Chromium Code Reviews| Index: crypto/rsa_private_key_nss.cc |
| diff --git a/crypto/rsa_private_key_nss.cc b/crypto/rsa_private_key_nss.cc |
| index 349b7ea6cd00ec7e2da1b08edee2bc2b8aec23d3..3135316e962d1bb4992e6f3165ce2e03159ab669 100644 |
| --- a/crypto/rsa_private_key_nss.cc |
| +++ b/crypto/rsa_private_key_nss.cc |
| @@ -19,6 +19,13 @@ |
| #include "crypto/nss_util.h" |
| #include "crypto/scoped_nss_types.h" |
| +// Helper for error handling during key import. |
| +#define READ_ASSERT(truth) \ |
| + if (!(truth)) { \ |
| + NOTREACHED(); \ |
| + return false; \ |
| + } |
| + |
| // TODO(rafaelw): Consider using NSS's ASN.1 encoder. |
| namespace { |
| @@ -38,6 +45,481 @@ static bool ReadAttribute(SECKEYPrivateKey* key, |
| return true; |
| } |
| +// Used internally by RSAPrivateKey for serializing and deserializing |
| +// PKCS #8 PrivateKeyInfo and PublicKeyInfo. |
| +class PrivateKeyInfoCodec { |
| + public: |
| + // ASN.1 encoding of the AlgorithmIdentifier from PKCS #8. |
| + static const uint8_t kRsaAlgorithmIdentifier[]; |
| + |
| + // ASN.1 tags for some types we use. |
| + static const uint8_t kBitStringTag = 0x03; |
| + static const uint8_t kIntegerTag = 0x02; |
| + static const uint8_t kNullTag = 0x05; |
|
nharper
2016/03/23 22:08:14
iOS compile is complaining this is unused - I'd re
davidben
2016/03/23 22:23:50
Done.
|
| + static const uint8_t kOctetStringTag = 0x04; |
| + static const uint8_t kSequenceTag = 0x30; |
| + |
| + // |big_endian| here specifies the byte-significance of the integer components |
| + // that will be parsed & serialized (modulus(), etc...) during Import(), |
| + // Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the |
| + // PrivateKeyInfo/PublicKeyInfo (which is always big-endian). |
| + explicit PrivateKeyInfoCodec(bool big_endian); |
| + |
| + ~PrivateKeyInfoCodec(); |
| + |
| + // Exports the contents of the integer components to the ASN.1 DER encoding |
| + // of the PrivateKeyInfo structure to |output|. |
| + bool Export(std::vector<uint8_t>* output); |
| + |
| + // Exports the contents of the integer components to the ASN.1 DER encoding |
| + // of the PublicKeyInfo structure to |output|. |
| + bool ExportPublicKeyInfo(std::vector<uint8_t>* output); |
| + |
| + // Exports the contents of the integer components to the ASN.1 DER encoding |
| + // of the RSAPublicKey structure to |output|. |
| + bool ExportPublicKey(std::vector<uint8_t>* output); |
| + |
| + // Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input| |
| + // and populates the integer components with |big_endian_| byte-significance. |
| + // IMPORTANT NOTE: This is currently *not* security-approved for importing |
| + // keys from unstrusted sources. |
| + bool Import(const std::vector<uint8_t>& input); |
| + |
| + // Accessors to the contents of the integer components of the PrivateKeyInfo |
| + // structure. |
| + std::vector<uint8_t>* modulus() { return &modulus_; } |
| + std::vector<uint8_t>* public_exponent() { return &public_exponent_; } |
| + std::vector<uint8_t>* private_exponent() { return &private_exponent_; } |
| + std::vector<uint8_t>* prime1() { return &prime1_; } |
| + std::vector<uint8_t>* prime2() { return &prime2_; } |
| + std::vector<uint8_t>* exponent1() { return &exponent1_; } |
| + std::vector<uint8_t>* exponent2() { return &exponent2_; } |
| + std::vector<uint8_t>* coefficient() { return &coefficient_; } |
| + |
| + private: |
| + // Utility wrappers for PrependIntegerImpl that use the class's |big_endian_| |
| + // value. |
| + void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out); |
| + void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data); |
| + |
| + // Prepends the integer stored in |val| - |val + num_bytes| with |big_endian| |
| + // byte-significance into |data| as an ASN.1 integer. |
| + void PrependIntegerImpl(uint8_t* val, |
| + int num_bytes, |
| + std::list<uint8_t>* data, |
| + bool big_endian); |
| + |
| + // Utility wrappers for ReadIntegerImpl that use the class's |big_endian_| |
| + // value. |
| + bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out); |
| + bool ReadIntegerWithExpectedSize(uint8_t** pos, |
