| OLD | NEW |
| (Empty) |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include <stdlib.h> | |
| 29 #include <cmath> | |
| 30 #include <cstdarg> | |
| 31 #include "v8.h" | |
| 32 | |
| 33 #if V8_TARGET_ARCH_A64 | |
| 34 | |
| 35 #include "disasm.h" | |
| 36 #include "assembler.h" | |
| 37 #include "a64/simulator-a64.h" | |
| 38 #include "macro-assembler.h" | |
| 39 | |
| 40 namespace v8 { | |
| 41 namespace internal { | |
| 42 | |
| 43 #if defined(USE_SIMULATOR) | |
| 44 | |
| 45 | |
| 46 // This macro provides a platform independent use of sscanf. The reason for | |
| 47 // SScanF not being implemented in a platform independent way through | |
| 48 // ::v8::internal::OS in the same way as SNPrintF is that the | |
| 49 // Windows C Run-Time Library does not provide vsscanf. | |
| 50 #define SScanF sscanf // NOLINT | |
| 51 | |
| 52 | |
| 53 // This is basically the same as PrintF, with a guard for FLAG_trace_sim. | |
| 54 void PRINTF_CHECKING TraceSim(const char* format, ...) { | |
| 55 if (FLAG_trace_sim) { | |
| 56 va_list arguments; | |
| 57 va_start(arguments, format); | |
| 58 OS::VPrint(format, arguments); | |
| 59 va_end(arguments); | |
| 60 } | |
| 61 } | |
| 62 | |
| 63 | |
| 64 const Instruction* Simulator::kEndOfSimAddress = NULL; | |
| 65 | |
| 66 | |
| 67 void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) { | |
| 68 int width = msb - lsb + 1; | |
| 69 ASSERT(is_uintn(bits, width) || is_intn(bits, width)); | |
| 70 | |
| 71 bits <<= lsb; | |
| 72 uint32_t mask = ((1 << width) - 1) << lsb; | |
| 73 ASSERT((mask & write_ignore_mask_) == 0); | |
| 74 | |
| 75 value_ = (value_ & ~mask) | (bits & mask); | |
| 76 } | |
| 77 | |
| 78 | |
| 79 SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) { | |
| 80 switch (id) { | |
| 81 case NZCV: | |
| 82 return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask); | |
| 83 case FPCR: | |
| 84 return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask); | |
| 85 default: | |
| 86 UNREACHABLE(); | |
| 87 return SimSystemRegister(); | |
| 88 } | |
| 89 } | |
| 90 | |
| 91 | |
| 92 void Simulator::Initialize(Isolate* isolate) { | |
| 93 if (isolate->simulator_initialized()) return; | |
| 94 isolate->set_simulator_initialized(true); | |
| 95 ExternalReference::set_redirector(isolate, &RedirectExternalReference); | |
| 96 } | |
| 97 | |
| 98 | |
| 99 // Get the active Simulator for the current thread. | |
| 100 Simulator* Simulator::current(Isolate* isolate) { | |
| 101 Isolate::PerIsolateThreadData* isolate_data = | |
| 102 isolate->FindOrAllocatePerThreadDataForThisThread(); | |
| 103 ASSERT(isolate_data != NULL); | |
| 104 | |
| 105 Simulator* sim = isolate_data->simulator(); | |
| 106 if (sim == NULL) { | |
| 107 // TODO(146): delete the simulator object when a thread/isolate goes away. | |
| 108 sim = new Simulator(new Decoder(), isolate); | |
| 109 isolate_data->set_simulator(sim); | |
| 110 } | |
| 111 return sim; | |
| 112 } | |
| 113 | |
| 114 | |
| 115 void Simulator::CallVoid(byte* entry, CallArgument* args) { | |
| 116 int index_x = 0; | |
| 117 int index_d = 0; | |
| 118 | |
| 119 std::vector<int64_t> stack_args(0); | |
| 120 for (int i = 0; !args[i].IsEnd(); i++) { | |
| 121 CallArgument arg = args[i]; | |
| 122 if (arg.IsX() && (index_x < 8)) { | |
| 123 set_xreg(index_x++, arg.bits()); | |
| 124 } else if (arg.IsD() && (index_d < 8)) { | |
| 125 set_dreg_bits(index_d++, arg.bits()); | |
| 126 } else { | |
| 127 ASSERT(arg.IsD() || arg.IsX()); | |
| 128 stack_args.push_back(arg.bits()); | |
| 129 } | |
| 130 } | |
| 131 | |
| 132 // Process stack arguments, and make sure the stack is suitably aligned. | |
| 133 uintptr_t original_stack = sp(); | |
| 134 uintptr_t entry_stack = original_stack - | |
| 135 stack_args.size() * sizeof(stack_args[0]); | |
| 136 if (OS::ActivationFrameAlignment() != 0) { | |
| 137 entry_stack &= -OS::ActivationFrameAlignment(); | |
| 138 } | |
| 139 char * stack = reinterpret_cast<char*>(entry_stack); | |
| 140 std::vector<int64_t>::const_iterator it; | |
| 141 for (it = stack_args.begin(); it != stack_args.end(); it++) { | |
| 142 memcpy(stack, &(*it), sizeof(*it)); | |
| 143 stack += sizeof(*it); | |
| 144 } | |
| 145 | |
| 146 ASSERT(reinterpret_cast<uintptr_t>(stack) <= original_stack); | |
| 147 set_sp(entry_stack); | |
| 148 | |
| 149 // Call the generated code. | |
| 150 set_pc(entry); | |
| 151 set_lr(kEndOfSimAddress); | |
| 152 CheckPCSComplianceAndRun(); | |
| 153 | |
| 154 set_sp(original_stack); | |
| 155 } | |
| 156 | |
| 157 | |
| 158 int64_t Simulator::CallInt64(byte* entry, CallArgument* args) { | |
| 159 CallVoid(entry, args); | |
| 160 return xreg(0); | |
| 161 } | |
| 162 | |
| 163 | |
| 164 double Simulator::CallDouble(byte* entry, CallArgument* args) { | |
| 165 CallVoid(entry, args); | |
| 166 return dreg(0); | |
| 167 } | |
| 168 | |
| 169 | |
| 170 int64_t Simulator::CallJS(byte* entry, | |
| 171 byte* function_entry, | |
| 172 JSFunction* func, | |
| 173 Object* revc, | |
| 174 int64_t argc, | |
| 175 Object*** argv) { | |
| 176 CallArgument args[] = { | |
| 177 CallArgument(function_entry), | |
| 178 CallArgument(func), | |
| 179 CallArgument(revc), | |
| 180 CallArgument(argc), | |
| 181 CallArgument(argv), | |
| 182 CallArgument::End() | |
| 183 }; | |
| 184 return CallInt64(entry, args); | |
| 185 } | |
| 186 | |
| 187 int64_t Simulator::CallRegExp(byte* entry, | |
| 188 String* input, | |
| 189 int64_t start_offset, | |
| 190 const byte* input_start, | |
| 191 const byte* input_end, | |
| 192 int* output, | |
| 193 int64_t output_size, | |
| 194 Address stack_base, | |
| 195 int64_t direct_call, | |
| 196 void* return_address, | |
| 197 Isolate* isolate) { | |
| 198 CallArgument args[] = { | |
| 199 CallArgument(input), | |
| 200 CallArgument(start_offset), | |
| 201 CallArgument(input_start), | |
| 202 CallArgument(input_end), | |
| 203 CallArgument(output), | |
| 204 CallArgument(output_size), | |
| 205 CallArgument(stack_base), | |
| 206 CallArgument(direct_call), | |
| 207 CallArgument(return_address), | |
| 208 CallArgument(isolate), | |
| 209 CallArgument::End() | |
| 210 }; | |
| 211 return CallInt64(entry, args); | |
| 212 } | |
| 213 | |
| 214 | |
| 215 void Simulator::CheckPCSComplianceAndRun() { | |
| 216 #ifdef DEBUG | |
| 217 CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count()); | |
| 218 CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count()); | |
| 219 | |
| 220 int64_t saved_registers[kNumberOfCalleeSavedRegisters]; | |
| 221 uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters]; | |
| 222 | |
| 223 CPURegList register_list = kCalleeSaved; | |
| 224 CPURegList fpregister_list = kCalleeSavedFP; | |
| 225 | |
| 226 for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { | |
| 227 // x31 is not a caller saved register, so no need to specify if we want | |
| 228 // the stack or zero. | |
| 229 saved_registers[i] = xreg(register_list.PopLowestIndex().code()); | |
| 230 } | |
| 231 for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) { | |
| 232 saved_fpregisters[i] = | |
| 233 dreg_bits(fpregister_list.PopLowestIndex().code()); | |
| 234 } | |
| 235 int64_t original_stack = sp(); | |
| 236 #endif | |
| 237 // Start the simulation! | |
| 238 Run(); | |
| 239 #ifdef DEBUG | |
| 240 CHECK_EQ(original_stack, sp()); | |
| 241 // Check that callee-saved registers have been preserved. | |
| 242 register_list = kCalleeSaved; | |
| 243 fpregister_list = kCalleeSavedFP; | |
| 244 for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { | |
| 245 CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code())); | |
| 246 } | |
| 247 for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) { | |
| 248 ASSERT(saved_fpregisters[i] == | |
| 249 dreg_bits(fpregister_list.PopLowestIndex().code())); | |
| 250 } | |
| 251 | |
| 252 // Corrupt caller saved register minus the return regiters. | |
| 253 | |
| 254 // In theory x0 to x7 can be used for return values, but V8 only uses x0, x1 | |
| 255 // for now . | |
| 256 register_list = kCallerSaved; | |
| 257 register_list.Remove(x0); | |
| 258 register_list.Remove(x1); | |
| 259 | |
| 260 // In theory d0 to d7 can be used for return values, but V8 only uses d0 | |
| 261 // for now . | |
| 262 fpregister_list = kCallerSavedFP; | |
| 263 fpregister_list.Remove(d0); | |
| 264 | |
| 265 CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); | |
| 266 CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue); | |
| 267 #endif | |
| 268 } | |
| 269 | |
| 270 | |
| 271 #ifdef DEBUG | |
| 272 // The least significant byte of the curruption value holds the corresponding | |
| 273 // register's code. | |
| 274 void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) { | |
| 275 if (list->type() == CPURegister::kRegister) { | |
| 276 while (!list->IsEmpty()) { | |
| 277 unsigned code = list->PopLowestIndex().code(); | |
| 278 set_xreg(code, value | code); | |
| 279 } | |
| 280 } else { | |
| 281 ASSERT(list->type() == CPURegister::kFPRegister); | |
| 282 while (!list->IsEmpty()) { | |
| 283 unsigned code = list->PopLowestIndex().code(); | |
| 284 set_dreg_bits(code, value | code); | |
| 285 } | |
| 286 } | |
| 287 } | |
| 288 | |
| 289 | |
| 290 void Simulator::CorruptAllCallerSavedCPURegisters() { | |
| 291 // Corrupt alters its parameter so copy them first. | |
| 292 CPURegList register_list = kCallerSaved; | |
| 293 CPURegList fpregister_list = kCallerSavedFP; | |
| 294 | |
| 295 CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); | |
| 296 CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue); | |
| 297 } | |
| 298 #endif | |
| 299 | |
| 300 | |
| 301 // Extending the stack by 2 * 64 bits is required for stack alignment purposes. | |
| 302 // TODO(all): Insert a marker in the extra space allocated on the stack. | |
| 303 uintptr_t Simulator::PushAddress(uintptr_t address) { | |
| 304 ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes); | |
| 305 intptr_t new_sp = sp() - 2 * kXRegSizeInBytes; | |
| 306 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); | |
| 307 *stack_slot = address; | |
| 308 set_sp(new_sp); | |
| 309 return new_sp; | |
| 310 } | |
| 311 | |
| 312 | |
| 313 uintptr_t Simulator::PopAddress() { | |
| 314 intptr_t current_sp = sp(); | |
| 315 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); | |
| 316 uintptr_t address = *stack_slot; | |
| 317 ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes); | |
| 318 set_sp(current_sp + 2 * kXRegSizeInBytes); | |
| 319 return address; | |
| 320 } | |
| 321 | |
| 322 | |
| 323 // Returns the limit of the stack area to enable checking for stack overflows. | |
| 324 uintptr_t Simulator::StackLimit() const { | |
| 325 // Leave a safety margin of 1024 bytes to prevent overrunning the stack when | |
| 326 // pushing values. | |
| 327 // TODO(all): Increase the stack limit protection. | |
| 328 | |
| 329 // The margin was decreased to 256 bytes, because we are intensively using | |
| 330 // the stack. The stack usage should decrease when our code improves. Then | |
| 331 // we can set it to 1024 again. | |
| 332 return reinterpret_cast<uintptr_t>(stack_limit_) + 256; | |
| 333 } | |
| 334 | |
| 335 | |
| 336 Simulator::Simulator(Decoder* decoder, Isolate* isolate, FILE* stream) | |
| 337 : decoder_(decoder), last_debugger_input_(NULL), log_parameters_(NO_PARAM), | |
| 338 isolate_(isolate) { | |
| 339 // Setup the decoder. | |
| 340 decoder_->AppendVisitor(this); | |
| 341 | |
| 342 ResetState(); | |
| 343 | |
| 344 // Allocate and setup the simulator stack. | |
| 345 stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_); | |
| 346 stack_ = new byte[stack_size_]; | |
| 347 stack_limit_ = stack_ + stack_protection_size_; | |
| 348 byte* tos = stack_ + stack_size_ - stack_protection_size_; | |
| 349 // The stack pointer must be 16 bytes aligned. | |
| 350 set_sp(reinterpret_cast<int64_t>(tos) & ~0xfUL); | |
| 351 | |
| 352 stream_ = stream; | |
| 353 print_disasm_ = new PrintDisassembler(stream_); | |
| 354 | |
| 355 if (FLAG_trace_sim) { | |
| 356 decoder_->InsertVisitorBefore(print_disasm_, this); | |
| 357 log_parameters_ = LOG_ALL; | |
| 358 } | |
| 359 | |
| 360 // The debugger needs to disassemble code without the simulator executing an | |
| 361 // instruction, so we create a dedicated decoder. | |
| 362 disassembler_decoder_ = new Decoder(); | |
| 363 disassembler_decoder_->AppendVisitor(print_disasm_); | |
| 364 | |
| 365 if (FLAG_log_instruction_stats) { | |
| 366 instrument_ = new Instrument(FLAG_log_instruction_file, | |
| 367 FLAG_log_instruction_period); | |
| 368 decoder_->AppendVisitor(instrument_); | |
| 369 } | |
| 370 } | |
| 371 | |
| 372 | |
| 373 void Simulator::ResetState() { | |
| 374 // Reset the system registers. | |
| 375 nzcv_ = SimSystemRegister::DefaultValueFor(NZCV); | |
| 376 fpcr_ = SimSystemRegister::DefaultValueFor(FPCR); | |
| 377 | |
| 378 // Reset registers to 0. | |
| 379 pc_ = NULL; | |
| 380 for (unsigned i = 0; i < kNumberOfRegisters; i++) { | |
| 381 set_xreg(i, 0xbadbeef); | |
| 382 } | |
| 383 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { | |
| 384 // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP. | |
| 385 set_dreg_bits(i, 0x7ff000007f800001UL); | |
| 386 } | |
| 387 // Returning to address 0 exits the Simulator. | |
| 388 set_lr(kEndOfSimAddress); | |
| 389 | |
| 390 // Reset debug helpers. | |
