| Index: crypto/rsa_private_key_nss.cc
|
| diff --git a/crypto/rsa_private_key_nss.cc b/crypto/rsa_private_key_nss.cc
|
| index 349b7ea6cd00ec7e2da1b08edee2bc2b8aec23d3..7ec5ae4b9b6ef8bd2ab63c402e8bac79ca533150 100644
|
| --- a/crypto/rsa_private_key_nss.cc
|
| +++ b/crypto/rsa_private_key_nss.cc
|
| @@ -19,6 +19,13 @@
|
| #include "crypto/nss_util.h"
|
| #include "crypto/scoped_nss_types.h"
|
|
|
| +// Helper for error handling during key import.
|
| +#define READ_ASSERT(truth) \
|
| + if (!(truth)) { \
|
| + NOTREACHED(); \
|
| + return false; \
|
| + }
|
| +
|
| // TODO(rafaelw): Consider using NSS's ASN.1 encoder.
|
| namespace {
|
|
|
| @@ -38,6 +45,480 @@ static bool ReadAttribute(SECKEYPrivateKey* key,
|
| return true;
|
| }
|
|
|
| +// Used internally by RSAPrivateKey for serializing and deserializing
|
| +// PKCS #8 PrivateKeyInfo and PublicKeyInfo.
|
| +class PrivateKeyInfoCodec {
|
| + public:
|
| + // ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
|
| + static const uint8_t kRsaAlgorithmIdentifier[];
|
| +
|
| + // ASN.1 tags for some types we use.
|
| + static const uint8_t kBitStringTag = 0x03;
|
| + static const uint8_t kIntegerTag = 0x02;
|
| + static const uint8_t kOctetStringTag = 0x04;
|
| + static const uint8_t kSequenceTag = 0x30;
|
| +
|
| + // |big_endian| here specifies the byte-significance of the integer components
|
| + // that will be parsed & serialized (modulus(), etc...) during Import(),
|
| + // Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the
|
| + // PrivateKeyInfo/PublicKeyInfo (which is always big-endian).
|
| + explicit PrivateKeyInfoCodec(bool big_endian);
|
| +
|
| + ~PrivateKeyInfoCodec();
|
| +
|
| + // Exports the contents of the integer components to the ASN.1 DER encoding
|
| + // of the PrivateKeyInfo structure to |output|.
|
| + bool Export(std::vector<uint8_t>* output);
|
| +
|
| + // Exports the contents of the integer components to the ASN.1 DER encoding
|
| + // of the PublicKeyInfo structure to |output|.
|
| + bool ExportPublicKeyInfo(std::vector<uint8_t>* output);
|
| +
|
| + // Exports the contents of the integer components to the ASN.1 DER encoding
|
| + // of the RSAPublicKey structure to |output|.
|
| + bool ExportPublicKey(std::vector<uint8_t>* output);
|
| +
|
| + // Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input|
|
| + // and populates the integer components with |big_endian_| byte-significance.
|
| + // IMPORTANT NOTE: This is currently *not* security-approved for importing
|
| + // keys from unstrusted sources.
|
| + bool Import(const std::vector<uint8_t>& input);
|
| +
|
| + // Accessors to the contents of the integer components of the PrivateKeyInfo
|
| + // structure.
|
| + std::vector<uint8_t>* modulus() { return &modulus_; }
|
| + std::vector<uint8_t>* public_exponent() { return &public_exponent_; }
|
| + std::vector<uint8_t>* private_exponent() { return &private_exponent_; }
|
| + std::vector<uint8_t>* prime1() { return &prime1_; }
|
| + std::vector<uint8_t>* prime2() { return &prime2_; }
|
| + std::vector<uint8_t>* exponent1() { return &exponent1_; }
|
| + std::vector<uint8_t>* exponent2() { return &exponent2_; }
|
| + std::vector<uint8_t>* coefficient() { return &coefficient_; }
|
| +
|
| + private:
|
| + // Utility wrappers for PrependIntegerImpl that use the class's |big_endian_|
|
| + // value.
|
| + void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out);
|
| + void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data);
|
| +
|
| + // Prepends the integer stored in |val| - |val + num_bytes| with |big_endian|
|
| + // byte-significance into |data| as an ASN.1 integer.
|
| + void PrependIntegerImpl(uint8_t* val,
|
| + int num_bytes,
|
| + std::list<uint8_t>* data,
|
| + bool big_endian);
|
| +
|
| + // Utility wrappers for ReadIntegerImpl that use the class's |big_endian_|
|
| + // value.
