASK) != 0) { | 629 if ((_h & _SIGN_BIT_MASK) != 0) { |
| 655 l = _MASK & ~_l; | 630 l = _MASK & ~_l; |
| 656 m = _MASK & ~_m; | 631 m = _MASK & ~_m; |
| 657 h = _MASK2 & ~_h; | 632 h = _MASK2 & ~_h; |
| 658 negative = true; | 633 return -((1 + l) + (4194304 * m) + (17592186044416 * h)); |
| 659 } | |
| 660 | |
| 661 if (_haveBigInts) { | |
| 662 int result = (h << _BITS01) | (m << _BITS) | l; | |
| 663 return negative ? -result - 1 : result; | |
| 664 } else { | 634 } else { |
| 665 if (negative) { | 635 return l + (4194304 * m) + (17592186044416 * h); |
| 666 return -((l + 1) + (m * 4194304) + (h * 17592186044416)); | |
| 667 } else { | |
| 668 return (l + (m * 4194304)) + (h * 17592186044416); | |
| 669 } | |
| 670 } | 636 } |
| 671 } | 637 } |
| 672 | 638 |
| 673 /** | 639 /** |
| 674 * Returns an [Int32] containing the low 32 bits of this [Int64]. | 640 * Returns an [Int32] containing the low 32 bits of this [Int64]. |
| 675 */ | 641 */ |
| 676 Int32 toInt32() { | 642 Int32 toInt32() { |
| 677 return new Int32(((_m & 0x3ff) << _BITS) | _l); | 643 return new Int32(((_m & 0x3ff) << _BITS) | _l); |
| 678 } | 644 } |
| 679 | 645 |
| 680 /** | 646 /** |
| 681 * Returns [this]. | 647 * Returns [this]. |
| 682 */ | 648 */ |
| 683 Int64 toInt64() => this; | 649 Int64 toInt64() => this; |
| 684 | 650 |
| 685 /** | 651 /** |
| 686 * Returns the value of this [Int64] as a decimal [String]. | 652 * Returns the value of this [Int64] as a decimal [String]. |
| 687 */ | 653 */ |
| 688 String toString() => _toRadixString(10); | 654 String toString() => _toRadixString(10); |
| 689 | 655 |
| 690 // TODO(rice) - Make this faster by avoiding arithmetic. | 656 // TODO(rice) - Make this faster by avoiding arithmetic. |
| 691 String toHexString() { | 657 String toHexString() { |
| 692 if (isZero) return "0"; | 658 if (isZero) return "0"; |
| 693 Int64 x = this; | 659 Int64 x = this; |
| 694 String hexStr = ""; | 660 String hexStr = ""; |
| 695 Int64 digit_f = new Int64(0xf); | |
| 696 while (!x.isZero) { | 661 while (!x.isZero) { |
| 697 int digit = x._l & 0xf; | 662 int digit = x._l & 0xf; |
| 698 hexStr = "${_hexDigit(digit)}$hexStr"; | 663 hexStr = "${_hexDigit(digit)}$hexStr"; |
| 699 x = x.shiftRightUnsigned(4); | 664 x = x.shiftRightUnsigned(4); |
| 700 } | 665 } |
| 701 return hexStr; | 666 return hexStr; |
| 702 } | 667 } |
| 703 | 668 |
| 704 String toRadixString(int radix) { | 669 String toRadixString(int radix) { |
| 705 if ((radix <= 1) || (radix > 36)) { | 670 return _toRadixString(Int32._validateRadix(radix)); |
| 706 throw new ArgumentError("Bad radix: $radix"); | |
| 707 } | |
| 708 return _toRadixString(radix); | |
| 709 } | 671 } |
| 710 | 672 |
| 711 String _toRadixString(int radix) { | 673 String _toRadixString(int radix) { |
| 712 int d0 = _l; | 674 int d0 = _l; |
| 713 int d1 = _m; | 675 int d1 = _m; |
| 714 int d2 = _h; | 676 int d2 = _h; |
| 715 | 677 |
| 716 if (d0 == 0 && d1 == 0 && d2 == 0) return '0'; | 678 if (d0 == 0 && d1 == 0 && d2 == 0) return '0'; |
| 717 | 679 |
| 718 String sign = ''; | 680 String sign = ''; |
| (...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 757 int fatRadix = _fatRadixTable[radix]; | 719 int fatRadix = _fatRadixTable[radix]; |
| 758 | 720 |
| 759 // Generate chunks of digits. In radix 10, generate 6 digits per chunk. | 721 // Generate chunks of digits. In radix 10, generate 6 digits per chunk. |
| 760 // | 722 // |
| 761 // This loop generates at most 3 chunks, so we store the chunks in locals | 723 // This loop generates at most 3 chunks, so we store the chunks in locals |
| 762 // rather than a list. We are trying to generate digits 20 bits at a time | 724 // rather than a list. We are trying to generate digits 20 bits at a time |