| 391 breakpoints_.empty(); | |
| 392 break_on_next_= false; | |
| 393 } | |
| 394 | |
| 395 | |
| 396 Simulator::~Simulator() { | |
| 397 delete[] stack_; | |
| 398 if (FLAG_log_instruction_stats) { | |
| 399 delete instrument_; | |
| 400 } | |
| 401 delete disassembler_decoder_; | |
| 402 delete print_disasm_; | |
| 403 DeleteArray(last_debugger_input_); | |
| 404 } | |
| 405 | |
| 406 | |
| 407 void Simulator::Run() { | |
| 408 pc_modified_ = false; | |
| 409 while (pc_ != kEndOfSimAddress) { | |
| 410 ExecuteInstruction(); | |
| 411 } | |
| 412 } | |
| 413 | |
| 414 | |
| 415 void Simulator::RunFrom(Instruction* start) { | |
| 416 set_pc(start); | |
| 417 Run(); | |
| 418 } | |
| 419 | |
| 420 | |
| 421 void Simulator::CheckStackAlignment() { | |
| 422 // TODO(aleram): The sp alignment check to perform depends on the processor | |
| 423 // state. Check the specifications for more details. | |
| 424 } | |
| 425 | |
| 426 | |
| 427 // When the generated code calls an external reference we need to catch that in | |
| 428 // the simulator. The external reference will be a function compiled for the | |
| 429 // host architecture. We need to call that function instead of trying to | |
| 430 // execute it with the simulator. We do that by redirecting the external | |
| 431 // reference to a svc (Supervisor Call) instruction that is handled by | |
| 432 // the simulator. We write the original destination of the jump just at a known | |
| 433 // offset from the svc instruction so the simulator knows what to call. | |
| 434 class Redirection { | |
| 435 public: | |
| 436 Redirection(void* external_function, ExternalReference::Type type) | |
| 437 : external_function_(external_function), | |
| 438 type_(type), | |
| 439 next_(NULL) { | |
| 440 redirect_call_.SetInstructionBits( | |
| 441 HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall)); | |
| 442 Isolate* isolate = Isolate::Current(); | |
| 443 next_ = isolate->simulator_redirection(); | |
| 444 // TODO(all): Simulator flush I cache | |
| 445 isolate->set_simulator_redirection(this); | |
| 446 } | |
| 447 | |
| 448 void* address_of_redirect_call() { | |
| 449 return reinterpret_cast<void*>(&redirect_call_); | |
| 450 } | |
| 451 | |
| 452 void* external_function() { return external_function_; } | |
| 453 ExternalReference::Type type() { return type_; } | |
| 454 | |
| 455 static Redirection* Get(void* external_function, | |
| 456 ExternalReference::Type type) { | |
| 457 Isolate* isolate = Isolate::Current(); | |
| 458 Redirection* current = isolate->simulator_redirection(); | |
| 459 for (; current != NULL; current = current->next_) { | |
| 460 if (current->external_function_ == external_function) { | |
| 461 ASSERT_EQ(current->type(), type); | |
| 462 return current; | |
| 463 } | |
| 464 } | |
| 465 return new Redirection(external_function, type); | |
| 466 } | |
| 467 | |
| 468 static Redirection* FromHltInstruction(Instruction* redirect_call) { | |
| 469 char* addr_of_hlt = reinterpret_cast<char*>(redirect_call); | |
| 470 char* addr_of_redirection = | |
| 471 addr_of_hlt - OFFSET_OF(Redirection, redirect_call_); | |
| 472 return reinterpret_cast<Redirection*>(addr_of_redirection); | |
| 473 } | |
| 474 | |
| 475 static void* ReverseRedirection(int64_t reg) { | |
| 476 Redirection* redirection = | |
| 477 FromHltInstruction(reinterpret_cast<Instruction*>(reg)); | |
| 478 return redirection->external_function(); | |
| 479 } | |
| 480 | |
| 481 private: | |
| 482 void* external_function_; | |
| 483 Instruction redirect_call_; | |
| 484 ExternalReference::Type type_; | |
| 485 Redirection* next_; | |
| 486 }; | |
| 487 | |
| 488 | |
| 489 void* Simulator::RedirectExternalReference(void* external_function, | |
| 490 ExternalReference::Type type) { | |
| 491 Redirection* redirection = Redirection::Get(external_function, type); | |
| 492 return redirection->address_of_redirect_call(); | |
| 493 } | |
| 494 | |
| 495 | |
| 496 const char* Simulator::xreg_names[] = { | |
| 497 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", | |
| 498 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", | |
| 499 "ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23", | |
| 500 "x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"}; | |
| 501 | |
| 502 const char* Simulator::wreg_names[] = { | |
| 503 "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", | |
| 504 "w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15", | |
| 505 "w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23", | |
| 506 "w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"}; | |
| 507 | |
| 508 const char* Simulator::sreg_names[] = { | |
| 509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
| 510 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
| 511 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
| 512 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"}; | |
| 513 | |
| 514 const char* Simulator::dreg_names[] = { | |
| 515 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
| 516 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
| 517 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
| 518 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; | |
| 519 | |
| 520 const char* Simulator::vreg_names[] = { | |
| 521 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", | |
| 522 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", | |
| 523 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", | |
| 524 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"}; | |
| 525 | |
| 526 | |
| 527 const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) { | |
| 528 ASSERT(code < kNumberOfRegisters); | |
| 529 // If the code represents the stack pointer, index the name after zr. | |
| 530 if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { | |
| 531 code = kZeroRegCode + 1; | |
| 532 } | |
| 533 return wreg_names[code]; | |
| 534 } | |
| 535 | |
| 536 | |
| 537 const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) { | |
| 538 ASSERT(code < kNumberOfRegisters); | |
| 539 // If the code represents the stack pointer, index the name after zr. | |
| 540 if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { | |
| 541 code = kZeroRegCode + 1; | |
| 542 } | |
| 543 return xreg_names[code]; | |
| 544 } | |
| 545 | |
| 546 | |
| 547 const char* Simulator::SRegNameForCode(unsigned code) { | |
| 548 ASSERT(code < kNumberOfFPRegisters); | |
| 549 return sreg_names[code]; | |
| 550 } | |
| 551 | |
| 552 | |
| 553 const char* Simulator::DRegNameForCode(unsigned code) { | |
| 554 ASSERT(code < kNumberOfFPRegisters); | |
| 555 return dreg_names[code]; | |
| 556 } | |
| 557 | |
| 558 | |
| 559 const char* Simulator::VRegNameForCode(unsigned code) { | |
| 560 ASSERT(code < kNumberOfFPRegisters); | |
| 561 return vreg_names[code]; | |
| 562 } | |
| 563 | |
| 564 | |
| 565 int Simulator::CodeFromName(const char* name) { | |
| 566 for (unsigned i = 0; i < kNumberOfRegisters; i++) { | |
| 567 if ((strcmp(xreg_names[i], name) == 0) || | |
| 568 (strcmp(wreg_names[i], name) == 0)) { | |
| 569 return i; | |
| 570 } | |
| 571 } | |
| 572 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { | |
| 573 if ((strcmp(vreg_names[i], name) == 0) || | |
| 574 (strcmp(dreg_names[i], name) == 0) || | |
| 575 (strcmp(sreg_names[i], name) == 0)) { | |
| 576 return i; | |
| 577 } | |
| 578 } | |
| 579 if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) { | |
| 580 return kSPRegInternalCode; | |
| 581 } | |
| 582 return -1; | |
| 583 } | |
| 584 | |
| 585 | |
| 586 // Helpers --------------------------------------------------------------------- | |
| 587 int64_t Simulator::AddWithCarry(unsigned reg_size, | |
| 588 bool set_flags, | |
| 589 int64_t src1, | |
| 590 int64_t src2, | |
| 591 int64_t carry_in) { | |
| 592 ASSERT((carry_in == 0) || (carry_in == 1)); | |
| 593 ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); | |
| 594 | |
| 595 uint64_t u1, u2; | |
| 596 int64_t result; | |
| 597 int64_t signed_sum = src1 + src2 + carry_in; | |
| 598 | |
| 599 uint32_t N, Z, C, V; | |
| 600 | |
| 601 if (reg_size == kWRegSize) { | |
| 602 u1 = static_cast<uint64_t>(src1) & kWRegMask; | |
| 603 u2 = static_cast<uint64_t>(src2) & kWRegMask; | |
| 604 | |
| 605 result = signed_sum & kWRegMask; | |
| 606 // Compute the C flag by comparing the sum to the max unsigned integer. | |
| 607 C = ((kWMaxUInt - u1) < (u2 + carry_in)) || | |
| 608 ((kWMaxUInt - u1 - carry_in) < u2); | |
| 609 // Overflow iff the sign bit is the same for the two inputs and different | |
| 610 // for the result. | |
| 611 int64_t s_src1 = src1 << (kXRegSize - kWRegSize); | |
| 612 int64_t s_src2 = src2 << (kXRegSize - kWRegSize); | |
| 613 int64_t s_result = result << (kXRegSize - kWRegSize); | |
| 614 V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0); | |
| 615 | |
| 616 } else { | |
| 617 u1 = static_cast<uint64_t>(src1); | |
| 618 u2 = static_cast<uint64_t>(src2); | |
| 619 | |
| 620 result = signed_sum; | |
| 621 // Compute the C flag by comparing the sum to the max unsigned integer. | |
| 622 C = ((kXMaxUInt - u1) < (u2 + carry_in)) || | |
| 623 ((kXMaxUInt - u1 - carry_in) < u2); | |
| 624 // Overflow iff the sign bit is the same for the two inputs and different | |
| 625 // for the result. | |
| 626 V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0); | |
| 627 } | |
| 628 | |
| 629 N = CalcNFlag(result, reg_size); | |
| 630 Z = CalcZFlag(result); | |
| 631 | |
| 632 if (set_flags) { | |
| 633 nzcv().SetN(N); | |
| 634 nzcv().SetZ(Z); | |
| 635 nzcv().SetC(C); | |
| 636 nzcv().SetV(V); | |
| 637 } | |
| 638 return result; | |
| 639 } | |
| 640 | |
| 641 | |
| 642 int64_t Simulator::ShiftOperand(unsigned reg_size, | |
| 643 int64_t value, | |
| 644 Shift shift_type, | |
| 645 unsigned amount) { | |
| 646 if (amount == 0) { | |
| 647 return value; | |
| 648 } | |
| 649 int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask; | |
| 650 switch (shift_type) { | |
| 651 case LSL: | |
| 652 return (value << amount) & mask; | |
| 653 case LSR: | |
| 654 return static_cast<uint64_t>(value) >> amount; | |
| 655 case ASR: { | |
| 656 // Shift used to restore the sign. | |
| 657 unsigned s_shift = kXRegSize - reg_size; | |
| 658 // Value with its sign restored. | |
| 659 int64_t s_value = (value << s_shift) >> s_shift; | |
| 660 return (s_value >> amount) & mask; | |
| 661 } | |
| 662 case ROR: { | |
| 663 if (reg_size == kWRegSize) { | |
| 664 value &= kWRegMask; | |
| 665 } | |
| 666 return (static_cast<uint64_t>(value) >> amount) | | |
| 667 ((value & ((1L << amount) - 1L)) << (reg_size - amount)); | |
| 668 } | |
| 669 default: | |
| 670 UNIMPLEMENTED(); | |
| 671 return 0; | |
| 672 } | |
| 673 } | |
| 674 | |
| 675 | |
| 676 int64_t Simulator::ExtendValue(unsigned reg_size, | |
| 677 int64_t value, | |
| 678 Extend extend_type, | |
| 679 unsigned left_shift) { | |
| 680 switch (extend_type) { | |
| 681 case UXTB: | |
| 682 value &= kByteMask; | |
| 683 break; | |
| 684 case UXTH: | |
| 685 value &= kHalfWordMask; | |
| 686 break; | |
| 687 case UXTW: | |
| 688 value &= kWordMask; | |
| 689 break; | |
| 690 case SXTB: | |
| 691 value = (value << 56) >> 56; | |
| 692 break; | |
| 693 case SXTH: | |
| 694 value = (value << 48) >> 48; | |
| 695 break; | |
| 696 case SXTW: | |
| 697 value = (value << 32) >> 32; | |
| 698 break; | |
| 699 case UXTX: | |
| 700 case SXTX: | |
| 701 break; | |
| 702 default: | |
| 703 UNREACHABLE(); | |
| 704 } | |
| 705 int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask; | |
| 706 return (value << left_shift) & mask; | |
| 707 } | |
| 708 | |
| 709 | |
| 710 void Simulator::FPCompare(double val0, double val1) { | |
| 711 AssertSupportedFPCR(); | |
| 712 | |
| 713 // TODO(jbramley): This assumes that the C++ implementation handles | |
| 714 // comparisons in the way that we expect (as per AssertSupportedFPCR()). | |
| 715 if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) { | |
| 716 nzcv().SetRawValue(FPUnorderedFlag); | |
| 717 } else if (val0 < val1) { | |
| 718 nzcv().SetRawValue(FPLessThanFlag); | |
| 719 } else if (val0 > val1) { | |
| 720 nzcv().SetRawValue(FPGreaterThanFlag); | |
| 721 } else if (val0 == val1) { | |
| 722 nzcv().SetRawValue(FPEqualFlag); | |
| 723 } else { | |
| 724 UNREACHABLE(); | |
| 725 } | |
| 726 } | |
| 727 | |
| 728 | |
| 729 void Simulator::SetBreakpoint(Instruction* location) { | |
| 730 for (unsigned i = 0; i < breakpoints_.size(); i++) { | |
| 731 if (breakpoints_.at(i).location == location) { | |
| 732 PrintF("Existing breakpoint at %p was %s\n", | |
| 733 reinterpret_cast<void*>(location), | |
| 734 breakpoints_.at(i).enabled ? "disabled" : "enabled"); | |
| 735 breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled; | |
| 736 return; | |
| 737 } | |
| 738 } | |
| 739 Breakpoint new_breakpoint = {location, true}; | |
| 740 breakpoints_.push_back(new_breakpoint); | |
| 741 PrintF("Set a breakpoint at %p\n", reinterpret_cast<void*>(location)); | |
| 742 } | |
| 743 | |
| 744 | |
| 745 void Simulator::ListBreakpoints() { | |
| 746 PrintF("Breakpoints:\n"); | |
| 747 for (unsigned i = 0; i < breakpoints_.size(); i++) { | |
| 748 PrintF("%p : %s\n", | |
| 749 reinterpret_cast<void*>(breakpoints_.at(i).location), | |
| 750 breakpoints_.at(i).enabled ? "enabled" : "disabled"); | |
| 751 } | |
| 752 } | |
| 753 | |
| 754 | |
| 755 void Simulator::CheckBreakpoints() { | |