|
| + bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out);
|
| + bool ReadIntegerWithExpectedSize(uint8_t** pos,
|
| + uint8_t* end,
|
| + size_t expected_size,
|
| + std::vector<uint8_t>* out);
|
| +
|
| + // Reads an ASN.1 integer from |pos|, and stores the result into |out| with
|
| + // |big_endian| byte-significance.
|
| + bool ReadIntegerImpl(uint8_t** pos,
|
| + uint8_t* end,
|
| + std::vector<uint8_t>* out,
|
| + bool big_endian);
|
| +
|
| + // Prepends the integer stored in |val|, starting a index |start|, for
|
| + // |num_bytes| bytes onto |data|.
|
| + void PrependBytes(uint8_t* val,
|
| + int start,
|
| + int num_bytes,
|
| + std::list<uint8_t>* data);
|
| +
|
| + // Helper to prepend an ASN.1 length field.
|
| + void PrependLength(size_t size, std::list<uint8_t>* data);
|
| +
|
| + // Helper to prepend an ASN.1 type header.
|
| + void PrependTypeHeaderAndLength(uint8_t type,
|
| + uint32_t length,
|
| + std::list<uint8_t>* output);
|
| +
|
| + // Helper to prepend an ASN.1 bit string
|
| + void PrependBitString(uint8_t* val,
|
| + int num_bytes,
|
| + std::list<uint8_t>* output);
|
| +
|
| + // Read an ASN.1 length field. This also checks that the length does not
|
| + // extend beyond |end|.
|
| + bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result);
|
| +
|
| + // Read an ASN.1 type header and its length.
|
| + bool ReadTypeHeaderAndLength(uint8_t** pos,
|
| + uint8_t* end,
|
| + uint8_t expected_tag,
|
| + uint32_t* length);
|
| +
|
| + // Read an ASN.1 sequence declaration. This consumes the type header and
|
| + // length field, but not the contents of the sequence.
|
| + bool ReadSequence(uint8_t** pos, uint8_t* end);
|
| +
|
| + // Read the RSA AlgorithmIdentifier.
|
| + bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end);
|
| +
|
| + // Read one of the two version fields in PrivateKeyInfo.
|
| + bool ReadVersion(uint8_t** pos, uint8_t* end);
|
| +
|
| + // The byte-significance of the stored components (modulus, etc..).
|
| + bool big_endian_;
|
| +
|
| + // Component integers of the PrivateKeyInfo
|
| + std::vector<uint8_t> modulus_;
|
| + std::vector<uint8_t> public_exponent_;
|
| + std::vector<uint8_t> private_exponent_;
|
| + std::vector<uint8_t> prime1_;
|
| + std::vector<uint8_t> prime2_;
|
| + std::vector<uint8_t> exponent1_;
|
| + std::vector<uint8_t> exponent2_;
|
| + std::vector<uint8_t> coefficient_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec);
|
| +};
|
| +
|
| +const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
|
| + 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86,
|
| + 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00};
|
| +
|
| +PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
|
| + : big_endian_(big_endian) {}
|
| +
|
| +PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
|
| +
|
| +bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) {
|
| + std::list<uint8_t> content;
|
| +
|
| + // Version (always zero)
|
| + uint8_t version = 0;
|
| +
|
| + PrependInteger(coefficient_, &content);
|
| + PrependInteger(exponent2_, &content);
|
| + PrependInteger(exponent1_, &content);
|
| + PrependInteger(prime2_, &content);
|
| + PrependInteger(prime1_, &content);
|
| + PrependInteger(private_exponent_, &content);
|
| + PrependInteger(public_exponent_, &content);
|
| + PrependInteger(modulus_, &content);
|
| + PrependInteger(&version, 1, &content);
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| + PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
|
| +
|
| + // RSA algorithm OID
|
| + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
| + content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
| +
|
| + PrependInteger(&version, 1, &content);
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| +
|
| + // Copy everying into the output.
|
| + output->reserve(content.size());
|
| + output->assign(content.begin(), content.end());
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) {
|
| + // Create a sequence with the modulus (n) and public exponent (e).
|
| + std::vector<uint8_t> bit_string;
|
| + if (!ExportPublicKey(&bit_string))
|
| + return false;
|
| +
|
| + // Add the sequence as the contents of a bit string.
|
| + std::list<uint8_t> content;
|
| + PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
|
| + &content);
|
| +
|
| + // Add the RSA algorithm OID.
|
| + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
| + content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
| +
|
| + // Finally, wrap everything in a sequence.