| 763 // until we have only 30 bits left. 20 + 20 + 30 > 64 would imply that we | 725 // until we have only 30 bits left. 20 + 20 + 30 > 64 would imply that we |
| 764 // need only two chunks, but radix values 17-19 and 33-36 generate only 15 | 726 // need only two chunks, but radix values 17-19 and 33-36 generate only 15 |
| 765 // or 16 bits per iteration, so sometimes the third chunk is needed. | 727 // or 16 bits per iteration, so sometimes the third chunk is needed. |
| 766 | 728 |
| 767 String chunk1 = "", | 729 String chunk1 = "", chunk2 = "", chunk3 = ""; |
| 768 chunk2 = "", | |
| 769 chunk3 = ""; | |
| 770 | 730 |
| 771 while (!(d4 == 0 && d3 == 0)) { | 731 while (!(d4 == 0 && d3 == 0)) { |
| 772 int q = d4 ~/ fatRadix; | 732 int q = d4 ~/ fatRadix; |
| 773 int r = d4 - q * fatRadix; | 733 int r = d4 - q * fatRadix; |
| 774 d4 = q; | 734 d4 = q; |
| 775 d3 += r << 10; | 735 d3 += r << 10; |
| 776 | 736 |
| 777 q = d3 ~/ fatRadix; | 737 q = d3 ~/ fatRadix; |
| 778 r = d3 - q * fatRadix; | 738 r = d3 - q * fatRadix; |
| 779 d3 = q; | 739 d3 = q; |
| (...skipping 80 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 860 int diff0 = a0 - b0; | 820 int diff0 = a0 - b0; |
| 861 int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1); | 821 int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1); |
| 862 int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1); | 822 int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1); |
| 863 return _masked(diff0, diff1, diff2); | 823 return _masked(diff0, diff1, diff2); |
| 864 } | 824 } |
| 865 | 825 |
| 866 static Int64 _negate(int b0, int b1, int b2) { | 826 static Int64 _negate(int b0, int b1, int b2) { |
| 867 return _sub(0, 0, 0, b0, b1, b2); | 827 return _sub(0, 0, 0, b0, b1, b2); |
| 868 } | 828 } |
| 869 | 829 |
| 870 // Determine whether the platform supports ints greater than 2^53 | |
| 871 // without loss of precision. | |
| 872 static bool _haveBigIntsCached = null; | |
| 873 | |
| 874 static bool get _haveBigInts { | |
| 875 if (_haveBigIntsCached == null) { | |
| 876 var x = 9007199254740992; | |
| 877 // Defeat compile-time constant folding. | |
| 878 if (2 + 2 != 4) { | |
| 879 x = 0; | |
| 880 } | |
| 881 var y = x + 1; | |
| 882 var same = y == x; | |
| 883 _haveBigIntsCached = !same; | |
| 884 } | |
| 885 return _haveBigIntsCached; | |
| 886 } | |
| 887 | |
| 888 String _hexDigit(int digit) => "0123456789ABCDEF"[digit]; | 830 String _hexDigit(int digit) => "0123456789ABCDEF"[digit]; |
| 889 | 831 |
| 890 // Work around dart2js bugs with negative arguments to '>>' operator. | 832 // Work around dart2js bugs with negative arguments to '>>' operator. |
| 891 static int _shiftRight(int x, int n) { | 833 static int _shiftRight(int x, int n) { |
| 892 if (x >= 0) { | 834 if (x >= 0) { |
| 893 return x >> n; | 835 return x >> n; |
| 894 } else { | 836 } else { |
| 895 int shifted = x >> n; | 837 int shifted = x >> n; |
| 896 if (shifted >= 0x80000000) { | 838 if (shifted >= 0x80000000) { |
| 897 shifted -= 4294967296; | 839 shifted -= 4294967296; |
| (...skipping 25 matching lines...) Expand all Loading... |
| 923 int b2 = b._h; | 865 int b2 = b._h; |
| 924 return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what); | 866 return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what); |
| 925 } | 867 } |
| 926 | 868 |
| 927 static const _RETURN_DIV = 1; | 869 static const _RETURN_DIV = 1; |
| 928 static const _RETURN_REM = 2; | 870 static const _RETURN_REM = 2; |
| 929 static const _RETURN_MOD = 3; | 871 static const _RETURN_MOD = 3; |
| 930 | 872 |