| 756 bool hit_a_breakpoint = false; | |
| 757 for (unsigned i = 0; i < breakpoints_.size(); i++) { | |
| 758 if ((breakpoints_.at(i).location == pc_) && | |
| 759 breakpoints_.at(i).enabled) { | |
| 760 hit_a_breakpoint = true; | |
| 761 // Disable this breakpoint. | |
| 762 breakpoints_.at(i).enabled = false; | |
| 763 } | |
| 764 } | |
| 765 if (hit_a_breakpoint) { | |
| 766 PrintF("Hit and disabled a breakpoint at %p.\n", | |
| 767 reinterpret_cast<void*>(pc_)); | |
| 768 Debug(); | |
| 769 } | |
| 770 } | |
| 771 | |
| 772 | |
| 773 void Simulator::CheckBreakNext() { | |
| 774 // If the current instruction is a BL, insert a breakpoint just after it. | |
| 775 if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) { | |
| 776 SetBreakpoint(pc_->NextInstruction()); | |
| 777 break_on_next_ = false; | |
| 778 } | |
| 779 } | |
| 780 | |
| 781 | |
| 782 void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) { | |
| 783 Instruction* end = start->InstructionAtOffset(count * kInstructionSize); | |
| 784 for (Instruction* pc = start; pc < end; pc = pc->NextInstruction()) { | |
| 785 disassembler_decoder_->Decode(pc); | |
| 786 } | |
| 787 } | |
| 788 | |
| 789 | |
| 790 void Simulator::PrintSystemRegisters(bool print_all) { | |
| 791 static bool first_run = true; | |
| 792 | |
| 793 // Define some colour codes to use for the register dump. | |
| 794 // TODO(jbramley): Find a more elegant way of defining these. | |
| 795 char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); | |
| 796 char const * const clr_flag_name = (FLAG_log_colour) ? ("\033[1;30m") : (""); | |
| 797 char const * const clr_flag_value = (FLAG_log_colour) ? ("\033[1;37m") : (""); | |
| 798 | |
| 799 static SimSystemRegister last_nzcv; | |
| 800 if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) { | |
| 801 fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n", | |
| 802 clr_flag_name, | |
| 803 clr_flag_value, | |
| 804 N(), Z(), C(), V(), | |
| 805 clr_normal); | |
| 806 } | |
| 807 last_nzcv = nzcv(); | |
| 808 | |
| 809 static SimSystemRegister last_fpcr; | |
| 810 if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) { | |
| 811 static const char * rmode[] = { | |
| 812 "0b00 (Round to Nearest)", | |
| 813 "0b01 (Round towards Plus Infinity)", | |
| 814 "0b10 (Round towards Minus Infinity)", | |
| 815 "0b11 (Round towards Zero)" | |
| 816 }; | |
| 817 ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0]))); | |
| 818 fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n", | |
| 819 clr_flag_name, | |
| 820 clr_flag_value, | |
| 821 fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()], | |
| 822 clr_normal); | |
| 823 } | |
| 824 last_fpcr = fpcr(); | |
| 825 | |
| 826 first_run = false; | |
| 827 } | |
| 828 | |
| 829 | |
| 830 void Simulator::PrintRegisters(bool print_all_regs) { | |
| 831 static bool first_run = true; | |
| 832 static int64_t last_regs[kNumberOfRegisters]; | |
| 833 | |
| 834 // Define some colour codes to use for the register dump. | |
| 835 // TODO(jbramley): Find a more elegant way of defining these. | |
| 836 char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); | |
| 837 char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;34m") : (""); | |
| 838 char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;36m") : (""); | |
| 839 | |
| 840 for (unsigned i = 0; i < kNumberOfRegisters; i++) { | |
| 841 if (print_all_regs || first_run || | |
| 842 (last_regs[i] != xreg(i, Reg31IsStackPointer))) { | |
| 843 fprintf(stream_, | |
| 844 "# %s%4s:%s 0x%016" PRIx64 "%s\n", | |
| 845 clr_reg_name, | |
| 846 XRegNameForCode(i, Reg31IsStackPointer), | |
| 847 clr_reg_value, | |
| 848 xreg(i, Reg31IsStackPointer), | |
| 849 clr_normal); | |
| 850 } | |
| 851 // Cache the new register value so the next run can detect any changes. | |
| 852 last_regs[i] = xreg(i, Reg31IsStackPointer); | |
| 853 } | |
| 854 first_run = false; | |
| 855 } | |
| 856 | |
| 857 | |
| 858 void Simulator::PrintFPRegisters(bool print_all_regs) { | |
| 859 static bool first_run = true; | |
| 860 static uint64_t last_regs[kNumberOfFPRegisters]; | |
| 861 | |
| 862 // Define some colour codes to use for the register dump. | |
| 863 // TODO(jbramley): Find a more elegant way of defining these. | |
| 864 char const * const clr_normal = (FLAG_log_colour) ? ("\033[m") : (""); | |
| 865 char const * const clr_reg_name = (FLAG_log_colour) ? ("\033[1;33m") : (""); | |
| 866 char const * const clr_reg_value = (FLAG_log_colour) ? ("\033[1;35m") : (""); | |
| 867 | |
| 868 // Print as many rows of registers as necessary, keeping each individual | |
| 869 // register in the same column each time (to make it easy to visually scan | |
| 870 // for changes). | |
| 871 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { | |
| 872 if (print_all_regs || first_run || (last_regs[i] != dreg_bits(i))) { | |
| 873 fprintf(stream_, | |
| 874 "# %s %4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", | |
| 875 clr_reg_name, | |
| 876 VRegNameForCode(i), | |
| 877 clr_reg_value, | |
| 878 dreg_bits(i), | |
| 879 clr_normal, | |
| 880 clr_reg_name, | |
| 881 DRegNameForCode(i), | |
| 882 clr_reg_value, | |
| 883 dreg(i), | |
| 884 clr_reg_name, | |
| 885 SRegNameForCode(i), | |
| 886 clr_reg_value, | |
| 887 sreg(i), | |
| 888 clr_normal); | |
| 889 } | |
| 890 // Cache the new register value so the next run can detect any changes. | |
| 891 last_regs[i] = dreg_bits(i); | |
| 892 } | |
| 893 first_run = false; | |
| 894 } | |
| 895 | |
| 896 | |
| 897 void Simulator::PrintProcessorState() { | |
| 898 PrintSystemRegisters(); | |
| 899 PrintRegisters(); | |
| 900 PrintFPRegisters(); | |
| 901 } | |
| 902 | |
| 903 | |
| 904 void Simulator::PrintWrite(uint8_t* address, | |
| 905 uint64_t value, | |
| 906 unsigned num_bytes) { | |
| 907 // Define some color codes to use for memory logging. | |
| 908 const char* const clr_normal = (FLAG_log_colour) ? ("\033[m") | |
| 909 : (""); | |
| 910 const char* const clr_memory_value = (FLAG_log_colour) ? ("\033[1;32m") | |
| 911 : (""); | |
| 912 const char* const clr_memory_address = (FLAG_log_colour) ? ("\033[32m") | |
| 913 : (""); | |
| 914 | |
| 915 // The template is "# value -> address". The template is not directly used | |
| 916 // in the printf since compilers tend to struggle with the parametrized | |
| 917 // width (%0*). | |
| 918 const char* format = "# %s0x%0*" PRIx64 "%s -> %s0x%016" PRIx64 "%s\n"; | |
| 919 fprintf(stream_, | |
| 920 format, | |
| 921 clr_memory_value, | |
| 922 num_bytes * 2, // The width in hexa characters. | |
| 923 value, | |
| 924 clr_normal, | |
| 925 clr_memory_address, | |
| 926 address, | |
| 927 clr_normal); | |
| 928 } | |
| 929 | |
| 930 | |
| 931 // Visitors--------------------------------------------------------------------- | |
| 932 | |
| 933 void Simulator::VisitUnimplemented(Instruction* instr) { | |
| 934 fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n", | |
| 935 reinterpret_cast<void*>(instr), instr->InstructionBits()); | |
| 936 UNIMPLEMENTED(); | |
| 937 } | |
| 938 | |
| 939 | |
| 940 void Simulator::VisitUnallocated(Instruction* instr) { | |
| 941 fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n", | |
| 942 reinterpret_cast<void*>(instr), instr->InstructionBits()); | |
| 943 UNIMPLEMENTED(); | |
| 944 } | |
| 945 | |
| 946 | |
| 947 void Simulator::VisitPCRelAddressing(Instruction* instr) { | |
| 948 switch (instr->Mask(PCRelAddressingMask)) { | |
| 949 case ADR: | |
| 950 set_reg(instr->Rd(), instr->ImmPCOffsetTarget()); | |
| 951 break; | |
| 952 case ADRP: // Not implemented in the assembler. | |
| 953 UNIMPLEMENTED(); | |
| 954 break; | |
| 955 default: | |
| 956 UNREACHABLE(); | |
| 957 break; | |
| 958 } | |
| 959 } | |
| 960 | |
| 961 | |
| 962 void Simulator::VisitUnconditionalBranch(Instruction* instr) { | |
| 963 switch (instr->Mask(UnconditionalBranchMask)) { | |
| 964 case BL: | |
| 965 set_lr(instr->NextInstruction()); | |
| 966 // Fall through. | |
| 967 case B: | |
| 968 set_pc(instr->ImmPCOffsetTarget()); | |
| 969 break; | |
| 970 default: | |
| 971 UNREACHABLE(); | |
| 972 } | |
| 973 } | |
| 974 | |
| 975 | |
| 976 void Simulator::VisitConditionalBranch(Instruction* instr) { | |
| 977 ASSERT(instr->Mask(ConditionalBranchMask) == B_cond); | |
| 978 if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) { | |
| 979 set_pc(instr->ImmPCOffsetTarget()); | |
| 980 } | |
| 981 } | |
| 982 | |
| 983 | |
| 984 void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) { | |
| 985 Instruction* target = reg<Instruction*>(instr->Rn()); | |
| 986 switch (instr->Mask(UnconditionalBranchToRegisterMask)) { | |
| 987 case BLR: { | |
| 988 set_lr(instr->NextInstruction()); | |
| 989 if (instr->Rn() == 31) { | |
| 990 // BLR XZR is used as a guard for the constant pool. We should never hit | |
| 991 // this, but if we do trap to allow debugging. | |
| 992 Debug(); | |
| 993 } | |
| 994 // Fall through. | |
| 995 } | |
| 996 case BR: | |
| 997 case RET: set_pc(target); break; | |
| 998 default: UNIMPLEMENTED(); | |
| 999 } | |
| 1000 } | |
| 1001 | |
| 1002 | |
| 1003 void Simulator::VisitTestBranch(Instruction* instr) { | |
| 1004 unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) | | |
| 1005 instr->ImmTestBranchBit40(); | |
| 1006 bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0); | |
| 1007 switch (instr->Mask(TestBranchMask)) { | |
| 1008 case TBZ: break; | |
| 1009 case TBNZ: take_branch = !take_branch; break; | |
| 1010 default: UNIMPLEMENTED(); | |
| 1011 } | |
| 1012 if (take_branch) { | |
| 1013 set_pc(instr->ImmPCOffsetTarget()); | |
| 1014 } | |
| 1015 } | |
| 1016 | |
| 1017 | |
| 1018 void Simulator::VisitCompareBranch(Instruction* instr) { | |
| 1019 unsigned rt = instr->Rt(); | |
| 1020 bool take_branch = false; | |
| 1021 switch (instr->Mask(CompareBranchMask)) { | |
| 1022 case CBZ_w: take_branch = (wreg(rt) == 0); break; | |
| 1023 case CBZ_x: take_branch = (xreg(rt) == 0); break; | |
| 1024 case CBNZ_w: take_branch = (wreg(rt) != 0); break; | |
| 1025 case CBNZ_x: take_branch = (xreg(rt) != 0); break; | |
| 1026 default: UNIMPLEMENTED(); | |
| 1027 } | |
| 1028 if (take_branch) { | |
| 1029 set_pc(instr->ImmPCOffsetTarget()); | |
| 1030 } | |
| 1031 } | |
| 1032 | |
| 1033 | |
| 1034 void Simulator::AddSubHelper(Instruction* instr, int64_t op2) { | |
| 1035 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1036 bool set_flags = instr->FlagsUpdate(); | |
| 1037 int64_t new_val = 0; | |
| 1038 Instr operation = instr->Mask(AddSubOpMask); | |
| 1039 | |
| 1040 switch (operation) { | |
| 1041 case ADD: | |
| 1042 case ADDS: { | |
| 1043 new_val = AddWithCarry(reg_size, | |
| 1044 set_flags, | |
| 1045 reg(reg_size, instr->Rn(), instr->RnMode()), | |
| 1046 op2); | |
| 1047 break; | |
| 1048 } | |
| 1049 case SUB: | |
| 1050 case SUBS: { | |
| 1051 new_val = AddWithCarry(reg_size, | |
| 1052 set_flags, | |
| 1053 reg(reg_size, instr->Rn(), instr->RnMode()), | |
| 1054 ~op2, | |
| 1055 1); | |
| 1056 break; | |
| 1057 } | |
| 1058 default: UNREACHABLE(); | |
| 1059 } | |
| 1060 | |
| 1061 set_reg(reg_size, instr->Rd(), new_val, instr->RdMode()); | |
| 1062 } | |
| 1063 | |
| 1064 | |
| 1065 void Simulator::VisitAddSubShifted(Instruction* instr) { | |
| 1066 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1067 int64_t op2 = ShiftOperand(reg_size, | |
| 1068 reg(reg_size, instr->Rm()), | |
| 1069 static_cast<Shift>(instr->ShiftDP()), | |
| 1070 instr->ImmDPShift()); | |
| 1071 AddSubHelper(instr, op2); | |
| 1072 } | |
| 1073 | |
| 1074 | |
| 1075 void Simulator::VisitAddSubImmediate(Instruction* instr) { | |
| 1076 int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); | |
| 1077 AddSubHelper(instr, op2); | |
| 1078 } | |
| 1079 | |
| 1080 | |
| 1081 void Simulator::VisitAddSubExtended(Instruction* instr) { | |
| 1082 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1083 int64_t op2 = ExtendValue(reg_size, | |
| 1084 reg(reg_size, instr->Rm()), | |
| 1085 static_cast<Extend>(instr->ExtendMode()), | |
| 1086 instr->ImmExtendShift()); | |
| 1087 AddSubHelper(instr, op2); | |
| 1088 } | |
| 1089 | |
| 1090 | |
| 1091 void Simulator::VisitAddSubWithCarry(Instruction* instr) { | |
| 1092 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1093 int64_t op2 = reg(reg_size, instr->Rm()); | |
| 1094 int64_t new_val; | |
| 1095 | |
| 1096 if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { | |
| 1097 op2 = ~op2; | |
| 1098 } | |
| 1099 | |
| 1100 new_val = AddWithCarry(reg_size, | |
| 1101 instr->FlagsUpdate(), | |
| 1102 reg(reg_size, instr->Rn()), | |
| 1103 op2, | |
| 1104 C()); | |
| 1105 | |
| 1106 set_reg(reg_size, instr->Rd(), new_val); | |
| 1107 } | |
| 1108 | |
| 1109 | |
| 1110 void Simulator::VisitLogicalShifted(Instruction* instr) { | |
| 1111 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1112 Shift shift_type = static_cast<Shift>(instr->ShiftDP()); | |
| 1113 unsigned shift_amount = instr->ImmDPShift(); | |
| 1114 int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type, | |
| 1115 shift_amount); | |
| 1116 if (instr->Mask(NOT) == NOT) { | |
| 1117 op2 = ~op2; | |
| 1118 } | |
| 1119 LogicalHelper(instr, op2); | |
| 1120 } | |
| 1121 | |
| 1122 | |
| 1123 void Simulator::VisitLogicalImmediate(Instruction* instr) { | |
| 1124 LogicalHelper(instr, instr->ImmLogical()); | |
| 1125 } | |
| 1126 | |
