Index: src/opts/SkOpts_sse41.cpp |
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp |
index f097e56c5e34a8eab9ebb6ecbff715ec3baa0010..e8eef3e00d9203bf58105027d12de56fefabefae 100644 |
--- a/src/opts/SkOpts_sse41.cpp |
+++ b/src/opts/SkOpts_sse41.cpp |
@@ -1,230 +1,229 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkOpts.h" |
- |
-#define SK_OPTS_NS sk_sse41 |
-#include "SkBlurImageFilter_opts.h" |
- |
-#ifndef SK_SUPPORT_LEGACY_X86_BLITS |
- |
-namespace sk_sse41 { |
- |
-// An SSE register holding at most 64 bits of useful data in the low lanes. |
-struct m64i { |
- __m128i v; |
- /*implicit*/ m64i(__m128i v) : v(v) {} |
- operator __m128i() const { return v; } |
-}; |
- |
-// Load 4, 2, or 1 constant pixels or coverages (4x replicated). |
-static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } |
-static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } |
-static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } |
- |
-static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } |
-static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } |
-static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } |
- |
-// Load 4, 2, or 1 variable pixels or coverages (4x replicated), |
-// incrementing the pointer past what we read. |
-static __m128i next4(const uint32_t*& ptr) { |
- auto r = _mm_loadu_si128((const __m128i*)ptr); |
- ptr += 4; |
- return r; |
-} |
-static m64i next2(const uint32_t*& ptr) { |
- auto r = _mm_loadl_epi64((const __m128i*)ptr); |
- ptr += 2; |
- return r; |
-} |
-static m64i next1(const uint32_t*& ptr) { |
- auto r = _mm_cvtsi32_si128(*ptr); |
- ptr += 1; |
- return r; |
-} |
- |
-// xyzw -> xxxx yyyy zzzz wwww |
-static __m128i replicate_coverage(__m128i xyzw) { |
- const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 }; |
- return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask)); |
-} |
- |
-static __m128i next4(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); |
- ptr += 4; |
- return r; |
-} |
-static m64i next2(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); |
- ptr += 2; |
- return r; |
-} |
-static m64i next1(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); |
- ptr += 1; |
- return r; |
-} |
- |
-// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
-template <typename Dst, typename Src, typename Cov, typename Fn> |
-static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
- // We don't want to muck with the callers' pointers, so we make them const and copy here. |
- Dst d = dst; |
- Src s = src; |
- Cov c = cov; |
- |
- // Writing this as a single while-loop helps hoist loop invariants from fn. |
- while (n) { |
- if (n >= 4) { |
- _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
- t += 4; |
- n -= 4; |
- continue; |
- } |
- if (n & 2) { |
- _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); |
- t += 2; |
- } |
- if (n & 1) { |
- *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); |
- } |
- return; |
- } |
-} |
- |
-// packed |
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
-// unpacked |
- |
-// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
-// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
-// |
-// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
-// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, |
-// where _ is a zero byte. |
-// |
-// Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
-// by unpacking arguments, calling fn, then packing the results. |
-// |
-// This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
-// and all the packing and unpacking is handled automatically. |
- |
-template <typename Fn> |
-struct Adapt { |
- Fn fn; |
- |
- __m128i operator()(__m128i d, __m128i s, __m128i c) { |
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
- auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; |
- return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), |
- fn(hi(d), hi(s), hi(c))); |
- } |
- |
- m64i operator()(const m64i& d, const m64i& s, const m64i& c) { |
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
- auto r = fn(lo(d), lo(s), lo(c)); |
- return _mm_packus_epi16(r, r); |
- } |
-}; |
- |
-template <typename Fn> |
-static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
- |
-// These helpers all work exclusively with unpacked 8-bit values, |
-// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
- |
-// Divide by 255 with rounding. |
-// (x+127)/255 == ((x+128)*257)>>16. |
-// Sometimes we can be more efficient by breaking this into two parts. |
-static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
-static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
-static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
- |
-// (x*y+127)/255, a byte multiply. |
-static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } |
- |
-// (255 * x). |
-static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } |
- |
-// (255 - x). |
-static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } |
- |
-// ARGB argb -> AAAA aaaa |
-static __m128i alphas(__m128i px) { |
- const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
- const int _ = ~0; |
- return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
-} |
- |
-// SrcOver, with a constant source and full coverage. |
-static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
- // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
- // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
- |
- // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
- // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
- __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), |
- s_255_128 = div255_part1(mul255(s)), |
- A = inv(alphas(s)); |
- |
- const uint8_t cov = 0xff; |
- loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { |
- return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
- })); |
-} |
- |
-// SrcOver, with a constant source and variable coverage. |
-// If the source is opaque, SrcOver becomes Src. |
-static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
- const SkAlpha* cov, size_t covRB, |
- SkColor color, int w, int h) { |
- if (SkColorGetA(color) == 0xFF) { |
- const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
- while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m128i d, __m128i s, __m128i c) { |
- // Src blend mode: a simple lerp from d to s by c. |
- // TODO: try a pmaddubsw version? |
- return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), |
- _mm_mullo_epi16( c ,s))); |
- })); |
- dst += dstRB / sizeof(*dst); |
- cov += covRB / sizeof(*cov); |
- } |
- } else { |
- const SkPMColor src = SkPreMultiplyColor(color); |
- while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m128i d, __m128i s, __m128i c) { |
- // SrcOver blend mode, with coverage folded into source alpha. |
- __m128i sc = scale(s,c), |
- AC = inv(alphas(sc)); |
- return _mm_add_epi16(sc, scale(d,AC)); |
- })); |
- dst += dstRB / sizeof(*dst); |
- cov += covRB / sizeof(*cov); |
- } |
- } |
-} |
- |
-} // namespace sk_sse41 |
- |
-#endif |
- |
-namespace SkOpts { |
- void Init_sse41() { |
- box_blur_xx = sk_sse41::box_blur_xx; |
- box_blur_xy = sk_sse41::box_blur_xy; |
- box_blur_yx = sk_sse41::box_blur_yx; |
- |
- #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
- blit_row_color32 = sk_sse41::blit_row_color32; |
- blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
- #endif |
- } |
-} |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkOpts.h" |
+ |
+#define SK_OPTS_NS sk_sse41 |
+#include "SkBlurImageFilter_opts.h" |
+ |
+#ifndef SK_SUPPORT_LEGACY_X86_BLITS |
+ |
+namespace sk_sse41 { |
+ |
+// An SSE register holding at most 64 bits of useful data in the low lanes. |
+struct m64i { |
+ __m128i v; |
+ /*implicit*/ m64i(__m128i v) : v(v) {} |
+ operator __m128i() const { return v; } |
+}; |
+ |
+// Load 4, 2, or 1 constant pixels or coverages (4x replicated). |
+static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } |
+static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } |
+static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } |
+ |
+static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } |
+static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } |
+static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } |
+ |
+// Load 4, 2, or 1 variable pixels or coverages (4x replicated), |
+// incrementing the pointer past what we read. |
+static __m128i next4(const uint32_t*& ptr) { |
+ auto r = _mm_loadu_si128((const __m128i*)ptr); |
+ ptr += 4; |
+ return r; |
+} |
+static m64i next2(const uint32_t*& ptr) { |
+ auto r = _mm_loadl_epi64((const __m128i*)ptr); |
+ ptr += 2; |
+ return r; |
+} |
+static m64i next1(const uint32_t*& ptr) { |
+ auto r = _mm_cvtsi32_si128(*ptr); |
+ ptr += 1; |
+ return r; |
+} |
+ |
+// xyzw -> xxxx yyyy zzzz wwww |
+static __m128i replicate_coverage(__m128i xyzw) { |
+ return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)); |
+} |
+ |
+static __m128i next4(const uint8_t*& ptr) { |
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); |
+ ptr += 4; |
+ return r; |
+} |
+static m64i next2(const uint8_t*& ptr) { |
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); |
+ ptr += 2; |
+ return r; |
+} |
+static m64i next1(const uint8_t*& ptr) { |
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); |
+ ptr += 1; |
+ return r; |
+} |
+ |
+// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
+template <typename Dst, typename Src, typename Cov, typename Fn> |
+static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
+ // We don't want to muck with the callers' pointers, so we make them const and copy here. |
+ Dst d = dst; |
+ Src s = src; |
+ Cov c = cov; |
+ |
