Index: crypto/rsa_private_key_nss.cc |
diff --git a/crypto/rsa_private_key_nss.cc b/crypto/rsa_private_key_nss.cc |
index 349b7ea6cd00ec7e2da1b08edee2bc2b8aec23d3..7ec5ae4b9b6ef8bd2ab63c402e8bac79ca533150 100644 |
--- a/crypto/rsa_private_key_nss.cc |
+++ b/crypto/rsa_private_key_nss.cc |
@@ -19,6 +19,13 @@ |
#include "crypto/nss_util.h" |
#include "crypto/scoped_nss_types.h" |
+// Helper for error handling during key import. |
+#define READ_ASSERT(truth) \ |
+ if (!(truth)) { \ |
+ NOTREACHED(); \ |
+ return false; \ |
+ } |
+ |
// TODO(rafaelw): Consider using NSS's ASN.1 encoder. |
namespace { |
@@ -38,6 +45,480 @@ static bool ReadAttribute(SECKEYPrivateKey* key, |
return true; |
} |
+// Used internally by RSAPrivateKey for serializing and deserializing |
+// PKCS #8 PrivateKeyInfo and PublicKeyInfo. |
+class PrivateKeyInfoCodec { |
+ public: |
+ // ASN.1 encoding of the AlgorithmIdentifier from PKCS #8. |
+ static const uint8_t kRsaAlgorithmIdentifier[]; |
+ |
+ // ASN.1 tags for some types we use. |
+ static const uint8_t kBitStringTag = 0x03; |
+ static const uint8_t kIntegerTag = 0x02; |
+ static const uint8_t kOctetStringTag = 0x04; |
+ static const uint8_t kSequenceTag = 0x30; |
+ |
+ // |big_endian| here specifies the byte-significance of the integer components |
+ // that will be parsed & serialized (modulus(), etc...) during Import(), |
+ // Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the |
+ // PrivateKeyInfo/PublicKeyInfo (which is always big-endian). |
+ explicit PrivateKeyInfoCodec(bool big_endian); |
+ |
+ ~PrivateKeyInfoCodec(); |
+ |
+ // Exports the contents of the integer components to the ASN.1 DER encoding |
+ // of the PrivateKeyInfo structure to |output|. |
+ bool Export(std::vector<uint8_t>* output); |
+ |
+ // Exports the contents of the integer components to the ASN.1 DER encoding |
+ // of the PublicKeyInfo structure to |output|. |
+ bool ExportPublicKeyInfo(std::vector<uint8_t>* output); |
+ |
+ // Exports the contents of the integer components to the ASN.1 DER encoding |
+ // of the RSAPublicKey structure to |output|. |
+ bool ExportPublicKey(std::vector<uint8_t>* output); |
+ |
+ // Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input| |
+ // and populates the integer components with |big_endian_| byte-significance. |
+ // IMPORTANT NOTE: This is currently *not* security-approved for importing |
+ // keys from unstrusted sources. |
+ bool Import(const std::vector<uint8_t>& input); |
+ |
+ // Accessors to the contents of the integer components of the PrivateKeyInfo |
+ // structure. |
+ std::vector<uint8_t>* modulus() { return &modulus_; } |
+ std::vector<uint8_t>* public_exponent() { return &public_exponent_; } |
+ std::vector<uint8_t>* private_exponent() { return &private_exponent_; } |
+ std::vector<uint8_t>* prime1() { return &prime1_; } |
+ std::vector<uint8_t>* prime2() { return &prime2_; } |
+ std::vector<uint8_t>* exponent1() { return &exponent1_; } |
+ std::vector<uint8_t>* exponent2() { return &exponent2_; } |
+ std::vector<uint8_t>* coefficient() { return &coefficient_; } |
+ |
+ private: |
+ // Utility wrappers for PrependIntegerImpl that use the class's |big_endian_| |
+ // value. |
+ void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out); |
+ void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data); |
+ |
+ // Prepends the integer stored in |val| - |val + num_bytes| with |big_endian| |
+ // byte-significance into |data| as an ASN.1 integer. |
+ void PrependIntegerImpl(uint8_t* val, |
+ int num_bytes, |
+ std::list<uint8_t>* data, |
+ bool big_endian); |
+ |
+ // Utility wrappers for ReadIntegerImpl that use the class's |big_endian_| |
+ // value. |
+ bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out); |
+ bool ReadIntegerWithExpectedSize(uint8_t** pos, |
+ uint8_t* end, |
+ size_t expected_size, |
+ std::vector<uint8_t>* out); |
+ |
+ // Reads an ASN.1 integer from |pos|, and stores the result into |out| with |