| 1127 | |
| 1128 void Simulator::LogicalHelper(Instruction* instr, int64_t op2) { | |
| 1129 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1130 int64_t op1 = reg(reg_size, instr->Rn()); | |
| 1131 int64_t result = 0; | |
| 1132 bool update_flags = false; | |
| 1133 | |
| 1134 // Switch on the logical operation, stripping out the NOT bit, as it has a | |
| 1135 // different meaning for logical immediate instructions. | |
| 1136 switch (instr->Mask(LogicalOpMask & ~NOT)) { | |
| 1137 case ANDS: update_flags = true; // Fall through. | |
| 1138 case AND: result = op1 & op2; break; | |
| 1139 case ORR: result = op1 | op2; break; | |
| 1140 case EOR: result = op1 ^ op2; break; | |
| 1141 default: | |
| 1142 UNIMPLEMENTED(); | |
| 1143 } | |
| 1144 | |
| 1145 if (update_flags) { | |
| 1146 nzcv().SetN(CalcNFlag(result, reg_size)); | |
| 1147 nzcv().SetZ(CalcZFlag(result)); | |
| 1148 nzcv().SetC(0); | |
| 1149 nzcv().SetV(0); | |
| 1150 } | |
| 1151 | |
| 1152 set_reg(reg_size, instr->Rd(), result, instr->RdMode()); | |
| 1153 } | |
| 1154 | |
| 1155 | |
| 1156 void Simulator::VisitConditionalCompareRegister(Instruction* instr) { | |
| 1157 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1158 ConditionalCompareHelper(instr, reg(reg_size, instr->Rm())); | |
| 1159 } | |
| 1160 | |
| 1161 | |
| 1162 void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { | |
| 1163 ConditionalCompareHelper(instr, instr->ImmCondCmp()); | |
| 1164 } | |
| 1165 | |
| 1166 | |
| 1167 void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) { | |
| 1168 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1169 int64_t op1 = reg(reg_size, instr->Rn()); | |
| 1170 | |
| 1171 if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { | |
| 1172 // If the condition passes, set the status flags to the result of comparing | |
| 1173 // the operands. | |
| 1174 if (instr->Mask(ConditionalCompareMask) == CCMP) { | |
| 1175 AddWithCarry(reg_size, true, op1, ~op2, 1); | |
| 1176 } else { | |
| 1177 ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); | |
| 1178 AddWithCarry(reg_size, true, op1, op2, 0); | |
| 1179 } | |
| 1180 } else { | |
| 1181 // If the condition fails, set the status flags to the nzcv immediate. | |
| 1182 nzcv().SetFlags(instr->Nzcv()); | |
| 1183 } | |
| 1184 } | |
| 1185 | |
| 1186 | |
| 1187 void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { | |
| 1188 int offset = instr->ImmLSUnsigned() << instr->SizeLS(); | |
| 1189 LoadStoreHelper(instr, offset, Offset); | |
| 1190 } | |
| 1191 | |
| 1192 | |
| 1193 void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) { | |
| 1194 LoadStoreHelper(instr, instr->ImmLS(), Offset); | |
| 1195 } | |
| 1196 | |
| 1197 | |
| 1198 void Simulator::VisitLoadStorePreIndex(Instruction* instr) { | |
| 1199 LoadStoreHelper(instr, instr->ImmLS(), PreIndex); | |
| 1200 } | |
| 1201 | |
| 1202 | |
| 1203 void Simulator::VisitLoadStorePostIndex(Instruction* instr) { | |
| 1204 LoadStoreHelper(instr, instr->ImmLS(), PostIndex); | |
| 1205 } | |
| 1206 | |
| 1207 | |
| 1208 void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { | |
| 1209 Extend ext = static_cast<Extend>(instr->ExtendMode()); | |
| 1210 ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); | |
| 1211 unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); | |
| 1212 | |
| 1213 int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext, | |
| 1214 shift_amount); | |
| 1215 LoadStoreHelper(instr, offset, Offset); | |
| 1216 } | |
| 1217 | |
| 1218 | |
| 1219 void Simulator::LoadStoreHelper(Instruction* instr, | |
| 1220 int64_t offset, | |
| 1221 AddrMode addrmode) { | |
| 1222 unsigned srcdst = instr->Rt(); | |
| 1223 unsigned addr_reg = instr->Rn(); | |
| 1224 uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); | |
| 1225 int num_bytes = 1 << instr->SizeLS(); | |
| 1226 uint8_t* stack = NULL; | |
| 1227 | |
| 1228 // Handle the writeback for stores before the store. On a CPU the writeback | |
| 1229 // and the store are atomic, but when running on the simulator it is possible | |
| 1230 // to be interrupted in between. The simulator is not thread safe and V8 does | |
| 1231 // not require it to be to run JavaScript therefore the profiler may sample | |
| 1232 // the "simulated" CPU in the middle of load/store with writeback. The code | |
| 1233 // below ensures that push operations are safe even when interrupted: the | |
| 1234 // stack pointer will be decremented before adding an element to the stack. | |
| 1235 if (instr->IsStore()) { | |
| 1236 LoadStoreWriteBack(addr_reg, offset, addrmode); | |
| 1237 | |
| 1238 // For store the address post writeback is used to check access below the | |
| 1239 // stack. | |
| 1240 stack = reinterpret_cast<uint8_t*>(sp()); | |
| 1241 } | |
| 1242 | |
| 1243 LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask)); | |
| 1244 switch (op) { | |
| 1245 case LDRB_w: | |
| 1246 case LDRH_w: | |
| 1247 case LDR_w: | |
| 1248 case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break; | |
| 1249 case STRB_w: | |
| 1250 case STRH_w: | |
| 1251 case STR_w: | |
| 1252 case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break; | |
| 1253 case LDRSB_w: { | |
| 1254 set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB)); | |
| 1255 break; | |
| 1256 } | |
| 1257 case LDRSB_x: { | |
| 1258 set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB)); | |
| 1259 break; | |
| 1260 } | |
| 1261 case LDRSH_w: { | |
| 1262 set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH)); | |
| 1263 break; | |
| 1264 } | |
| 1265 case LDRSH_x: { | |
| 1266 set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH)); | |
| 1267 break; | |
| 1268 } | |
| 1269 case LDRSW_x: { | |
| 1270 set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); | |
| 1271 break; | |
| 1272 } | |
| 1273 case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break; | |
| 1274 case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break; | |
| 1275 case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break; | |
| 1276 case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break; | |
| 1277 default: UNIMPLEMENTED(); | |
| 1278 } | |
| 1279 | |
| 1280 // Handle the writeback for loads after the load to ensure safe pop | |
| 1281 // operation even when interrupted in the middle of it. The stack pointer | |
| 1282 // is only updated after the load so pop(fp) will never break the invariant | |
| 1283 // sp <= fp expected while walking the stack in the sampler. | |
| 1284 if (instr->IsLoad()) { | |
| 1285 // For loads the address pre writeback is used to check access below the | |
| 1286 // stack. | |
| 1287 stack = reinterpret_cast<uint8_t*>(sp()); | |
| 1288 | |
| 1289 LoadStoreWriteBack(addr_reg, offset, addrmode); | |
| 1290 } | |
| 1291 | |
| 1292 // Accesses below the stack pointer (but above the platform stack limit) are | |
| 1293 // not allowed in the ABI. | |
| 1294 CheckMemoryAccess(address, stack); | |
| 1295 } | |
| 1296 | |
| 1297 | |
| 1298 void Simulator::VisitLoadStorePairOffset(Instruction* instr) { | |
| 1299 LoadStorePairHelper(instr, Offset); | |
| 1300 } | |
| 1301 | |
| 1302 | |
| 1303 void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) { | |
| 1304 LoadStorePairHelper(instr, PreIndex); | |
| 1305 } | |
| 1306 | |
| 1307 | |
| 1308 void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) { | |
| 1309 LoadStorePairHelper(instr, PostIndex); | |
| 1310 } | |
| 1311 | |
| 1312 | |
| 1313 void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) { | |
| 1314 LoadStorePairHelper(instr, Offset); | |
| 1315 } | |
| 1316 | |
| 1317 | |
| 1318 void Simulator::LoadStorePairHelper(Instruction* instr, | |
| 1319 AddrMode addrmode) { | |
| 1320 unsigned rt = instr->Rt(); | |
| 1321 unsigned rt2 = instr->Rt2(); | |
| 1322 unsigned addr_reg = instr->Rn(); | |
| 1323 int offset = instr->ImmLSPair() << instr->SizeLSPair(); | |
| 1324 uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); | |
| 1325 uint8_t* stack = NULL; | |
| 1326 | |
| 1327 // Handle the writeback for stores before the store. On a CPU the writeback | |
| 1328 // and the store are atomic, but when running on the simulator it is possible | |
| 1329 // to be interrupted in between. The simulator is not thread safe and V8 does | |
| 1330 // not require it to be to run JavaScript therefore the profiler may sample | |
| 1331 // the "simulated" CPU in the middle of load/store with writeback. The code | |
| 1332 // below ensures that push operations are safe even when interrupted: the | |
| 1333 // stack pointer will be decremented before adding an element to the stack. | |
| 1334 if (instr->IsStore()) { | |
| 1335 LoadStoreWriteBack(addr_reg, offset, addrmode); | |
| 1336 | |
| 1337 // For store the address post writeback is used to check access below the | |
| 1338 // stack. | |
| 1339 stack = reinterpret_cast<uint8_t*>(sp()); | |
| 1340 } | |
| 1341 | |
| 1342 LoadStorePairOp op = | |
| 1343 static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask)); | |
| 1344 | |
| 1345 // 'rt' and 'rt2' can only be aliased for stores. | |
| 1346 ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2)); | |
| 1347 | |
| 1348 switch (op) { | |
| 1349 case LDP_w: { | |
| 1350 set_wreg(rt, MemoryRead32(address)); | |
| 1351 set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes)); | |
| 1352 break; | |
| 1353 } | |
| 1354 case LDP_s: { | |
| 1355 set_sreg(rt, MemoryReadFP32(address)); | |
| 1356 set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes)); | |
| 1357 break; | |
| 1358 } | |
| 1359 case LDP_x: { | |
| 1360 set_xreg(rt, MemoryRead64(address)); | |
| 1361 set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes)); | |
| 1362 break; | |
| 1363 } | |
| 1364 case LDP_d: { | |
| 1365 set_dreg(rt, MemoryReadFP64(address)); | |
| 1366 set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes)); | |
| 1367 break; | |
| 1368 } | |
| 1369 case LDPSW_x: { | |
| 1370 set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); | |
| 1371 set_xreg(rt2, ExtendValue(kXRegSize, | |
| 1372 MemoryRead32(address + kWRegSizeInBytes), SXTW)); | |
| 1373 break; | |
| 1374 } | |
| 1375 case STP_w: { | |
| 1376 MemoryWrite32(address, wreg(rt)); | |
| 1377 MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2)); | |
| 1378 break; | |
| 1379 } | |
| 1380 case STP_s: { | |
| 1381 MemoryWriteFP32(address, sreg(rt)); | |
| 1382 MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2)); | |
| 1383 break; | |
| 1384 } | |
| 1385 case STP_x: { | |
| 1386 MemoryWrite64(address, xreg(rt)); | |
| 1387 MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2)); | |
| 1388 break; | |
| 1389 } | |
| 1390 case STP_d: { | |
| 1391 MemoryWriteFP64(address, dreg(rt)); | |
| 1392 MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2)); | |
| 1393 break; | |
| 1394 } | |
| 1395 default: UNREACHABLE(); | |
| 1396 } | |
| 1397 | |
| 1398 // Handle the writeback for loads after the load to ensure safe pop | |
| 1399 // operation even when interrupted in the middle of it. The stack pointer | |
| 1400 // is only updated after the load so pop(fp) will never break the invariant | |
| 1401 // sp <= fp expected while walking the stack in the sampler. | |
| 1402 if (instr->IsLoad()) { | |
| 1403 // For loads the address pre writeback is used to check access below the | |
| 1404 // stack. | |
| 1405 stack = reinterpret_cast<uint8_t*>(sp()); | |
| 1406 | |
| 1407 LoadStoreWriteBack(addr_reg, offset, addrmode); | |
| 1408 } | |
| 1409 | |
| 1410 // Accesses below the stack pointer (but above the platform stack limit) are | |
| 1411 // not allowed in the ABI. | |
| 1412 CheckMemoryAccess(address, stack); | |
| 1413 } | |
| 1414 | |
| 1415 | |
| 1416 void Simulator::VisitLoadLiteral(Instruction* instr) { | |
| 1417 uint8_t* address = instr->LiteralAddress(); | |
| 1418 unsigned rt = instr->Rt(); | |
| 1419 | |
| 1420 switch (instr->Mask(LoadLiteralMask)) { | |
| 1421 case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break; | |
| 1422 case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break; | |
| 1423 case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break; | |
| 1424 case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break; | |
| 1425 default: UNREACHABLE(); | |
| 1426 } | |
| 1427 } | |
| 1428 | |
| 1429 | |
| 1430 uint8_t* Simulator::LoadStoreAddress(unsigned addr_reg, | |
| 1431 int64_t offset, | |
| 1432 AddrMode addrmode) { | |
| 1433 const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask; | |
| 1434 int64_t address = xreg(addr_reg, Reg31IsStackPointer); | |
| 1435 if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) { | |
| 1436 // When the base register is SP the stack pointer is required to be | |
| 1437 // quadword aligned prior to the address calculation and write-backs. | |
| 1438 // Misalignment will cause a stack alignment fault. | |
| 1439 FATAL("ALIGNMENT EXCEPTION"); | |
| 1440 } | |
| 1441 | |
| 1442 if ((addrmode == Offset) || (addrmode == PreIndex)) { | |
| 1443 address += offset; | |
| 1444 } | |
| 1445 | |
| 1446 return reinterpret_cast<uint8_t*>(address); | |
| 1447 } | |
| 1448 | |
| 1449 | |
| 1450 void Simulator::LoadStoreWriteBack(unsigned addr_reg, | |
| 1451 int64_t offset, | |
| 1452 AddrMode addrmode) { | |
| 1453 if ((addrmode == PreIndex) || (addrmode == PostIndex)) { | |
| 1454 ASSERT(offset != 0); | |