| 931 static _divideHelper( | 873 static _divideHelper( |
| 932 // up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0 | 874 // up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0 |
| 933 int a0, int a1, int a2, bool aNeg, // input A. | 875 int a0, int a1, int a2, bool aNeg, // input A. |
| 934 int b0, int b1, int b2, bool bNeg, // input B. | 876 int b0, int b1, int b2, bool bNeg, // input B. |
| 935 int what) { | 877 int what) { |
| 936 int q0 = 0, | 878 int q0 = 0, q1 = 0, q2 = 0; // result Q. |
| 937 q1 = 0, | 879 int r0 = 0, r1 = 0, r2 = 0; // result R. |
| 938 q2 = 0; // result Q. | |
| 939 int r0 = 0, | |
| 940 r1 = 0, | |
| 941 r2 = 0; // result R. | |
| 942 | 880 |
| 943 if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) { | 881 if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) { |
| 944 // Small divisor can be handled by single-digit division within Smi range. | 882 // Small divisor can be handled by single-digit division within Smi range. |
| 945 // | 883 // |
| 946 // Handling small divisors here helps the estimate version below by | 884 // Handling small divisors here helps the estimate version below by |
| 947 // handling cases where the estimate is off by more than a small amount. | 885 // handling cases where the estimate is off by more than a small amount. |
| 948 | 886 |
| 949 q2 = a2 ~/ b0; | 887 q2 = a2 ~/ b0; |
| 950 int carry = a2 - q2 * b0; | 888 int carry = a2 - q2 * b0; |
| 951 int d1 = a1 + (carry << _BITS); | 889 int d1 = a1 + (carry << _BITS); |
| (...skipping 27 matching lines...) Expand all Loading... |
| 979 // Extract components of [qd] using double arithmetic. | 917 // Extract components of [qd] using double arithmetic. |
| 980 double q2d = (qd / K2).floorToDouble(); | 918 double q2d = (qd / K2).floorToDouble(); |
| 981 qd = qd - K2 * q2d; | 919 qd = qd - K2 * q2d; |
| 982 double q1d = (qd / K1).floorToDouble(); | 920 double q1d = (qd / K1).floorToDouble(); |
| 983 double q0d = qd - K1 * q1d; | 921 double q0d = qd - K1 * q1d; |
| 984 q2 = q2d.toInt(); | 922 q2 = q2d.toInt(); |
| 985 q1 = q1d.toInt(); | 923 q1 = q1d.toInt(); |
| 986 q0 = q0d.toInt(); | 924 q0 = q0d.toInt(); |
| 987 | 925 |
| 988 assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble()); | 926 assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble()); |
| 989 assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A. | 927 assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A. |
| 990 | 928 |
| 991 // P = Q * B, using doubles to hold intermediates. | 929 // P = Q * B, using doubles to hold intermediates. |
| 992 // We don't need all partial sums since Q*B <= A. | 930 // We don't need all partial sums since Q*B <= A. |
| 993 double p0d = q0d * b0; | 931 double p0d = q0d * b0; |
| 994 double p0carry = (p0d / K1).floorToDouble(); | 932 double p0carry = (p0d / K1).floorToDouble(); |
| 995 p0d = p0d - p0carry * K1; | 933 p0d = p0d - p0carry * K1; |
| 996 double p1d = q1d * b0 + q0d * b1 + p0carry; | 934 double p1d = q1d * b0 + q0d * b1 + p0carry; |
| 997 double p1carry = (p1d / K1).floorToDouble(); | 935 double p1carry = (p1d / K1).floorToDouble(); |
| 998 p1d = p1d - p1carry * K1; | 936 p1d = p1d - p1carry * K1; |
| 999 double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry; | 937 double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry; |
| 1000 assert(p2d <= _MASK2); // No partial sum overflow. | 938 assert(p2d <= _MASK2); // No partial sum overflow. |
| 1001 | 939 |
| 1002 // R = A - P | 940 // R = A - P |
| 1003 int diff0 = a0 - p0d.toInt(); | 941 int diff0 = a0 - p0d.toInt(); |
| 1004 int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1); | 942 int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1); |