+ // |big_endian| byte-significance. |
+ bool ReadIntegerImpl(uint8_t** pos, |
+ uint8_t* end, |
+ std::vector<uint8_t>* out, |
+ bool big_endian); |
+ |
+ // Prepends the integer stored in |val|, starting a index |start|, for |
+ // |num_bytes| bytes onto |data|. |
+ void PrependBytes(uint8_t* val, |
+ int start, |
+ int num_bytes, |
+ std::list<uint8_t>* data); |
+ |
+ // Helper to prepend an ASN.1 length field. |
+ void PrependLength(size_t size, std::list<uint8_t>* data); |
+ |
+ // Helper to prepend an ASN.1 type header. |
+ void PrependTypeHeaderAndLength(uint8_t type, |
+ uint32_t length, |
+ std::list<uint8_t>* output); |
+ |
+ // Helper to prepend an ASN.1 bit string |
+ void PrependBitString(uint8_t* val, |
+ int num_bytes, |
+ std::list<uint8_t>* output); |
+ |
+ // Read an ASN.1 length field. This also checks that the length does not |
+ // extend beyond |end|. |
+ bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result); |
+ |
+ // Read an ASN.1 type header and its length. |
+ bool ReadTypeHeaderAndLength(uint8_t** pos, |
+ uint8_t* end, |
+ uint8_t expected_tag, |
+ uint32_t* length); |
+ |
+ // Read an ASN.1 sequence declaration. This consumes the type header and |
+ // length field, but not the contents of the sequence. |
+ bool ReadSequence(uint8_t** pos, uint8_t* end); |
+ |
+ // Read the RSA AlgorithmIdentifier. |
+ bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end); |
+ |
+ // Read one of the two version fields in PrivateKeyInfo. |
+ bool ReadVersion(uint8_t** pos, uint8_t* end); |
+ |
+ // The byte-significance of the stored components (modulus, etc..). |
+ bool big_endian_; |
+ |
+ // Component integers of the PrivateKeyInfo |
+ std::vector<uint8_t> modulus_; |
+ std::vector<uint8_t> public_exponent_; |
+ std::vector<uint8_t> private_exponent_; |
+ std::vector<uint8_t> prime1_; |
+ std::vector<uint8_t> prime2_; |
+ std::vector<uint8_t> exponent1_; |
+ std::vector<uint8_t> exponent2_; |
+ std::vector<uint8_t> coefficient_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec); |
+}; |
+ |
+const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
+ 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, |
+ 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00}; |
+ |
+PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) |
+ : big_endian_(big_endian) {} |
+ |
+PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} |
+ |
+bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) { |
+ std::list<uint8_t> content; |
+ |
+ // Version (always zero) |
+ uint8_t version = 0; |
+ |
+ PrependInteger(coefficient_, &content); |
+ PrependInteger(exponent2_, &content); |
+ PrependInteger(exponent1_, &content); |
+ PrependInteger(prime2_, &content); |
+ PrependInteger(prime1_, &content); |
+ PrependInteger(private_exponent_, &content); |
+ PrependInteger(public_exponent_, &content); |
+ PrependInteger(modulus_, &content); |
+ PrependInteger(&version, 1, &content); |
+ PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
+ PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
+ |
+ // RSA algorithm OID |
+ for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
+ content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
+ |
+ PrependInteger(&version, 1, &content); |
+ PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
+ |
+ // Copy everying into the output. |
+ output->reserve(content.size()); |
+ output->assign(content.begin(), content.end()); |
+ |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) { |
+ // Create a sequence with the modulus (n) and public exponent (e). |
+ std::vector<uint8_t> bit_string; |
+ if (!ExportPublicKey(&bit_string)) |
+ return false; |
+ |
+ // Add the sequence as the contents of a bit string. |
+ std::list<uint8_t> content; |
+ PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
+ &content); |
+ |
+ // Add the RSA algorithm OID. |
+ for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