| 1455 uint64_t address = xreg(addr_reg, Reg31IsStackPointer); | |
| 1456 set_reg(addr_reg, address + offset, Reg31IsStackPointer); | |
| 1457 } | |
| 1458 } | |
| 1459 | |
| 1460 | |
| 1461 void Simulator::CheckMemoryAccess(uint8_t* address, uint8_t* stack) { | |
| 1462 if ((address >= stack_limit_) && (address < stack)) { | |
| 1463 fprintf(stream_, "ACCESS BELOW STACK POINTER:\n"); | |
| 1464 fprintf(stream_, " sp is here: 0x%16p\n", stack); | |
| 1465 fprintf(stream_, " access was here: 0x%16p\n", address); | |
| 1466 fprintf(stream_, " stack limit is here: 0x%16p\n", stack_limit_); | |
| 1467 fprintf(stream_, "\n"); | |
| 1468 FATAL("ACCESS BELOW STACK POINTER"); | |
| 1469 } | |
| 1470 } | |
| 1471 | |
| 1472 | |
| 1473 uint64_t Simulator::MemoryRead(uint8_t* address, unsigned num_bytes) { | |
| 1474 ASSERT(address != NULL); | |
| 1475 ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); | |
| 1476 uint64_t read = 0; | |
| 1477 memcpy(&read, address, num_bytes); | |
| 1478 return read; | |
| 1479 } | |
| 1480 | |
| 1481 | |
| 1482 uint8_t Simulator::MemoryRead8(uint8_t* address) { | |
| 1483 return MemoryRead(address, sizeof(uint8_t)); | |
| 1484 } | |
| 1485 | |
| 1486 | |
| 1487 uint16_t Simulator::MemoryRead16(uint8_t* address) { | |
| 1488 return MemoryRead(address, sizeof(uint16_t)); | |
| 1489 } | |
| 1490 | |
| 1491 | |
| 1492 uint32_t Simulator::MemoryRead32(uint8_t* address) { | |
| 1493 return MemoryRead(address, sizeof(uint32_t)); | |
| 1494 } | |
| 1495 | |
| 1496 | |
| 1497 float Simulator::MemoryReadFP32(uint8_t* address) { | |
| 1498 return rawbits_to_float(MemoryRead32(address)); | |
| 1499 } | |
| 1500 | |
| 1501 | |
| 1502 uint64_t Simulator::MemoryRead64(uint8_t* address) { | |
| 1503 return MemoryRead(address, sizeof(uint64_t)); | |
| 1504 } | |
| 1505 | |
| 1506 | |
| 1507 double Simulator::MemoryReadFP64(uint8_t* address) { | |
| 1508 return rawbits_to_double(MemoryRead64(address)); | |
| 1509 } | |
| 1510 | |
| 1511 | |
| 1512 void Simulator::MemoryWrite(uint8_t* address, | |
| 1513 uint64_t value, | |
| 1514 unsigned num_bytes) { | |
| 1515 ASSERT(address != NULL); | |
| 1516 ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); | |
| 1517 | |
| 1518 LogWrite(address, value, num_bytes); | |
| 1519 memcpy(address, &value, num_bytes); | |
| 1520 } | |
| 1521 | |
| 1522 | |
| 1523 void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) { | |
| 1524 MemoryWrite(address, value, sizeof(uint32_t)); | |
| 1525 } | |
| 1526 | |
| 1527 | |
| 1528 void Simulator::MemoryWriteFP32(uint8_t* address, float value) { | |
| 1529 MemoryWrite32(address, float_to_rawbits(value)); | |
| 1530 } | |
| 1531 | |
| 1532 | |
| 1533 void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) { | |
| 1534 MemoryWrite(address, value, sizeof(uint64_t)); | |
| 1535 } | |
| 1536 | |
| 1537 | |
| 1538 void Simulator::MemoryWriteFP64(uint8_t* address, double value) { | |
| 1539 MemoryWrite64(address, double_to_rawbits(value)); | |
| 1540 } | |
| 1541 | |
| 1542 | |
| 1543 void Simulator::VisitMoveWideImmediate(Instruction* instr) { | |
| 1544 MoveWideImmediateOp mov_op = | |
| 1545 static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask)); | |
| 1546 int64_t new_xn_val = 0; | |
| 1547 | |
| 1548 bool is_64_bits = instr->SixtyFourBits() == 1; | |
| 1549 // Shift is limited for W operations. | |
| 1550 ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2)); | |
| 1551 | |
| 1552 // Get the shifted immediate. | |
| 1553 int64_t shift = instr->ShiftMoveWide() * 16; | |
| 1554 int64_t shifted_imm16 = instr->ImmMoveWide() << shift; | |
| 1555 | |
| 1556 // Compute the new value. | |
| 1557 switch (mov_op) { | |
| 1558 case MOVN_w: | |
| 1559 case MOVN_x: { | |
| 1560 new_xn_val = ~shifted_imm16; | |
| 1561 if (!is_64_bits) new_xn_val &= kWRegMask; | |
| 1562 break; | |
| 1563 } | |
| 1564 case MOVK_w: | |
| 1565 case MOVK_x: { | |
| 1566 unsigned reg_code = instr->Rd(); | |
| 1567 int64_t prev_xn_val = is_64_bits ? xreg(reg_code) | |
| 1568 : wreg(reg_code); | |
| 1569 new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16; | |
| 1570 break; | |
| 1571 } | |
| 1572 case MOVZ_w: | |
| 1573 case MOVZ_x: { | |
| 1574 new_xn_val = shifted_imm16; | |
| 1575 break; | |
| 1576 } | |
| 1577 default: | |
| 1578 UNREACHABLE(); | |
| 1579 } | |
| 1580 | |
| 1581 // Update the destination register. | |
| 1582 set_xreg(instr->Rd(), new_xn_val); | |
| 1583 } | |
| 1584 | |
| 1585 | |
| 1586 void Simulator::VisitConditionalSelect(Instruction* instr) { | |
| 1587 uint64_t new_val = xreg(instr->Rn()); | |
| 1588 | |
| 1589 if (ConditionFailed(static_cast<Condition>(instr->Condition()))) { | |
| 1590 new_val = xreg(instr->Rm()); | |
| 1591 switch (instr->Mask(ConditionalSelectMask)) { | |
| 1592 case CSEL_w: | |
| 1593 case CSEL_x: break; | |
| 1594 case CSINC_w: | |
| 1595 case CSINC_x: new_val++; break; | |
| 1596 case CSINV_w: | |
| 1597 case CSINV_x: new_val = ~new_val; break; | |
| 1598 case CSNEG_w: | |
| 1599 case CSNEG_x: new_val = -new_val; break; | |
| 1600 default: UNIMPLEMENTED(); | |
| 1601 } | |
| 1602 } | |
| 1603 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1604 set_reg(reg_size, instr->Rd(), new_val); | |
| 1605 } | |
| 1606 | |
| 1607 | |
| 1608 void Simulator::VisitDataProcessing1Source(Instruction* instr) { | |
| 1609 unsigned dst = instr->Rd(); | |
| 1610 unsigned src = instr->Rn(); | |
| 1611 | |
| 1612 switch (instr->Mask(DataProcessing1SourceMask)) { | |
| 1613 case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break; | |
| 1614 case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break; | |
| 1615 case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break; | |
| 1616 case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break; | |
| 1617 case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break; | |
| 1618 case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break; | |
| 1619 case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break; | |
| 1620 case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break; | |
| 1621 case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break; | |
| 1622 case CLS_w: { | |
| 1623 set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize)); | |
| 1624 break; | |
| 1625 } | |
| 1626 case CLS_x: { | |
| 1627 set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize)); | |
| 1628 break; | |
| 1629 } | |
| 1630 default: UNIMPLEMENTED(); | |
| 1631 } | |
| 1632 } | |
| 1633 | |
| 1634 | |
| 1635 uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) { | |
| 1636 ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize)); | |
| 1637 uint64_t result = 0; | |
| 1638 for (unsigned i = 0; i < num_bits; i++) { | |
| 1639 result = (result << 1) | (value & 1); | |
| 1640 value >>= 1; | |
| 1641 } | |
| 1642 return result; | |
| 1643 } | |
| 1644 | |
| 1645 | |
| 1646 uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) { | |
| 1647 // Split the 64-bit value into an 8-bit array, where b[0] is the least | |
| 1648 // significant byte, and b[7] is the most significant. | |
| 1649 uint8_t bytes[8]; | |
| 1650 uint64_t mask = 0xff00000000000000UL; | |
| 1651 for (int i = 7; i >= 0; i--) { | |
| 1652 bytes[i] = (value & mask) >> (i * 8); | |
| 1653 mask >>= 8; | |
| 1654 } | |
| 1655 | |
| 1656 // Permutation tables for REV instructions. | |
| 1657 // permute_table[Reverse16] is used by REV16_x, REV16_w | |
| 1658 // permute_table[Reverse32] is used by REV32_x, REV_w | |
| 1659 // permute_table[Reverse64] is used by REV_x | |
| 1660 ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2)); | |
| 1661 static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1}, | |
| 1662 {4, 5, 6, 7, 0, 1, 2, 3}, | |
| 1663 {0, 1, 2, 3, 4, 5, 6, 7} }; | |
| 1664 uint64_t result = 0; | |
| 1665 for (int i = 0; i < 8; i++) { | |
| 1666 result <<= 8; | |
| 1667 result |= bytes[permute_table[mode][i]]; | |
| 1668 } | |
| 1669 return result; | |
| 1670 } | |
| 1671 | |
| 1672 | |
| 1673 void Simulator::VisitDataProcessing2Source(Instruction* instr) { | |
| 1674 // TODO(mcapewel) move these to a higher level file, as they are global | |
| 1675 // assumptions. | |
| 1676 ASSERT((static_cast<int32_t>(-1) >> 1) == -1); | |
| 1677 ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF); | |
| 1678 | |
| 1679 Shift shift_op = NO_SHIFT; | |
| 1680 int64_t result = 0; | |
| 1681 switch (instr->Mask(DataProcessing2SourceMask)) { | |
| 1682 case SDIV_w: { | |
| 1683 int32_t rn = wreg(instr->Rn()); | |
| 1684 int32_t rm = wreg(instr->Rm()); | |
| 1685 if ((rn == kWMinInt) && (rm == -1)) { | |
| 1686 result = kWMinInt; | |
| 1687 } else if (rm == 0) { | |
| 1688 // Division by zero can be trapped, but not on A-class processors. | |
| 1689 result = 0; | |
| 1690 } else { | |
| 1691 result = rn / rm; | |
| 1692 } | |
| 1693 break; | |
| 1694 } | |
| 1695 case SDIV_x: { | |
| 1696 int64_t rn = xreg(instr->Rn()); | |
| 1697 int64_t rm = xreg(instr->Rm()); | |
| 1698 if ((rn == kXMinInt) && (rm == -1)) { | |
| 1699 result = kXMinInt; | |
| 1700 } else if (rm == 0) { | |
| 1701 // Division by zero can be trapped, but not on A-class processors. | |
| 1702 result = 0; | |
| 1703 } else { | |
| 1704 result = rn / rm; | |
| 1705 } | |
| 1706 break; | |
| 1707 } | |
| 1708 case UDIV_w: { | |
| 1709 uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn())); | |
| 1710 uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm())); | |
| 1711 if (rm == 0) { | |
| 1712 // Division by zero can be trapped, but not on A-class processors. | |
| 1713 result = 0; | |
| 1714 } else { | |
| 1715 result = rn / rm; | |
| 1716 } | |
| 1717 break; | |
| 1718 } | |
| 1719 case UDIV_x: { | |
| 1720 uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn())); | |
| 1721 uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm())); | |
| 1722 if (rm == 0) { | |
| 1723 // Division by zero can be trapped, but not on A-class processors. | |
| 1724 result = 0; | |
| 1725 } else { | |
| 1726 result = rn / rm; | |
| 1727 } | |
| 1728 break; | |
| 1729 } | |
| 1730 case LSLV_w: | |
| 1731 case LSLV_x: shift_op = LSL; break; | |
| 1732 case LSRV_w: | |
| 1733 case LSRV_x: shift_op = LSR; break; | |
| 1734 case ASRV_w: | |
| 1735 case ASRV_x: shift_op = ASR; break; | |
| 1736 case RORV_w: | |
| 1737 case RORV_x: shift_op = ROR; break; | |
| 1738 default: UNIMPLEMENTED(); | |
| 1739 } | |
| 1740 | |
| 1741 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1742 if (shift_op != NO_SHIFT) { | |
| 1743 // Shift distance encoded in the least-significant five/six bits of the | |
| 1744 // register. | |
| 1745 int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f; | |
| 1746 unsigned shift = wreg(instr->Rm()) & mask; | |
| 1747 result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op, | |
| 1748 shift); | |
| 1749 } | |
| 1750 set_reg(reg_size, instr->Rd(), result); | |
| 1751 } | |
| 1752 | |
| 1753 | |
| 1754 // The algorithm used is described in section 8.2 of | |
| 1755 // Hacker's Delight, by Henry S. Warren, Jr. | |
| 1756 // It assumes that a right shift on a signed integer is an arithmetic shift. | |
| 1757 static int64_t MultiplyHighSigned(int64_t u, int64_t v) { | |
| 1758 uint64_t u0, v0, w0; | |
| 1759 int64_t u1, v1, w1, w2, t; | |
| 1760 | |
| 1761 u0 = u & 0xffffffffL; | |
| 1762 u1 = u >> 32; | |
| 1763 v0 = v & 0xffffffffL; | |
| 1764 v1 = v >> 32; | |
| 1765 | |
| 1766 w0 = u0 * v0; | |
| 1767 t = u1 * v0 + (w0 >> 32); | |
| 1768 w1 = t & 0xffffffffL; | |
| 1769 w2 = t >> 32; | |
| 1770 w1 = u0 * v1 + w1; | |
| 1771 | |
| 1772 return u1 * v1 + w2 + (w1 >> 32); | |
| 1773 } | |
| 1774 | |
| 1775 | |
| 1776 void Simulator::VisitDataProcessing3Source(Instruction* instr) { | |
| 1777 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1778 | |
| 1779 int64_t result = 0; | |
| 1780 // Extract and sign- or zero-extend 32-bit arguments for widening operations. | |
| 1781 uint64_t rn_u32 = reg<uint32_t>(instr->Rn()); | |
| 1782 uint64_t rm_u32 = reg<uint32_t>(instr->Rm()); | |
| 1783 int64_t rn_s32 = reg<int32_t>(instr->Rn()); | |
| 1784 int64_t rm_s32 = reg<int32_t>(instr->Rm()); | |
| 1785 switch (instr->Mask(DataProcessing3SourceMask)) { | |
| 1786 case MADD_w: | |
| 1787 case MADD_x: | |
| 1788 result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); | |
| 1789 break; | |
| 1790 case MSUB_w: | |
| 1791 case MSUB_x: | |
| 1792 result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); | |
| 1793 break; | |
| 1794 case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; | |
| 1795 case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; | |
| 1796 case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; | |
| 1797 case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; | |
| 1798 case SMULH_x: | |
| 1799 ASSERT(instr->Ra() == kZeroRegCode); | |
| 1800 result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); | |
| 1801 break; | |
| 1802 default: UNIMPLEMENTED(); | |
| 1803 } | |
| 1804 set_reg(reg_size, instr->Rd(), result); | |
| 1805 } | |
| 1806 | |
| 1807 | |
| 1808 void Simulator::VisitBitfield(Instruction* instr) { | |
| 1809 unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; | |
| 1810 int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask; | |
| 1811 int64_t R = instr->ImmR(); | |
| 1812 int64_t S = instr->ImmS(); | |
| 1813 int64_t diff = S - R; | |
| 1814 int64_t mask; | |
| 1815 if (diff >= 0) { | |