| + uint8_t* end, |
| + size_t expected_size, |
| + std::vector<uint8_t>* out); |
| + |
| + // Reads an ASN.1 integer from |pos|, and stores the result into |out| with |
| + // |big_endian| byte-significance. |
| + bool ReadIntegerImpl(uint8_t** pos, |
| + uint8_t* end, |
| + std::vector<uint8_t>* out, |
| + bool big_endian); |
| + |
| + // Prepends the integer stored in |val|, starting a index |start|, for |
| + // |num_bytes| bytes onto |data|. |
| + void PrependBytes(uint8_t* val, |
| + int start, |
| + int num_bytes, |
| + std::list<uint8_t>* data); |
| + |
| + // Helper to prepend an ASN.1 length field. |
| + void PrependLength(size_t size, std::list<uint8_t>* data); |
| + |
| + // Helper to prepend an ASN.1 type header. |
| + void PrependTypeHeaderAndLength(uint8_t type, |
| + uint32_t length, |
| + std::list<uint8_t>* output); |
| + |
| + // Helper to prepend an ASN.1 bit string |
| + void PrependBitString(uint8_t* val, |
| + int num_bytes, |
| + std::list<uint8_t>* output); |
| + |
| + // Read an ASN.1 length field. This also checks that the length does not |
| + // extend beyond |end|. |
| + bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result); |
| + |
| + // Read an ASN.1 type header and its length. |
| + bool ReadTypeHeaderAndLength(uint8_t** pos, |
| + uint8_t* end, |
| + uint8_t expected_tag, |
| + uint32_t* length); |
| + |
| + // Read an ASN.1 sequence declaration. This consumes the type header and |
| + // length field, but not the contents of the sequence. |
| + bool ReadSequence(uint8_t** pos, uint8_t* end); |
| + |
| + // Read the RSA AlgorithmIdentifier. |
| + bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end); |
| + |
| + // Read one of the two version fields in PrivateKeyInfo. |
| + bool ReadVersion(uint8_t** pos, uint8_t* end); |
| + |
| + // The byte-significance of the stored components (modulus, etc..). |
| + bool big_endian_; |
| + |
| + // Component integers of the PrivateKeyInfo |
| + std::vector<uint8_t> modulus_; |
| + std::vector<uint8_t> public_exponent_; |
| + std::vector<uint8_t> private_exponent_; |
| + std::vector<uint8_t> prime1_; |
| + std::vector<uint8_t> prime2_; |
| + std::vector<uint8_t> exponent1_; |
| + std::vector<uint8_t> exponent2_; |
| + std::vector<uint8_t> coefficient_; |
| + |
| + DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec); |
| +}; |
| + |
| +const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
| + 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, |
| + 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00}; |
| + |
| +PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) |
| + : big_endian_(big_endian) {} |
| + |
| +PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} |
| + |
| +bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) { |
| + std::list<uint8_t> content; |
| + |
| + // Version (always zero) |
| + uint8_t version = 0; |
| + |
| + PrependInteger(coefficient_, &content); |
| + PrependInteger(exponent2_, &content); |
| + PrependInteger(exponent1_, &content); |
| + PrependInteger(prime2_, &content); |
| + PrependInteger(prime1_, &content); |
| + PrependInteger(private_exponent_, &content); |
| + PrependInteger(public_exponent_, &content); |
| + PrependInteger(modulus_, &content); |
| + PrependInteger(&version, 1, &content); |
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| + PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
| + |
| + // RSA algorithm OID |
| + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| + content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| + |
| + PrependInteger(&version, 1, &content); |
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| + |
| + // Copy everying into the output. |
| + output->reserve(content.size()); |
| + output->assign(content.begin(), content.end()); |
| + |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) { |
| + // Create a sequence with the modulus (n) and public exponent (e). |
| + std::vector<uint8_t> bit_string; |
| + if (!ExportPublicKey(&bit_string)) |
| + return false; |
| + |
| + // Add the sequence as the contents of a bit string. |
| + std::list<uint8_t> content; |
| + PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
| + &content); |
| + |
| + // Add the RSA algorithm OID. |
| + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| + content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| + |
| + // Finally, wrap everything in a sequence. |
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| + |
| + // Copy everything into the output. |
| + output->reserve(content.size()); |
| + output->assign(content.begin(), content.end()); |
| + |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) { |
| + // Create a sequence with the modulus (n) and public exponent (e). |
| + std::list<uint8_t> content; |
| + PrependInteger(&public_exponent_[0], |
| + static_cast<int>(public_exponent_.size()), |
| + &content); |
| + PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| + |
| + // Copy everything into the output. |
| + output->reserve(content.size()); |
| + output->assign(content.begin(), content.end()); |
| + |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) { |
| + if (input.empty()) { |
| + return false; |
| + } |
| + |
| + // Parse the private key info up to the public key values, ignoring |
| + // the subsequent private key values. |
| + uint8_t* src = const_cast<uint8_t*>(&input.front()); |
| + uint8_t* end = src + input.size(); |
| + if (!ReadSequence(&src, end) || |
| + !ReadVersion(&src, end) || |
| + !ReadAlgorithmIdentifier(&src, end) || |
| + !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
| + !ReadSequence(&src, end) || |
| + !ReadVersion(&src, end) || |
| + !ReadInteger(&src, end, &modulus_)) |
| + return false; |
| + |
| + int mod_size = modulus_.size(); |
| + READ_ASSERT(mod_size % 2 == 0); |
| + int primes_size = mod_size / 2; |
| + |
| + if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
| + !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
| + !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
| + return false; |
| + |
| + READ_ASSERT(src == end); |
| + |
| + |
| + return true; |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in, |
| + std::list<uint8_t>* out) { |
| + uint8_t* ptr = const_cast<uint8_t*>(&in.front()); |
| + PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
| +} |
| + |
| +// Helper to prepend an ASN.1 integer. |
| +void PrivateKeyInfoCodec::PrependInteger(uint8_t* val, |
| + int num_bytes, |
| + std::list<uint8_t>* data) { |
| + PrependIntegerImpl(val, num_bytes, data, big_endian_); |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val, |
| + int num_bytes, |
| + std::list<uint8_t>* data, |
| + bool big_endian) { |
| + // Reverse input if little-endian. |
| + std::vector<uint8_t> tmp; |
| + if (!big_endian) { |
| + tmp.assign(val, val + num_bytes); |
| + std::reverse(tmp.begin(), tmp.end()); |
| + val = &tmp.front(); |
| + } |
| + |
| + // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
| + // from the most-significant end of the integer. |
| + int start = 0; |
| + while (start < (num_bytes - 1) && val[start] == 0x00) { |
| + start++; |
| + num_bytes--; |
| + } |
| + PrependBytes(val, start, num_bytes, data); |
| + |
| + // ASN.1 integers are signed. To encode a positive integer whose sign bit |
| + // (the most significant bit) would otherwise be set and make the number |
| + // negative, ASN.1 requires a leading null byte to force the integer to be |
| + // positive. |
| + uint8_t front = data->front(); |
| + if ((front & 0x80) != 0) { |
| + data->push_front(0x00); |
| + num_bytes++; |
| + } |
| + |
| + PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos, |
| + uint8_t* end, |
| + std::vector<uint8_t>* out) { |
| + return ReadIntegerImpl(pos, end, out, big_endian_); |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize( |
| + uint8_t** pos, |
| + uint8_t* end, |
| + size_t expected_size, |
| + std::vector<uint8_t>* out) { |
| + std::vector<uint8_t> temp; |
| + if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
| + return false; |
| + |
| + int pad = expected_size - temp.size(); |
| + int index = 0; |
| + if (out->size() == expected_size + 1) { |
| + READ_ASSERT(out->front() == 0x00); |
| + pad++; |
| + index++; |