+ content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
+ |
+ // Finally, wrap everything in a sequence. |
+ PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
+ |
+ // Copy everything into the output. |
+ output->reserve(content.size()); |
+ output->assign(content.begin(), content.end()); |
+ |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) { |
+ // Create a sequence with the modulus (n) and public exponent (e). |
+ std::list<uint8_t> content; |
+ PrependInteger(&public_exponent_[0], |
+ static_cast<int>(public_exponent_.size()), |
+ &content); |
+ PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
+ PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
+ |
+ // Copy everything into the output. |
+ output->reserve(content.size()); |
+ output->assign(content.begin(), content.end()); |
+ |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) { |
+ if (input.empty()) { |
+ return false; |
+ } |
+ |
+ // Parse the private key info up to the public key values, ignoring |
+ // the subsequent private key values. |
+ uint8_t* src = const_cast<uint8_t*>(&input.front()); |
+ uint8_t* end = src + input.size(); |
+ if (!ReadSequence(&src, end) || |
+ !ReadVersion(&src, end) || |
+ !ReadAlgorithmIdentifier(&src, end) || |
+ !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
+ !ReadSequence(&src, end) || |
+ !ReadVersion(&src, end) || |
+ !ReadInteger(&src, end, &modulus_)) |
+ return false; |
+ |
+ int mod_size = modulus_.size(); |
+ READ_ASSERT(mod_size % 2 == 0); |
+ int primes_size = mod_size / 2; |
+ |
+ if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
+ !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
+ !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
+ !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
+ !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
+ !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
+ !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
+ return false; |
+ |
+ READ_ASSERT(src == end); |
+ |
+ |
+ return true; |
+} |
+ |
+void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in, |
+ std::list<uint8_t>* out) { |
+ uint8_t* ptr = const_cast<uint8_t*>(&in.front()); |
+ PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
+} |
+ |
+// Helper to prepend an ASN.1 integer. |
+void PrivateKeyInfoCodec::PrependInteger(uint8_t* val, |
+ int num_bytes, |
+ std::list<uint8_t>* data) { |
+ PrependIntegerImpl(val, num_bytes, data, big_endian_); |
+} |
+ |
+void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val, |
+ int num_bytes, |
+ std::list<uint8_t>* data, |
+ bool big_endian) { |
+ // Reverse input if little-endian. |
+ std::vector<uint8_t> tmp; |
+ if (!big_endian) { |
+ tmp.assign(val, val + num_bytes); |
+ std::reverse(tmp.begin(), tmp.end()); |
+ val = &tmp.front(); |
+ } |
+ |
+ // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
+ // from the most-significant end of the integer. |
+ int start = 0; |
+ while (start < (num_bytes - 1) && val[start] == 0x00) { |
+ start++; |
+ num_bytes--; |
+ } |
+ PrependBytes(val, start, num_bytes, data); |
+ |
+ // ASN.1 integers are signed. To encode a positive integer whose sign bit |
+ // (the most significant bit) would otherwise be set and make the number |
+ // negative, ASN.1 requires a leading null byte to force the integer to be |
+ // positive. |
+ uint8_t front = data->front(); |
+ if ((front & 0x80) != 0) { |
+ data->push_front(0x00); |
+ num_bytes++; |
+ } |
+ |
+ PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos, |
+ uint8_t* end, |
+ std::vector<uint8_t>* out) { |
+ return ReadIntegerImpl(pos, end, out, big_endian_); |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize( |
+ uint8_t** pos, |
+ uint8_t* end, |
+ size_t expected_size, |
+ std::vector<uint8_t>* out) { |
+ std::vector<uint8_t> temp; |
+ if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
+ return false; |
+ |
+ int pad = expected_size - temp.size(); |
+ int index = 0; |
+ if (out->size() == expected_size + 1) { |