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| +
|
| + // Copy everything into the output.
|
| + output->reserve(content.size());
|
| + output->assign(content.begin(), content.end());
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) {
|
| + // Create a sequence with the modulus (n) and public exponent (e).
|
| + std::list<uint8_t> content;
|
| + PrependInteger(&public_exponent_[0],
|
| + static_cast<int>(public_exponent_.size()),
|
| + &content);
|
| + PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| +
|
| + // Copy everything into the output.
|
| + output->reserve(content.size());
|
| + output->assign(content.begin(), content.end());
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) {
|
| + if (input.empty()) {
|
| + return false;
|
| + }
|
| +
|
| + // Parse the private key info up to the public key values, ignoring
|
| + // the subsequent private key values.
|
| + uint8_t* src = const_cast<uint8_t*>(&input.front());
|
| + uint8_t* end = src + input.size();
|
| + if (!ReadSequence(&src, end) ||
|
| + !ReadVersion(&src, end) ||
|
| + !ReadAlgorithmIdentifier(&src, end) ||
|
| + !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
|
| + !ReadSequence(&src, end) ||
|
| + !ReadVersion(&src, end) ||
|
| + !ReadInteger(&src, end, &modulus_))
|
| + return false;
|
| +
|
| + int mod_size = modulus_.size();
|
| + READ_ASSERT(mod_size % 2 == 0);
|
| + int primes_size = mod_size / 2;
|
| +
|
| + if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
|
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
|
| + return false;
|
| +
|
| + READ_ASSERT(src == end);
|
| +
|
| +
|
| + return true;
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in,
|
| + std::list<uint8_t>* out) {
|
| + uint8_t* ptr = const_cast<uint8_t*>(&in.front());
|
| + PrependIntegerImpl(ptr, in.size(), out, big_endian_);
|
| +}
|
| +
|
| +// Helper to prepend an ASN.1 integer.
|
| +void PrivateKeyInfoCodec::PrependInteger(uint8_t* val,
|
| + int num_bytes,
|
| + std::list<uint8_t>* data) {
|
| + PrependIntegerImpl(val, num_bytes, data, big_endian_);
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val,
|
| + int num_bytes,
|
| + std::list<uint8_t>* data,
|
| + bool big_endian) {
|
| + // Reverse input if little-endian.
|
| + std::vector<uint8_t> tmp;
|
| + if (!big_endian) {
|
| + tmp.assign(val, val + num_bytes);
|
| + std::reverse(tmp.begin(), tmp.end());
|
| + val = &tmp.front();
|
| + }
|
| +
|
| + // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
|
| + // from the most-significant end of the integer.
|
| + int start = 0;
|
| + while (start < (num_bytes - 1) && val[start] == 0x00) {
|
| + start++;
|
| + num_bytes--;
|
| + }
|
| + PrependBytes(val, start, num_bytes, data);
|
| +
|
| + // ASN.1 integers are signed. To encode a positive integer whose sign bit
|
| + // (the most significant bit) would otherwise be set and make the number
|
| + // negative, ASN.1 requires a leading null byte to force the integer to be
|
| + // positive.
|
| + uint8_t front = data->front();
|
| + if ((front & 0x80) != 0) {
|
| + data->push_front(0x00);
|
| + num_bytes++;
|
| + }
|
| +
|
| + PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos,
|
| + uint8_t* end,
|
| + std::vector<uint8_t>* out) {
|
| + return ReadIntegerImpl(pos, end, out, big_endian_);
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(
|
| + uint8_t** pos,
|
| + uint8_t* end,
|
| + size_t expected_size,
|
| + std::vector<uint8_t>* out) {
|
| + std::vector<uint8_t> temp;
|
| + if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
|
| + return false;
|
| +
|
| + int pad = expected_size - temp.size();
|
| + int index = 0;
|
| + if (out->size() == expected_size + 1) {
|
| + READ_ASSERT(out->front() == 0x00);
|
| + pad++;
|
| + index++;
|
| + } else {
|
| + READ_ASSERT(out->size() <= expected_size);
|
| + }
|
| +
|
| + out->insert(out->end(), pad, 0x00);
|
| + out->insert(out->end(), temp.begin(), temp.end());
|
| +
|
| + // Reverse output if little-endian.