| 1816 mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1 | |
| 1817 : reg_mask; | |
| 1818 } else { | |
| 1819 mask = ((1L << (S + 1)) - 1); | |
| 1820 mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); | |
| 1821 diff += reg_size; | |
| 1822 } | |
| 1823 | |
| 1824 // inzero indicates if the extracted bitfield is inserted into the | |
| 1825 // destination register value or in zero. | |
| 1826 // If extend is true, extend the sign of the extracted bitfield. | |
| 1827 bool inzero = false; | |
| 1828 bool extend = false; | |
| 1829 switch (instr->Mask(BitfieldMask)) { | |
| 1830 case BFM_x: | |
| 1831 case BFM_w: | |
| 1832 break; | |
| 1833 case SBFM_x: | |
| 1834 case SBFM_w: | |
| 1835 inzero = true; | |
| 1836 extend = true; | |
| 1837 break; | |
| 1838 case UBFM_x: | |
| 1839 case UBFM_w: | |
| 1840 inzero = true; | |
| 1841 break; | |
| 1842 default: | |
| 1843 UNIMPLEMENTED(); | |
| 1844 } | |
| 1845 | |
| 1846 int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd()); | |
| 1847 int64_t src = reg(reg_size, instr->Rn()); | |
| 1848 // Rotate source bitfield into place. | |
| 1849 int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R)); | |
| 1850 // Determine the sign extension. | |
| 1851 int64_t topbits = ((1L << (reg_size - diff - 1)) - 1) << (diff + 1); | |
| 1852 int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0; | |
| 1853 | |
| 1854 // Merge sign extension, dest/zero and bitfield. | |
| 1855 result = signbits | (result & mask) | (dst & ~mask); | |
| 1856 | |
| 1857 set_reg(reg_size, instr->Rd(), result); | |
| 1858 } | |
| 1859 | |
| 1860 | |
| 1861 void Simulator::VisitExtract(Instruction* instr) { | |
| 1862 unsigned lsb = instr->ImmS(); | |
| 1863 unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize | |
| 1864 : kWRegSize; | |
| 1865 set_reg(reg_size, | |
| 1866 instr->Rd(), | |
| 1867 (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) | | |
| 1868 (reg(reg_size, instr->Rn()) << (reg_size - lsb))); | |
| 1869 } | |
| 1870 | |
| 1871 | |
| 1872 void Simulator::VisitFPImmediate(Instruction* instr) { | |
| 1873 AssertSupportedFPCR(); | |
| 1874 | |
| 1875 unsigned dest = instr->Rd(); | |
| 1876 switch (instr->Mask(FPImmediateMask)) { | |
| 1877 case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; | |
| 1878 case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; | |
| 1879 default: UNREACHABLE(); | |
| 1880 } | |
| 1881 } | |
| 1882 | |
| 1883 | |
| 1884 void Simulator::VisitFPIntegerConvert(Instruction* instr) { | |
| 1885 AssertSupportedFPCR(); | |
| 1886 | |
| 1887 unsigned dst = instr->Rd(); | |
| 1888 unsigned src = instr->Rn(); | |
| 1889 | |
| 1890 FPRounding round = RMode(); | |
| 1891 | |
| 1892 switch (instr->Mask(FPIntegerConvertMask)) { | |
| 1893 case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break; | |
| 1894 case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break; | |
| 1895 case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break; | |
| 1896 case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break; | |
| 1897 case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break; | |
| 1898 case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break; | |
| 1899 case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break; | |
| 1900 case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break; | |
| 1901 case FCVTMS_ws: | |
| 1902 set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity)); | |
| 1903 break; | |
| 1904 case FCVTMS_xs: | |
| 1905 set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity)); | |
| 1906 break; | |
| 1907 case FCVTMS_wd: | |
| 1908 set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity)); | |
| 1909 break; | |
| 1910 case FCVTMS_xd: | |
| 1911 set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity)); | |
| 1912 break; | |
| 1913 case FCVTMU_ws: | |
| 1914 set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity)); | |
| 1915 break; | |
| 1916 case FCVTMU_xs: | |
| 1917 set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity)); | |
| 1918 break; | |
| 1919 case FCVTMU_wd: | |
| 1920 set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity)); | |
| 1921 break; | |
| 1922 case FCVTMU_xd: | |
| 1923 set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity)); | |
| 1924 break; | |
| 1925 case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break; | |
| 1926 case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break; | |
| 1927 case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break; | |
| 1928 case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break; | |
| 1929 case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break; | |
| 1930 case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break; | |
| 1931 case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break; | |
| 1932 case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break; | |
| 1933 case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break; | |
| 1934 case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break; | |
| 1935 case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break; | |
| 1936 case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break; | |
| 1937 case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break; | |
| 1938 case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break; | |
| 1939 case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break; | |
| 1940 case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break; | |
| 1941 case FMOV_ws: set_wreg(dst, sreg_bits(src)); break; | |
| 1942 case FMOV_xd: set_xreg(dst, dreg_bits(src)); break; | |
| 1943 case FMOV_sw: set_sreg_bits(dst, wreg(src)); break; | |
| 1944 case FMOV_dx: set_dreg_bits(dst, xreg(src)); break; | |
| 1945 | |
| 1946 // A 32-bit input can be handled in the same way as a 64-bit input, since | |
| 1947 // the sign- or zero-extension will not affect the conversion. | |
| 1948 case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break; | |
| 1949 case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break; | |
| 1950 case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break; | |
| 1951 case UCVTF_dw: { | |
| 1952 set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round)); | |
| 1953 break; | |
| 1954 } | |
| 1955 case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break; | |
| 1956 case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break; | |
| 1957 case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break; | |
| 1958 case UCVTF_sw: { | |
| 1959 set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round)); | |
| 1960 break; | |
| 1961 } | |
| 1962 | |
| 1963 default: UNREACHABLE(); | |
| 1964 } | |
| 1965 } | |
| 1966 | |
| 1967 | |
| 1968 void Simulator::VisitFPFixedPointConvert(Instruction* instr) { | |
| 1969 AssertSupportedFPCR(); | |
| 1970 | |
| 1971 unsigned dst = instr->Rd(); | |
| 1972 unsigned src = instr->Rn(); | |
| 1973 int fbits = 64 - instr->FPScale(); | |
| 1974 | |
| 1975 FPRounding round = RMode(); | |
| 1976 | |
| 1977 switch (instr->Mask(FPFixedPointConvertMask)) { | |
| 1978 // A 32-bit input can be handled in the same way as a 64-bit input, since | |
| 1979 // the sign- or zero-extension will not affect the conversion. | |
| 1980 case SCVTF_dx_fixed: | |
| 1981 set_dreg(dst, FixedToDouble(xreg(src), fbits, round)); | |
| 1982 break; | |
| 1983 case SCVTF_dw_fixed: | |
| 1984 set_dreg(dst, FixedToDouble(wreg(src), fbits, round)); | |
| 1985 break; | |
| 1986 case UCVTF_dx_fixed: | |
| 1987 set_dreg(dst, UFixedToDouble(xreg(src), fbits, round)); | |
| 1988 break; | |
| 1989 case UCVTF_dw_fixed: { | |
| 1990 set_dreg(dst, | |
| 1991 UFixedToDouble(reg<uint32_t>(src), fbits, round)); | |
| 1992 break; | |
| 1993 } | |
| 1994 case SCVTF_sx_fixed: | |
| 1995 set_sreg(dst, FixedToFloat(xreg(src), fbits, round)); | |
| 1996 break; | |
| 1997 case SCVTF_sw_fixed: | |
| 1998 set_sreg(dst, FixedToFloat(wreg(src), fbits, round)); | |
| 1999 break; | |
| 2000 case UCVTF_sx_fixed: | |
| 2001 set_sreg(dst, UFixedToFloat(xreg(src), fbits, round)); | |
| 2002 break; | |
| 2003 case UCVTF_sw_fixed: { | |
| 2004 set_sreg(dst, | |
| 2005 UFixedToFloat(reg<uint32_t>(src), fbits, round)); | |
| 2006 break; | |
| 2007 } | |
| 2008 default: UNREACHABLE(); | |
| 2009 } | |
| 2010 } | |
| 2011 | |
| 2012 | |
| 2013 int32_t Simulator::FPToInt32(double value, FPRounding rmode) { | |
| 2014 value = FPRoundInt(value, rmode); | |
| 2015 if (value >= kWMaxInt) { | |
| 2016 return kWMaxInt; | |
| 2017 } else if (value < kWMinInt) { | |
| 2018 return kWMinInt; | |
| 2019 } | |
| 2020 return std::isnan(value) ? 0 : static_cast<int32_t>(value); | |
| 2021 } | |
| 2022 | |
| 2023 | |
| 2024 int64_t Simulator::FPToInt64(double value, FPRounding rmode) { | |
| 2025 value = FPRoundInt(value, rmode); | |
| 2026 if (value >= kXMaxInt) { | |
| 2027 return kXMaxInt; | |
| 2028 } else if (value < kXMinInt) { | |
| 2029 return kXMinInt; | |
| 2030 } | |
| 2031 return std::isnan(value) ? 0 : static_cast<int64_t>(value); | |
| 2032 } | |
| 2033 | |
| 2034 | |
| 2035 uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) { | |
| 2036 value = FPRoundInt(value, rmode); | |
| 2037 if (value >= kWMaxUInt) { | |
| 2038 return kWMaxUInt; | |
| 2039 } else if (value < 0.0) { | |
| 2040 return 0; | |
| 2041 } | |
| 2042 return std::isnan(value) ? 0 : static_cast<uint32_t>(value); | |
| 2043 } | |
| 2044 | |
| 2045 | |
| 2046 uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) { | |
| 2047 value = FPRoundInt(value, rmode); | |
| 2048 if (value >= kXMaxUInt) { | |
| 2049 return kXMaxUInt; | |
| 2050 } else if (value < 0.0) { | |
| 2051 return 0; | |
| 2052 } | |
| 2053 return std::isnan(value) ? 0 : static_cast<uint64_t>(value); | |
| 2054 } | |
| 2055 | |
| 2056 | |
| 2057 void Simulator::VisitFPCompare(Instruction* instr) { | |
| 2058 AssertSupportedFPCR(); | |
| 2059 | |
| 2060 unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize; | |
| 2061 double fn_val = fpreg(reg_size, instr->Rn()); | |
| 2062 | |
| 2063 switch (instr->Mask(FPCompareMask)) { | |
| 2064 case FCMP_s: | |
| 2065 case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break; | |
| 2066 case FCMP_s_zero: | |
| 2067 case FCMP_d_zero: FPCompare(fn_val, 0.0); break; | |
| 2068 default: UNIMPLEMENTED(); | |
| 2069 } | |
| 2070 } | |
| 2071 | |
| 2072 | |
| 2073 void Simulator::VisitFPConditionalCompare(Instruction* instr) { | |
| 2074 AssertSupportedFPCR(); | |
| 2075 | |
| 2076 switch (instr->Mask(FPConditionalCompareMask)) { | |
| 2077 case FCCMP_s: | |
| 2078 case FCCMP_d: { | |
| 2079 if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { | |
| 2080 // If the condition passes, set the status flags to the result of | |
| 2081 // comparing the operands. | |
| 2082 unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize; | |
| 2083 FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm())); | |
| 2084 } else { | |
| 2085 // If the condition fails, set the status flags to the nzcv immediate. | |
| 2086 nzcv().SetFlags(instr->Nzcv()); | |
| 2087 } | |
| 2088 break; | |
| 2089 } | |
| 2090 default: UNIMPLEMENTED(); | |
| 2091 } | |
| 2092 } | |
| 2093 | |
| 2094 | |
| 2095 void Simulator::VisitFPConditionalSelect(Instruction* instr) { | |
| 2096 AssertSupportedFPCR(); | |
| 2097 | |
| 2098 Instr selected; | |
| 2099 if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { | |
| 2100 selected = instr->Rn(); | |
| 2101 } else { | |
| 2102 selected = instr->Rm(); | |
| 2103 } | |
| 2104 | |
| 2105 switch (instr->Mask(FPConditionalSelectMask)) { | |
| 2106 case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break; | |
| 2107 case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break; | |
| 2108 default: UNIMPLEMENTED(); | |
| 2109 } | |
| 2110 } | |
| 2111 | |
| 2112 | |
| 2113 void Simulator::VisitFPDataProcessing1Source(Instruction* instr) { | |
| 2114 AssertSupportedFPCR(); | |
| 2115 | |
| 2116 unsigned fd = instr->Rd(); | |
| 2117 unsigned fn = instr->Rn(); | |
| 2118 | |
| 2119 switch (instr->Mask(FPDataProcessing1SourceMask)) { | |
| 2120 case FMOV_s: set_sreg(fd, sreg(fn)); break; | |
| 2121 case FMOV_d: set_dreg(fd, dreg(fn)); break; | |
| 2122 case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break; | |
| 2123 case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break; | |
| 2124 case FNEG_s: set_sreg(fd, -sreg(fn)); break; | |
| 2125 case FNEG_d: set_dreg(fd, -dreg(fn)); break; | |
| 2126 case FSQRT_s: set_sreg(fd, std::sqrt(sreg(fn))); break; | |
| 2127 case FSQRT_d: set_dreg(fd, std::sqrt(dreg(fn))); break; | |
| 2128 case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break; | |
| 2129 case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break; | |
| 2130 case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break; | |
| 2131 case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break; | |
| 2132 case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break; | |
| 2133 case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break; | |
| 2134 case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break; | |
| 2135 case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break; | |
| 2136 default: UNIMPLEMENTED(); | |
| 2137 } | |
| 2138 } | |
| 2139 | |
| 2140 | |
| 2141 // Assemble the specified IEEE-754 components into the target type and apply | |
| 2142 // appropriate rounding. | |