| 1005 int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1); | 943 int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1); |
| 1006 r0 = _MASK & diff0; | 944 r0 = _MASK & diff0; |
| 1007 r1 = _MASK & diff1; | 945 r1 = _MASK & diff1; |
| 1008 r2 = _MASK2 & diff2; | 946 r2 = _MASK2 & diff2; |
| 1009 | 947 |
| 1010 // while (R < 0 || R >= B) | 948 // while (R < 0 || R >= B) |
| 1011 // adjust R towards [0, B) | 949 // adjust R towards [0, B) |
| 1012 while (r2 >= _SIGN_BIT_MASK || | 950 while ( |
| 951 r2 >= _SIGN_BIT_MASK || |
| 1013 r2 > b2 || | 952 r2 > b2 || |
| 1014 (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) { | 953 (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) { |
| 1015 // Direction multiplier for adjustment. | 954 // Direction multiplier for adjustment. |
| 1016 int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1; | 955 int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1; |
| 1017 // R = R - B or R = R + B | 956 // R = R - B or R = R + B |
| 1018 int d0 = r0 - m * b0; | 957 int d0 = r0 - m * b0; |
| 1019 int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1)); | 958 int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1)); |
| 1020 int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1)); | 959 int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1)); |
| 1021 r0 = _MASK & d0; | 960 r0 = _MASK & d0; |
| 1022 r1 = _MASK & d1; | 961 r1 = _MASK & d1; |
| 1023 r2 = _MASK2 & d2; | 962 r2 = _MASK2 & d2; |
| 1024 | 963 |
| 1025 // Q = Q + 1 or Q = Q - 1 | 964 // Q = Q + 1 or Q = Q - 1 |
| 1026 d0 = q0 + m; | 965 d0 = q0 + m; |
| 1027 d1 = q1 + m * ((d0 >> _BITS) & 1); | 966 d1 = q1 + m * ((d0 >> _BITS) & 1); |
| 1028 d2 = q2 + m * ((d1 >> _BITS) & 1); | 967 d2 = q2 + m * ((d1 >> _BITS) & 1); |
| 1029 q0 = _MASK & d0; | 968 q0 = _MASK & d0; |
| 1030 q1 = _MASK & d1; | 969 q1 = _MASK & d1; |
| 1031 q2 = _MASK2 & d2; | 970 q2 = _MASK2 & d2; |
| 1032 } | 971 } |
| 1033 } | 972 } |
| 1034 | 973 |
| 1035 // 0 <= R < B | 974 // 0 <= R < B |
| 1036 assert(Int64.ZERO <= new Int64._bits(r0, r1, r2)); | 975 assert(Int64.ZERO <= new Int64._bits(r0, r1, r2)); |
| 1037 assert(r2 < b2 || // Handles case where B = -(MIN_VALUE) | 976 assert(r2 < b2 || // Handles case where B = -(MIN_VALUE) |
| 1038 new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2)); | 977 new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2)); |
| 1039 | 978 |
| 1040 assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM); | 979 assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM); |
| 1041 if (what == _RETURN_DIV) { | 980 if (what == _RETURN_DIV) { |
| 1042 if (aNeg != bNeg) return _negate(q0, q1, q2); | 981 if (aNeg != bNeg) return _negate(q0, q1, q2); |
| 1043 return Int64._masked(q0, q1, q2); // Masking for type inferrer. | 982 return Int64._masked(q0, q1, q2); // Masking for type inferrer. |
| 1044 } | 983 } |
| 1045 | 984 |
| 1046 if (!aNeg) { | 985 if (!aNeg) { |
| 1047 return new Int64._bits(_MASK & r0, r1, r2); // Masking for type inferrer. | 986 return Int64._masked(r0, r1, r2); // Masking for type inferrer. |
| 1048 } | 987 } |
| 1049 | 988 |
| 1050 if (what == _RETURN_MOD) { | 989 if (what == _RETURN_MOD) { |
| 1051 if (r0 == 0 && r1 == 0 && r2 == 0) { | 990 if (r0 == 0 && r1 == 0 && r2 == 0) { |
| 1052 return ZERO; | 991 return ZERO; |
| 1053 } else { | 992 } else { |
| 1054 return _sub(b0, b1, b2, r0, r1, r2); | 993 return _sub(b0, b1, b2, r0, r1, r2); |
| 1055 } | 994 } |
| 1056 } else { | 995 } else { |
| 1057 return _negate(r0, r1, r2); | 996 return _negate(r0, r1, r2); |
| 1058 } | 997 } |
| 1059 } | 998 } |
| 1060 } | 999 } |
| OLD | NEW |