|
| + if (!big_endian_)
|
| + std::reverse(out->begin(), out->end());
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos,
|
| + uint8_t* end,
|
| + std::vector<uint8_t>* out,
|
| + bool big_endian) {
|
| + uint32_t length = 0;
|
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
|
| + return false;
|
| +
|
| + // The first byte can be zero to force positiveness. We can ignore this.
|
| + if (**pos == 0x00) {
|
| + ++(*pos);
|
| + --length;
|
| + }
|
| +
|
| + if (length)
|
| + out->insert(out->end(), *pos, (*pos) + length);
|
| +
|
| + (*pos) += length;
|
| +
|
| + // Reverse output if little-endian.
|
| + if (!big_endian)
|
| + std::reverse(out->begin(), out->end());
|
| + return true;
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependBytes(uint8_t* val,
|
| + int start,
|
| + int num_bytes,
|
| + std::list<uint8_t>* data) {
|
| + while (num_bytes > 0) {
|
| + --num_bytes;
|
| + data->push_front(val[start + num_bytes]);
|
| + }
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) {
|
| + // The high bit is used to indicate whether additional octets are needed to
|
| + // represent the length.
|
| + if (size < 0x80) {
|
| + data->push_front(static_cast<uint8_t>(size));
|
| + } else {
|
| + uint8_t num_bytes = 0;
|
| + while (size > 0) {
|
| + data->push_front(static_cast<uint8_t>(size & 0xFF));
|
| + size >>= 8;
|
| + num_bytes++;
|
| + }
|
| + CHECK_LE(num_bytes, 4);
|
| + data->push_front(0x80 | num_bytes);
|
| + }
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(
|
| + uint8_t type,
|
| + uint32_t length,
|
| + std::list<uint8_t>* output) {
|
| + PrependLength(length, output);
|
| + output->push_front(type);
|
| +}
|
| +
|
| +void PrivateKeyInfoCodec::PrependBitString(uint8_t* val,
|
| + int num_bytes,
|
| + std::list<uint8_t>* output) {
|
| + // Start with the data.
|
| + PrependBytes(val, 0, num_bytes, output);
|
| + // Zero unused bits.
|
| + output->push_front(0);
|
| + // Add the length.
|
| + PrependLength(num_bytes + 1, output);
|
| + // Finally, add the bit string tag.
|
| + output->push_front((uint8_t)kBitStringTag);
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos,
|
| + uint8_t* end,
|
| + uint32_t* result) {
|
| + READ_ASSERT(*pos < end);
|
| + int length = 0;
|
| +
|
| + // If the MSB is not set, the length is just the byte itself.
|
| + if (!(**pos & 0x80)) {
|
| + length = **pos;
|
| + (*pos)++;
|
| + } else {
|
| + // Otherwise, the lower 7 indicate the length of the length.
|
| + int length_of_length = **pos & 0x7F;
|
| + READ_ASSERT(length_of_length <= 4);
|
| + (*pos)++;
|
| + READ_ASSERT(*pos + length_of_length < end);
|
| +
|
| + length = 0;
|
| + for (int i = 0; i < length_of_length; ++i) {
|
| + length <<= 8;
|
| + length |= **pos;
|
| + (*pos)++;
|
| + }
|
| + }
|
| +
|
| + READ_ASSERT(*pos + length <= end);
|
| + if (result) *result = length;
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos,
|
| + uint8_t* end,
|
| + uint8_t expected_tag,
|
| + uint32_t* length) {
|
| + READ_ASSERT(*pos < end);
|
| + READ_ASSERT(**pos == expected_tag);
|
| + (*pos)++;
|
| +
|
| + return ReadLength(pos, end, length);
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) {
|
| + return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) {
|
| + READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
|
| + READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
|
| + sizeof(kRsaAlgorithmIdentifier)) == 0);
|
| + (*pos) += sizeof(kRsaAlgorithmIdentifier);
|
| + return true;
|
| +}
|
| +
|
| +bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) {
|
| + uint32_t length = 0;
|
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
|
| + return false;
|
| +
|
| + // The version should be zero.
|
| + for (uint32_t i = 0; i < length; ++i) {
|
| + READ_ASSERT(**pos == 0x00);
|
| + (*pos)++;
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| } // namespace
|
|
|
| namespace crypto {
|
|
|