| 2143 // sign: 0 = positive, 1 = negative | |
| 2144 // exponent: Unbiased IEEE-754 exponent. | |
| 2145 // mantissa: The mantissa of the input. The top bit (which is not encoded for | |
| 2146 // normal IEEE-754 values) must not be omitted. This bit has the | |
| 2147 // value 'pow(2, exponent)'. | |
| 2148 // | |
| 2149 // The input value is assumed to be a normalized value. That is, the input may | |
| 2150 // not be infinity or NaN. If the source value is subnormal, it must be | |
| 2151 // normalized before calling this function such that the highest set bit in the | |
| 2152 // mantissa has the value 'pow(2, exponent)'. | |
| 2153 // | |
| 2154 // Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than | |
| 2155 // calling a templated FPRound. | |
| 2156 template <class T, int ebits, int mbits> | |
| 2157 static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa, | |
| 2158 FPRounding round_mode) { | |
| 2159 ASSERT((sign == 0) || (sign == 1)); | |
| 2160 | |
| 2161 // Only the FPTieEven rounding mode is implemented. | |
| 2162 ASSERT(round_mode == FPTieEven); | |
| 2163 USE(round_mode); | |
| 2164 | |
| 2165 // Rounding can promote subnormals to normals, and normals to infinities. For | |
| 2166 // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be | |
| 2167 // encodable as a float, but rounding based on the low-order mantissa bits | |
| 2168 // could make it overflow. With ties-to-even rounding, this value would become | |
| 2169 // an infinity. | |
| 2170 | |
| 2171 // ---- Rounding Method ---- | |
| 2172 // | |
| 2173 // The exponent is irrelevant in the rounding operation, so we treat the | |
| 2174 // lowest-order bit that will fit into the result ('onebit') as having | |
| 2175 // the value '1'. Similarly, the highest-order bit that won't fit into | |
| 2176 // the result ('halfbit') has the value '0.5'. The 'point' sits between | |
| 2177 // 'onebit' and 'halfbit': | |
| 2178 // | |
| 2179 // These bits fit into the result. | |
| 2180 // |---------------------| | |
| 2181 // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
| 2182 // || | |
| 2183 // / | | |
| 2184 // / halfbit | |
| 2185 // onebit | |
| 2186 // | |
| 2187 // For subnormal outputs, the range of representable bits is smaller and | |
| 2188 // the position of onebit and halfbit depends on the exponent of the | |
| 2189 // input, but the method is otherwise similar. | |
| 2190 // | |
| 2191 // onebit(frac) | |
| 2192 // | | |
| 2193 // | halfbit(frac) halfbit(adjusted) | |
| 2194 // | / / | |
| 2195 // | | | | |
| 2196 // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00 | |
| 2197 // 0b00.0... -> 0b00.0... -> 0b00 | |
| 2198 // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00 | |
| 2199 // 0b00.1... -> 0b00.1... -> 0b01 | |
| 2200 // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01 | |
| 2201 // 0b01.0... -> 0b01.0... -> 0b01 | |
| 2202 // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10 | |
| 2203 // 0b01.1... -> 0b01.1... -> 0b10 | |
| 2204 // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10 | |
| 2205 // 0b10.0... -> 0b10.0... -> 0b10 | |
| 2206 // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10 | |
| 2207 // 0b10.1... -> 0b10.1... -> 0b11 | |
| 2208 // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11 | |
| 2209 // ... / | / | | |
| 2210 // / | / | | |
| 2211 // / | | |
| 2212 // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / | | |
| 2213 // | |
| 2214 // mantissa = (mantissa >> shift) + halfbit(adjusted); | |
| 2215 | |
| 2216 static const int mantissa_offset = 0; | |
| 2217 static const int exponent_offset = mantissa_offset + mbits; | |
| 2218 static const int sign_offset = exponent_offset + ebits; | |
| 2219 STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1)); | |
| 2220 | |
| 2221 // Bail out early for zero inputs. | |
| 2222 if (mantissa == 0) { | |
| 2223 return sign << sign_offset; | |
| 2224 } | |
| 2225 | |
| 2226 // If all bits in the exponent are set, the value is infinite or NaN. | |
| 2227 // This is true for all binary IEEE-754 formats. | |
| 2228 static const int infinite_exponent = (1 << ebits) - 1; | |
| 2229 static const int max_normal_exponent = infinite_exponent - 1; | |
| 2230 | |
| 2231 // Apply the exponent bias to encode it for the result. Doing this early makes | |
| 2232 // it easy to detect values that will be infinite or subnormal. | |
| 2233 exponent += max_normal_exponent >> 1; | |
| 2234 | |
| 2235 if (exponent > max_normal_exponent) { | |
| 2236 // Overflow: The input is too large for the result type to represent. The | |
| 2237 // FPTieEven rounding mode handles overflows using infinities. | |
| 2238 exponent = infinite_exponent; | |
| 2239 mantissa = 0; | |
| 2240 return (sign << sign_offset) | | |
| 2241 (exponent << exponent_offset) | | |
| 2242 (mantissa << mantissa_offset); | |
| 2243 } | |
| 2244 | |
| 2245 // Calculate the shift required to move the top mantissa bit to the proper | |
| 2246 // place in the destination type. | |
| 2247 const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64); | |
| 2248 int shift = highest_significant_bit - mbits; | |
| 2249 | |
| 2250 if (exponent <= 0) { | |
| 2251 // The output will be subnormal (before rounding). | |
| 2252 | |
| 2253 // For subnormal outputs, the shift must be adjusted by the exponent. The +1 | |
| 2254 // is necessary because the exponent of a subnormal value (encoded as 0) is | |
| 2255 // the same as the exponent of the smallest normal value (encoded as 1). | |
| 2256 shift += -exponent + 1; | |
| 2257 | |
| 2258 // Handle inputs that would produce a zero output. | |
| 2259 // | |
| 2260 // Shifts higher than highest_significant_bit+1 will always produce a zero | |
| 2261 // result. A shift of exactly highest_significant_bit+1 might produce a | |
| 2262 // non-zero result after rounding. | |
| 2263 if (shift > (highest_significant_bit + 1)) { | |
| 2264 // The result will always be +/-0.0. | |
| 2265 return sign << sign_offset; | |
| 2266 } | |
| 2267 | |
| 2268 // Properly encode the exponent for a subnormal output. | |
| 2269 exponent = 0; | |
| 2270 } else { | |
| 2271 // Clear the topmost mantissa bit, since this is not encoded in IEEE-754 | |
| 2272 // normal values. | |
| 2273 mantissa &= ~(1UL << highest_significant_bit); | |
| 2274 } | |
| 2275 | |
| 2276 if (shift > 0) { | |
| 2277 // We have to shift the mantissa to the right. Some precision is lost, so we | |
| 2278 // need to apply rounding. | |
| 2279 uint64_t onebit_mantissa = (mantissa >> (shift)) & 1; | |
| 2280 uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1; | |
| 2281 uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa); | |
| 2282 T halfbit_adjusted = (adjusted >> (shift-1)) & 1; | |
| 2283 | |
| 2284 T result = (sign << sign_offset) | | |
| 2285 (exponent << exponent_offset) | | |
| 2286 ((mantissa >> shift) << mantissa_offset); | |
| 2287 | |
| 2288 // A very large mantissa can overflow during rounding. If this happens, the | |
| 2289 // exponent should be incremented and the mantissa set to 1.0 (encoded as | |
| 2290 // 0). Applying halfbit_adjusted after assembling the float has the nice | |
| 2291 // side-effect that this case is handled for free. | |
| 2292 // | |
| 2293 // This also handles cases where a very large finite value overflows to | |
| 2294 // infinity, or where a very large subnormal value overflows to become | |
| 2295 // normal. | |
| 2296 return result + halfbit_adjusted; | |
| 2297 } else { | |
| 2298 // We have to shift the mantissa to the left (or not at all). The input | |
| 2299 // mantissa is exactly representable in the output mantissa, so apply no | |
| 2300 // rounding correction. | |
| 2301 return (sign << sign_offset) | | |
| 2302 (exponent << exponent_offset) | | |
| 2303 ((mantissa << -shift) << mantissa_offset); | |
| 2304 } | |
| 2305 } | |
| 2306 | |
| 2307 | |
| 2308 // See FPRound for a description of this function. | |
| 2309 static inline double FPRoundToDouble(int64_t sign, int64_t exponent, | |
| 2310 uint64_t mantissa, FPRounding round_mode) { | |
| 2311 int64_t bits = | |
| 2312 FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign, | |
| 2313 exponent, | |
| 2314 mantissa, | |
| 2315 round_mode); | |
| 2316 return rawbits_to_double(bits); | |
| 2317 } | |
| 2318 | |
| 2319 | |
| 2320 // See FPRound for a description of this function. | |
| 2321 static inline float FPRoundToFloat(int64_t sign, int64_t exponent, | |
| 2322 uint64_t mantissa, FPRounding round_mode) { | |
| 2323 int32_t bits = | |
| 2324 FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign, | |
| 2325 exponent, | |
| 2326 mantissa, | |
| 2327 round_mode); | |
| 2328 return rawbits_to_float(bits); | |
| 2329 } | |
| 2330 | |
| 2331 | |
| 2332 double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) { | |
| 2333 if (src >= 0) { | |
| 2334 return UFixedToDouble(src, fbits, round); | |
| 2335 } else { | |
| 2336 // This works for all negative values, including INT64_MIN. | |
| 2337 return -UFixedToDouble(-src, fbits, round); | |
| 2338 } | |
| 2339 } | |
| 2340 | |
| 2341 | |
| 2342 double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) { | |
| 2343 // An input of 0 is a special case because the result is effectively | |
| 2344 // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. | |
| 2345 if (src == 0) { | |
| 2346 return 0.0; | |
| 2347 } | |
| 2348 | |
| 2349 // Calculate the exponent. The highest significant bit will have the value | |
| 2350 // 2^exponent. | |
| 2351 const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); | |
| 2352 const int64_t exponent = highest_significant_bit - fbits; | |
| 2353 | |
| 2354 return FPRoundToDouble(0, exponent, src, round); | |
| 2355 } | |
| 2356 | |
| 2357 | |
| 2358 float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) { | |
| 2359 if (src >= 0) { | |
| 2360 return UFixedToFloat(src, fbits, round); | |
| 2361 } else { | |
| 2362 // This works for all negative values, including INT64_MIN. | |
| 2363 return -UFixedToFloat(-src, fbits, round); | |
| 2364 } | |
| 2365 } | |
| 2366 | |
| 2367 | |
| 2368 float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) { | |
| 2369 // An input of 0 is a special case because the result is effectively | |
| 2370 // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. | |
| 2371 if (src == 0) { | |
| 2372 return 0.0f; | |
| 2373 } | |
| 2374 | |
| 2375 // Calculate the exponent. The highest significant bit will have the value | |
| 2376 // 2^exponent. | |
| 2377 const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); | |
| 2378 const int32_t exponent = highest_significant_bit - fbits; | |
| 2379 | |
| 2380 return FPRoundToFloat(0, exponent, src, round); | |
| 2381 } | |
| 2382 | |
| 2383 | |
| 2384 double Simulator::FPRoundInt(double value, FPRounding round_mode) { | |
| 2385 if ((value == 0.0) || (value == kFP64PositiveInfinity) || | |
| 2386 (value == kFP64NegativeInfinity) || std::isnan(value)) { | |
| 2387 return value; | |
| 2388 } | |
| 2389 | |
| 2390 double int_result = floor(value); | |
| 2391 double error = value - int_result; | |
| 2392 switch (round_mode) { | |
| 2393 case FPTieAway: { | |
| 2394 // If the error is greater than 0.5, or is equal to 0.5 and the integer | |
| 2395 // result is positive, round up. | |
| 2396 if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) { | |
| 2397 int_result++; | |
| 2398 } | |
| 2399 break; | |
| 2400 } | |
| 2401 case FPTieEven: { | |
| 2402 // If the error is greater than 0.5, or is equal to 0.5 and the integer | |
| 2403 // result is odd, round up. | |
| 2404 if ((error > 0.5) || | |
| 2405 ((error == 0.5) && (fmod(int_result, 2) != 0))) { | |
| 2406 int_result++; | |
| 2407 } | |
| 2408 break; | |
| 2409 } | |
| 2410 case FPZero: { | |
| 2411 // If value > 0 then we take floor(value) | |
| 2412 // otherwise, ceil(value) | |
| 2413 if (value < 0) { | |
| 2414 int_result = ceil(value); | |
| 2415 } | |
| 2416 break; | |
| 2417 } | |
| 2418 case FPNegativeInfinity: { | |
| 2419 // We always use floor(value). | |
| 2420 break; | |
| 2421 } | |
| 2422 default: UNIMPLEMENTED(); | |
| 2423 } | |
| 2424 return int_result; | |
| 2425 } | |
| 2426 | |
| 2427 | |
| 2428 double Simulator::FPToDouble(float value) { | |
| 2429 switch (std::fpclassify(value)) { | |
| 2430 case FP_NAN: { | |
| 2431 // Convert NaNs as the processor would, assuming that FPCR.DN (default | |
| 2432 // NaN) is not set: | |
| 2433 // - The sign is propagated. | |
| 2434 // - The payload (mantissa) is transferred entirely, except that the top | |
| 2435 // bit is forced to '1', making the result a quiet NaN. The unused | |
| 2436 // (low-order) payload bits are set to 0. | |
| 2437 uint32_t raw = float_to_rawbits(value); | |
| 2438 | |
| 2439 uint64_t sign = raw >> 31; | |
| 2440 uint64_t exponent = (1 << 11) - 1; | |
| 2441 uint64_t payload = unsigned_bitextract_64(21, 0, raw); | |
| 2442 payload <<= (52 - 23); // The unused low-order bits should be 0. | |
| 2443 payload |= (1L << 51); // Force a quiet NaN. | |
| 2444 | |
| 2445 return rawbits_to_double((sign << 63) | (exponent << 52) | payload); | |
| 2446 } | |
| 2447 | |
| 2448 case FP_ZERO: | |
| 2449 case FP_NORMAL: | |
| 2450 case FP_SUBNORMAL: | |
| 2451 case FP_INFINITE: { | |
| 2452 // All other inputs are preserved in a standard cast, because every value | |
| 2453 // representable using an IEEE-754 float is also representable using an | |