| + } else { |
| + READ_ASSERT(out->size() <= expected_size); |
| + } |
| + |
| + out->insert(out->end(), pad, 0x00); |
| + out->insert(out->end(), temp.begin(), temp.end()); |
| + |
| + // Reverse output if little-endian. |
| + if (!big_endian_) |
| + std::reverse(out->begin(), out->end()); |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos, |
| + uint8_t* end, |
| + std::vector<uint8_t>* out, |
| + bool big_endian) { |
| + uint32_t length = 0; |
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
| + return false; |
| + |
| + // The first byte can be zero to force positiveness. We can ignore this. |
| + if (**pos == 0x00) { |
| + ++(*pos); |
| + --length; |
| + } |
| + |
| + if (length) |
| + out->insert(out->end(), *pos, (*pos) + length); |
| + |
| + (*pos) += length; |
| + |
| + // Reverse output if little-endian. |
| + if (!big_endian) |
| + std::reverse(out->begin(), out->end()); |
| + return true; |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependBytes(uint8_t* val, |
| + int start, |
| + int num_bytes, |
| + std::list<uint8_t>* data) { |
| + while (num_bytes > 0) { |
| + --num_bytes; |
| + data->push_front(val[start + num_bytes]); |
| + } |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) { |
| + // The high bit is used to indicate whether additional octets are needed to |
| + // represent the length. |
| + if (size < 0x80) { |
| + data->push_front(static_cast<uint8_t>(size)); |
| + } else { |
| + uint8_t num_bytes = 0; |
| + while (size > 0) { |
| + data->push_front(static_cast<uint8_t>(size & 0xFF)); |
| + size >>= 8; |
| + num_bytes++; |
| + } |
| + CHECK_LE(num_bytes, 4); |
| + data->push_front(0x80 | num_bytes); |
| + } |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependTypeHeaderAndLength( |
| + uint8_t type, |
| + uint32_t length, |
| + std::list<uint8_t>* output) { |
| + PrependLength(length, output); |
| + output->push_front(type); |
| +} |
| + |
| +void PrivateKeyInfoCodec::PrependBitString(uint8_t* val, |
| + int num_bytes, |
| + std::list<uint8_t>* output) { |
| + // Start with the data. |
| + PrependBytes(val, 0, num_bytes, output); |
| + // Zero unused bits. |
| + output->push_front(0); |
| + // Add the length. |
| + PrependLength(num_bytes + 1, output); |
| + // Finally, add the bit string tag. |
| + output->push_front((uint8_t)kBitStringTag); |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos, |
| + uint8_t* end, |
| + uint32_t* result) { |
| + READ_ASSERT(*pos < end); |
| + int length = 0; |
| + |
| + // If the MSB is not set, the length is just the byte itself. |
| + if (!(**pos & 0x80)) { |
| + length = **pos; |
| + (*pos)++; |
| + } else { |
| + // Otherwise, the lower 7 indicate the length of the length. |
| + int length_of_length = **pos & 0x7F; |
| + READ_ASSERT(length_of_length <= 4); |
| + (*pos)++; |
| + READ_ASSERT(*pos + length_of_length < end); |
| + |
| + length = 0; |
| + for (int i = 0; i < length_of_length; ++i) { |
| + length <<= 8; |
| + length |= **pos; |
| + (*pos)++; |
| + } |
| + } |
| + |
| + READ_ASSERT(*pos + length <= end); |
| + if (result) *result = length; |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos, |
| + uint8_t* end, |
| + uint8_t expected_tag, |
| + uint32_t* length) { |
| + READ_ASSERT(*pos < end); |
| + READ_ASSERT(**pos == expected_tag); |
| + (*pos)++; |
| + |
| + return ReadLength(pos, end, length); |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) { |
| + return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) { |
| + READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
| + READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
| + sizeof(kRsaAlgorithmIdentifier)) == 0); |
| + (*pos) += sizeof(kRsaAlgorithmIdentifier); |
| + return true; |
| +} |
| + |
| +bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) { |
| + uint32_t length = 0; |
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
| + return false; |
| + |
| + // The version should be zero. |
| + for (uint32_t i = 0; i < length; ++i) { |
| + READ_ASSERT(**pos == 0x00); |
| + (*pos)++; |
| + } |
| + |
| + return true; |
| +} |
| + |
| } // namespace |
| namespace crypto { |