+ READ_ASSERT(out->front() == 0x00); |
+ pad++; |
+ index++; |
+ } else { |
+ READ_ASSERT(out->size() <= expected_size); |
+ } |
+ |
+ out->insert(out->end(), pad, 0x00); |
+ out->insert(out->end(), temp.begin(), temp.end()); |
+ |
+ // Reverse output if little-endian. |
+ if (!big_endian_) |
+ std::reverse(out->begin(), out->end()); |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos, |
+ uint8_t* end, |
+ std::vector<uint8_t>* out, |
+ bool big_endian) { |
+ uint32_t length = 0; |
+ if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
+ return false; |
+ |
+ // The first byte can be zero to force positiveness. We can ignore this. |
+ if (**pos == 0x00) { |
+ ++(*pos); |
+ --length; |
+ } |
+ |
+ if (length) |
+ out->insert(out->end(), *pos, (*pos) + length); |
+ |
+ (*pos) += length; |
+ |
+ // Reverse output if little-endian. |
+ if (!big_endian) |
+ std::reverse(out->begin(), out->end()); |
+ return true; |
+} |
+ |
+void PrivateKeyInfoCodec::PrependBytes(uint8_t* val, |
+ int start, |
+ int num_bytes, |
+ std::list<uint8_t>* data) { |
+ while (num_bytes > 0) { |
+ --num_bytes; |
+ data->push_front(val[start + num_bytes]); |
+ } |
+} |
+ |
+void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) { |
+ // The high bit is used to indicate whether additional octets are needed to |
+ // represent the length. |
+ if (size < 0x80) { |
+ data->push_front(static_cast<uint8_t>(size)); |
+ } else { |
+ uint8_t num_bytes = 0; |
+ while (size > 0) { |
+ data->push_front(static_cast<uint8_t>(size & 0xFF)); |
+ size >>= 8; |
+ num_bytes++; |
+ } |
+ CHECK_LE(num_bytes, 4); |
+ data->push_front(0x80 | num_bytes); |
+ } |
+} |
+ |
+void PrivateKeyInfoCodec::PrependTypeHeaderAndLength( |
+ uint8_t type, |
+ uint32_t length, |
+ std::list<uint8_t>* output) { |
+ PrependLength(length, output); |
+ output->push_front(type); |
+} |
+ |
+void PrivateKeyInfoCodec::PrependBitString(uint8_t* val, |
+ int num_bytes, |
+ std::list<uint8_t>* output) { |
+ // Start with the data. |
+ PrependBytes(val, 0, num_bytes, output); |
+ // Zero unused bits. |
+ output->push_front(0); |
+ // Add the length. |
+ PrependLength(num_bytes + 1, output); |
+ // Finally, add the bit string tag. |
+ output->push_front((uint8_t)kBitStringTag); |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos, |
+ uint8_t* end, |
+ uint32_t* result) { |
+ READ_ASSERT(*pos < end); |
+ int length = 0; |
+ |
+ // If the MSB is not set, the length is just the byte itself. |
+ if (!(**pos & 0x80)) { |
+ length = **pos; |
+ (*pos)++; |
+ } else { |
+ // Otherwise, the lower 7 indicate the length of the length. |
+ int length_of_length = **pos & 0x7F; |
+ READ_ASSERT(length_of_length <= 4); |
+ (*pos)++; |
+ READ_ASSERT(*pos + length_of_length < end); |
+ |
+ length = 0; |
+ for (int i = 0; i < length_of_length; ++i) { |
+ length <<= 8; |
+ length |= **pos; |
+ (*pos)++; |
+ } |
+ } |
+ |
+ READ_ASSERT(*pos + length <= end); |
+ if (result) *result = length; |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos, |
+ uint8_t* end, |
+ uint8_t expected_tag, |
+ uint32_t* length) { |
+ READ_ASSERT(*pos < end); |
+ READ_ASSERT(**pos == expected_tag); |
+ (*pos)++; |
+ |
+ return ReadLength(pos, end, length); |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) { |
+ return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) { |
+ READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
+ READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
+ sizeof(kRsaAlgorithmIdentifier)) == 0); |
+ (*pos) += sizeof(kRsaAlgorithmIdentifier); |
+ return true; |
+} |
+ |
+bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) { |
+ uint32_t length = 0; |
+ if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
+ return false; |
+ |
+ // The version should be zero. |
+ for (uint32_t i = 0; i < length; ++i) { |
+ READ_ASSERT(**pos == 0x00); |
+ (*pos)++; |
+ } |
+ |
+ return true; |
+} |
+ |
} // namespace |
namespace crypto { |