Index: Source/core/html/canvas/CanvasPathMethods.cpp |
diff --git a/Source/core/html/canvas/CanvasPathMethods.cpp b/Source/core/html/canvas/CanvasPathMethods.cpp |
index a2d4e75549062dcf5a1c71f63fc3f2b82847c164..e5b8648b00b5d8045dbbed483b73f5b6f52bb289 100644 |
--- a/Source/core/html/canvas/CanvasPathMethods.cpp |
+++ b/Source/core/html/canvas/CanvasPathMethods.cpp |
@@ -130,37 +130,55 @@ void CanvasPathMethods::arcTo(float x1, float y1, float x2, float y2, float r, E |
m_path.addArcTo(p1, p2, r); |
} |
-void CanvasPathMethods::arc(float x, float y, float r, float sa, float ea, bool anticlockwise, ExceptionCode& ec) |
+static float adjustEndAngle(float startAngle, float endAngle, bool anticlockwise) |
+{ |
+ float twoPi = 2 * piFloat; |
+ /* http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#dom-context-2d-arc |
+ * If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2π, or, |
+ * if the anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2π, |
+ * then the arc is the whole circumference of this ellipse. |
+ */ |
+ if (!anticlockwise && endAngle - startAngle >= twoPi) |
+ return startAngle + twoPi + fmodf(endAngle - startAngle, twoPi); |
+ if (anticlockwise && startAngle - endAngle >= twoPi) |
+ return startAngle - twoPi - fmodf(startAngle - endAngle, twoPi); |
+ |
+ /* |
+ * Otherwise, the arc is the path along the circumference of this ellipse from the start point to the end point, |
+ * going anti-clockwise if the anticlockwise argument is true, and clockwise otherwise. |
+ * Since the points are on the ellipse, as opposed to being simply angles from zero, |
+ * the arc can never cover an angle greater than 2π radians. |
+ */ |
+ if (!anticlockwise && startAngle > endAngle) |
+ return startAngle + (twoPi - fmodf(startAngle - endAngle, twoPi)); |
alph
2013/07/10 13:06:29
I might think of a rare corner case when e.g.
anti
dshwang
2013/07/10 13:36:42
Wow, you have eagle eye. If you want to follow the
|
+ if (anticlockwise && startAngle < endAngle) |
+ return startAngle - (twoPi - fmodf(endAngle - startAngle, twoPi)); |
+ |
+ return endAngle; |
+} |
+ |
+void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise, ExceptionCode& ec) |
{ |
ec = 0; |
- if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(r) || !std::isfinite(sa) || !std::isfinite(ea)) |
+ if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) |
return; |
- if (r < 0) { |
+ if (radius < 0) { |
ec = IndexSizeError; |
return; |
} |
- if (!r || sa == ea) { |
- // The arc is empty but we still need to draw the connecting line. |
- lineTo(x + r * cosf(sa), y + r * sinf(sa)); |
- return; |
- } |
- |
if (!isTransformInvertible()) |
return; |
- // If 'sa' and 'ea' differ by more than 2Pi, just add a circle starting/ending at 'sa'. |
- if (anticlockwise && sa - ea >= 2 * piFloat) { |
- m_path.addArc(FloatPoint(x, y), r, sa, sa - 2 * piFloat, anticlockwise); |
- return; |
- } |
- if (!anticlockwise && ea - sa >= 2 * piFloat) { |
- m_path.addArc(FloatPoint(x, y), r, sa, sa + 2 * piFloat, anticlockwise); |
+ if (!radius || startAngle == endAngle) { |
+ // The arc is empty but we still need to draw the connecting line. |
+ lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle)); |
return; |
} |
- m_path.addArc(FloatPoint(x, y), r, sa, ea, anticlockwise); |
+ float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise); |
+ m_path.addArc(FloatPoint(x, y), radius, startAngle, adjustedEndAngle, anticlockwise); |
} |
void CanvasPathMethods::rect(float x, float y, float width, float height) |