+ // Writing this as a single while-loop helps hoist loop invariants from fn. |
+ while (n) { |
+ if (n >= 4) { |
+ _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
+ t += 4; |
+ n -= 4; |
+ continue; |
+ } |
+ if (n & 2) { |
+ _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); |
+ t += 2; |
+ } |
+ if (n & 1) { |
+ *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); |
+ } |
+ return; |
+ } |
+} |
+ |
+// packed |
+// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
+// unpacked |
+ |
+// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
+// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
+// |
+// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
+// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, |
+// where _ is a zero byte. |
+// |
+// Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
+// by unpacking arguments, calling fn, then packing the results. |
+// |
+// This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
+// and all the packing and unpacking is handled automatically. |
+ |
+template <typename Fn> |
+struct Adapt { |
+ Fn fn; |
+ |
+ __m128i operator()(__m128i d, __m128i s, __m128i c) { |
+ auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
+ auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; |
+ return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), |
+ fn(hi(d), hi(s), hi(c))); |
+ } |
+ |
+ m64i operator()(const m64i& d, const m64i& s, const m64i& c) { |
+ auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
+ auto r = fn(lo(d), lo(s), lo(c)); |
+ return _mm_packus_epi16(r, r); |
+ } |
+}; |
+ |
+template <typename Fn> |
+static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
+ |
+// These helpers all work exclusively with unpacked 8-bit values, |
+// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
+ |
+// Divide by 255 with rounding. |
+// (x+127)/255 == ((x+128)*257)>>16. |
+// Sometimes we can be more efficient by breaking this into two parts. |
+static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
+static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
+static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
+ |
+// (x*y+127)/255, a byte multiply. |
+static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } |
+ |
+// (255 * x). |
+static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } |
+ |
+// (255 - x). |
+static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } |
+ |
+// ARGB argb -> AAAA aaaa |
+static __m128i alphas(__m128i px) { |
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
+ const int _ = ~0; |
+ return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
+} |
+ |
+// SrcOver, with a constant source and full coverage. |
+static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
+ // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
+ // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
+ |
+ // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
+ // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
+ __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), |
+ s_255_128 = div255_part1(mul255(s)), |
+ A = inv(alphas(s)); |
+ |
+ const uint8_t cov = 0xff; |
+ loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { |
+ return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
+ })); |
+} |
+ |
+// SrcOver, with a constant source and variable coverage. |
+// If the source is opaque, SrcOver becomes Src. |
+static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
+ const SkAlpha* cov, size_t covRB, |
+ SkColor color, int w, int h) { |
+ if (SkColorGetA(color) == 0xFF) { |
+ const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
+ while (h --> 0) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, |
+ adapt([](__m128i d, __m128i s, __m128i c) { |
+ // Src blend mode: a simple lerp from d to s by c. |
+ // TODO: try a pmaddubsw version? |
+ return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), |
+ _mm_mullo_epi16( c ,s))); |
+ })); |
+ dst += dstRB / sizeof(*dst); |
+ cov += covRB / sizeof(*cov); |
+ } |
+ } else { |
+ const SkPMColor src = SkPreMultiplyColor(color); |
+ while (h --> 0) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, |
+ adapt([](__m128i d, __m128i s, __m128i c) { |
+ // SrcOver blend mode, with coverage folded into source alpha. |
+ __m128i sc = scale(s,c), |
+ AC = inv(alphas(sc)); |
+ return _mm_add_epi16(sc, scale(d,AC)); |
+ })); |
+ dst += dstRB / sizeof(*dst); |
+ cov += covRB / sizeof(*cov); |
+ } |
+ } |
+} |
+ |
+} // namespace sk_sse41 |
+ |
+#endif |
+ |
+namespace SkOpts { |
+ void Init_sse41() { |
+ box_blur_xx = sk_sse41::box_blur_xx; |
+ box_blur_xy = sk_sse41::box_blur_xy; |
+ box_blur_yx = sk_sse41::box_blur_yx; |
+ |
+ #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
+ blit_row_color32 = sk_sse41::blit_row_color32; |
+ blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
+ #endif |
+ } |
+} |