| 2454 // IEEE-754 double. | |
| 2455 return static_cast<double>(value); | |
| 2456 } | |
| 2457 } | |
| 2458 | |
| 2459 UNREACHABLE(); | |
| 2460 return static_cast<double>(value); | |
| 2461 } | |
| 2462 | |
| 2463 | |
| 2464 float Simulator::FPToFloat(double value, FPRounding round_mode) { | |
| 2465 // Only the FPTieEven rounding mode is implemented. | |
| 2466 ASSERT(round_mode == FPTieEven); | |
| 2467 USE(round_mode); | |
| 2468 | |
| 2469 switch (std::fpclassify(value)) { | |
| 2470 case FP_NAN: { | |
| 2471 // Convert NaNs as the processor would, assuming that FPCR.DN (default | |
| 2472 // NaN) is not set: | |
| 2473 // - The sign is propagated. | |
| 2474 // - The payload (mantissa) is transferred as much as possible, except | |
| 2475 // that the top bit is forced to '1', making the result a quiet NaN. | |
| 2476 uint64_t raw = double_to_rawbits(value); | |
| 2477 | |
| 2478 uint32_t sign = raw >> 63; | |
| 2479 uint32_t exponent = (1 << 8) - 1; | |
| 2480 uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw); | |
| 2481 payload |= (1 << 22); // Force a quiet NaN. | |
| 2482 | |
| 2483 return rawbits_to_float((sign << 31) | (exponent << 23) | payload); | |
| 2484 } | |
| 2485 | |
| 2486 case FP_ZERO: | |
| 2487 case FP_INFINITE: { | |
| 2488 // In a C++ cast, any value representable in the target type will be | |
| 2489 // unchanged. This is always the case for +/-0.0 and infinities. | |
| 2490 return static_cast<float>(value); | |
| 2491 } | |
| 2492 | |
| 2493 case FP_NORMAL: | |
| 2494 case FP_SUBNORMAL: { | |
| 2495 // Convert double-to-float as the processor would, assuming that FPCR.FZ | |
| 2496 // (flush-to-zero) is not set. | |
| 2497 uint64_t raw = double_to_rawbits(value); | |
| 2498 // Extract the IEEE-754 double components. | |
| 2499 uint32_t sign = raw >> 63; | |
| 2500 // Extract the exponent and remove the IEEE-754 encoding bias. | |
| 2501 int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023; | |
| 2502 // Extract the mantissa and add the implicit '1' bit. | |
| 2503 uint64_t mantissa = unsigned_bitextract_64(51, 0, raw); | |
| 2504 if (std::fpclassify(value) == FP_NORMAL) { | |
| 2505 mantissa |= (1UL << 52); | |
| 2506 } | |
| 2507 return FPRoundToFloat(sign, exponent, mantissa, round_mode); | |
| 2508 } | |
| 2509 } | |
| 2510 | |
| 2511 UNREACHABLE(); | |
| 2512 return value; | |
| 2513 } | |
| 2514 | |
| 2515 | |
| 2516 void Simulator::VisitFPDataProcessing2Source(Instruction* instr) { | |
| 2517 AssertSupportedFPCR(); | |
| 2518 | |
| 2519 unsigned fd = instr->Rd(); | |
| 2520 unsigned fn = instr->Rn(); | |
| 2521 unsigned fm = instr->Rm(); | |
| 2522 | |
| 2523 switch (instr->Mask(FPDataProcessing2SourceMask)) { | |
| 2524 case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break; | |
| 2525 case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break; | |
| 2526 case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break; | |
| 2527 case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break; | |
| 2528 case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break; | |
| 2529 case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break; | |
| 2530 case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break; | |
| 2531 case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break; | |
| 2532 case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break; | |
| 2533 case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break; | |
| 2534 case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break; | |
| 2535 case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break; | |
| 2536 case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); break; | |
| 2537 case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); break; | |
| 2538 case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); break; | |
| 2539 case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); break; | |
| 2540 default: UNIMPLEMENTED(); | |
| 2541 } | |
| 2542 } | |
| 2543 | |
| 2544 | |
| 2545 void Simulator::VisitFPDataProcessing3Source(Instruction* instr) { | |
| 2546 AssertSupportedFPCR(); | |
| 2547 | |
| 2548 unsigned fd = instr->Rd(); | |
| 2549 unsigned fn = instr->Rn(); | |
| 2550 unsigned fm = instr->Rm(); | |
| 2551 unsigned fa = instr->Ra(); | |
| 2552 | |
| 2553 // The C99 (and C++11) fma function performs a fused multiply-accumulate. | |
| 2554 switch (instr->Mask(FPDataProcessing3SourceMask)) { | |
| 2555 // fd = fa +/- (fn * fm) | |
| 2556 case FMADD_s: set_sreg(fd, fmaf(sreg(fn), sreg(fm), sreg(fa))); break; | |
| 2557 case FMSUB_s: set_sreg(fd, fmaf(-sreg(fn), sreg(fm), sreg(fa))); break; | |
| 2558 case FMADD_d: set_dreg(fd, fma(dreg(fn), dreg(fm), dreg(fa))); break; | |
| 2559 case FMSUB_d: set_dreg(fd, fma(-dreg(fn), dreg(fm), dreg(fa))); break; | |
| 2560 // Variants of the above where the result is negated. | |
| 2561 case FNMADD_s: set_sreg(fd, -fmaf(sreg(fn), sreg(fm), sreg(fa))); break; | |
| 2562 case FNMSUB_s: set_sreg(fd, -fmaf(-sreg(fn), sreg(fm), sreg(fa))); break; | |
| 2563 case FNMADD_d: set_dreg(fd, -fma(dreg(fn), dreg(fm), dreg(fa))); break; | |
| 2564 case FNMSUB_d: set_dreg(fd, -fma(-dreg(fn), dreg(fm), dreg(fa))); break; | |
| 2565 default: UNIMPLEMENTED(); | |
| 2566 } | |
| 2567 } | |
| 2568 | |
| 2569 | |
| 2570 template <typename T> | |
| 2571 T Simulator::FPMax(T a, T b) { | |
| 2572 if (IsSignallingNaN(a)) { | |
| 2573 return a; | |
| 2574 } else if (IsSignallingNaN(b)) { | |
| 2575 return b; | |
| 2576 } else if (std::isnan(a)) { | |
| 2577 ASSERT(IsQuietNaN(a)); | |
| 2578 return a; | |
| 2579 } else if (std::isnan(b)) { | |
| 2580 ASSERT(IsQuietNaN(b)); | |
| 2581 return b; | |
| 2582 } | |
| 2583 | |
| 2584 if ((a == 0.0) && (b == 0.0) && | |
| 2585 (copysign(1.0, a) != copysign(1.0, b))) { | |
| 2586 // a and b are zero, and the sign differs: return +0.0. | |
| 2587 return 0.0; | |
| 2588 } else { | |
| 2589 return (a > b) ? a : b; | |
| 2590 } | |
| 2591 } | |
| 2592 | |
| 2593 | |
| 2594 template <typename T> | |
| 2595 T Simulator::FPMaxNM(T a, T b) { | |
| 2596 if (IsQuietNaN(a) && !IsQuietNaN(b)) { | |
| 2597 a = kFP64NegativeInfinity; | |
| 2598 } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { | |
| 2599 b = kFP64NegativeInfinity; | |
| 2600 } | |
| 2601 return FPMax(a, b); | |
| 2602 } | |
| 2603 | |
| 2604 template <typename T> | |
| 2605 T Simulator::FPMin(T a, T b) { | |
| 2606 if (IsSignallingNaN(a)) { | |
| 2607 return a; | |
| 2608 } else if (IsSignallingNaN(b)) { | |
| 2609 return b; | |
| 2610 } else if (std::isnan(a)) { | |
| 2611 ASSERT(IsQuietNaN(a)); | |
| 2612 return a; | |
| 2613 } else if (std::isnan(b)) { | |
| 2614 ASSERT(IsQuietNaN(b)); | |
| 2615 return b; | |
| 2616 } | |
| 2617 | |
| 2618 if ((a == 0.0) && (b == 0.0) && | |
| 2619 (copysign(1.0, a) != copysign(1.0, b))) { | |
| 2620 // a and b are zero, and the sign differs: return -0.0. | |
| 2621 return -0.0; | |
| 2622 } else { | |
| 2623 return (a < b) ? a : b; | |
| 2624 } | |
| 2625 } | |
| 2626 | |
| 2627 | |
| 2628 template <typename T> | |
| 2629 T Simulator::FPMinNM(T a, T b) { | |
| 2630 if (IsQuietNaN(a) && !IsQuietNaN(b)) { | |
| 2631 a = kFP64PositiveInfinity; | |
| 2632 } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { | |
| 2633 b = kFP64PositiveInfinity; | |
| 2634 } | |
| 2635 return FPMin(a, b); | |
| 2636 } | |
| 2637 | |
| 2638 | |
| 2639 void Simulator::VisitSystem(Instruction* instr) { | |
| 2640 // Some system instructions hijack their Op and Cp fields to represent a | |
| 2641 // range of immediates instead of indicating a different instruction. This | |
| 2642 // makes the decoding tricky. | |
| 2643 if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { | |
| 2644 switch (instr->Mask(SystemSysRegMask)) { | |
| 2645 case MRS: { | |
| 2646 switch (instr->ImmSystemRegister()) { | |
| 2647 case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break; | |
| 2648 case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break; | |
| 2649 default: UNIMPLEMENTED(); | |
| 2650 } | |
| 2651 break; | |
| 2652 } | |
| 2653 case MSR: { | |
| 2654 switch (instr->ImmSystemRegister()) { | |
| 2655 case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break; | |
| 2656 case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break; | |
| 2657 default: UNIMPLEMENTED(); | |
| 2658 } | |
| 2659 break; | |
| 2660 } | |
| 2661 } | |
| 2662 } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { | |
| 2663 ASSERT(instr->Mask(SystemHintMask) == HINT); | |
| 2664 switch (instr->ImmHint()) { | |
| 2665 case NOP: break; | |
| 2666 default: UNIMPLEMENTED(); | |
| 2667 } | |
| 2668 } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { | |
| 2669 __sync_synchronize(); | |
| 2670 } else { | |
| 2671 UNIMPLEMENTED(); | |
| 2672 } | |
| 2673 } | |
| 2674 | |
| 2675 | |
| 2676 bool Simulator::GetValue(const char* desc, int64_t* value) { | |
| 2677 int regnum = CodeFromName(desc); | |
| 2678 if (regnum >= 0) { | |
| 2679 unsigned code = regnum; | |
| 2680 if (code == kZeroRegCode) { | |
| 2681 // Catch the zero register and return 0. | |
| 2682 *value = 0; | |
| 2683 return true; | |
| 2684 } else if (code == kSPRegInternalCode) { | |
| 2685 // Translate the stack pointer code to 31, for Reg31IsStackPointer. | |
| 2686 code = 31; | |
| 2687 } | |
| 2688 if (desc[0] == 'w') { | |
| 2689 *value = wreg(code, Reg31IsStackPointer); | |
| 2690 } else { | |
| 2691 *value = xreg(code, Reg31IsStackPointer); | |
| 2692 } | |
| 2693 return true; | |
| 2694 } else if (strncmp(desc, "0x", 2) == 0) { | |
| 2695 return SScanF(desc + 2, "%" SCNx64, | |
| 2696 reinterpret_cast<uint64_t*>(value)) == 1; | |
| 2697 } else { | |
| 2698 return SScanF(desc, "%" SCNu64, | |
| 2699 reinterpret_cast<uint64_t*>(value)) == 1; | |
| 2700 } | |
| 2701 } | |
| 2702 | |
| 2703 | |
| 2704 bool Simulator::PrintValue(const char* desc) { | |
| 2705 // Define some colour codes to use for the register dump. | |
| 2706 // TODO(jbramley): Find a more elegant way of defining these. | |
| 2707 char const * const clr_normal = FLAG_log_colour ? "\033[m" : ""; | |
| 2708 char const * const clr_reg_name = FLAG_log_colour ? "\033[1;34m" : ""; | |
| 2709 char const * const clr_reg_value = FLAG_log_colour ? "\033[1;36m" : ""; | |
| 2710 char const * const clr_fpreg_name = FLAG_log_colour ? "\033[1;33m" : ""; | |
| 2711 char const * const clr_fpreg_value = FLAG_log_colour ? "\033[1;35m" : ""; | |
| 2712 | |
| 2713 if (strcmp(desc, "csp") == 0) { | |
| 2714 ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode)); | |
| 2715 PrintF("%s csp:%s 0x%016" PRIx64 "%s\n", | |
| 2716 clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal); | |
| 2717 return true; | |
| 2718 } else if (strcmp(desc, "wcsp") == 0) { | |
| 2719 ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode)); | |
| 2720 PrintF("%s wcsp:%s 0x%08" PRIx32 "%s\n", | |
| 2721 clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal); | |
| 2722 return true; | |
| 2723 } | |
| 2724 | |
| 2725 int i = CodeFromName(desc); | |
| 2726 STATIC_ASSERT(kNumberOfRegisters == kNumberOfFPRegisters); | |
| 2727 if (i < 0 || static_cast<unsigned>(i) >= kNumberOfFPRegisters) return false; | |
| 2728 | |
| 2729 if (desc[0] == 'v') { | |
| 2730 PrintF("%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", | |
| 2731 clr_fpreg_name, VRegNameForCode(i), | |
| 2732 clr_fpreg_value, double_to_rawbits(dreg(i)), | |
| 2733 clr_normal, | |
| 2734 clr_fpreg_name, DRegNameForCode(i), | |
| 2735 clr_fpreg_value, dreg(i), | |
| 2736 clr_fpreg_name, SRegNameForCode(i), | |
| 2737 clr_fpreg_value, sreg(i), | |
| 2738 clr_normal); | |
| 2739 return true; | |
| 2740 } else if (desc[0] == 'd') { | |
| 2741 PrintF("%s %s:%s %g%s\n", | |
| 2742 clr_fpreg_name, DRegNameForCode(i), | |
| 2743 clr_fpreg_value, dreg(i), | |
| 2744 clr_normal); | |
| 2745 return true; | |
| 2746 } else if (desc[0] == 's') { | |
| 2747 PrintF("%s %s:%s %g%s\n", | |
| 2748 clr_fpreg_name, SRegNameForCode(i), | |
| 2749 clr_fpreg_value, sreg(i), | |
| 2750 clr_normal); | |
| 2751 return true; | |
| 2752 } else if (desc[0] == 'w') { | |
| 2753 PrintF("%s %s:%s 0x%08" PRIx32 "%s\n", | |
| 2754 clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal); | |
| 2755 return true; | |
| 2756 } else { | |
| 2757 // X register names have a wide variety of starting characters, but anything | |
| 2758 // else will be an X register. | |
| 2759 PrintF("%s %s:%s 0x%016" PRIx64 "%s\n", | |
| 2760 clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal); | |
| 2761 return true; | |
| 2762 } | |
| 2763 } | |
| 2764 | |
| 2765 | |
| 2766 void Simulator::Debug() { | |
| 2767 #define COMMAND_SIZE 63 | |
| 2768 #define ARG_SIZE 255 | |
| 2769 | |
| 2770 #define STR(a) #a | |
| 2771 #define XSTR(a) STR(a) | |
| 2772 | |
| 2773 char cmd[COMMAND_SIZE + 1]; | |
| 2774 char arg1[ARG_SIZE + 1]; | |
| 2775 char arg2[ARG_SIZE + 1]; | |
| 2776 char* argv[3] = { cmd, arg1, arg2 }; | |
| 2777 | |
| 2778 // Make sure to have a proper terminating character if reaching the limit. | |
| 2779 cmd[COMMAND_SIZE] = 0; | |
| 2780 arg1[ARG_SIZE] = 0; | |
| 2781 arg2[ARG_SIZE] = 0; | |
| 2782 | |
| 2783 bool done = false; | |
| 2784 bool cleared_log_disasm_bit = false; | |
| 2785 | |
| 2786 while (!done) { | |
| 2787 // Disassemble the next instruction to execute before doing anything else. | |
| 2788 PrintInstructionsAt(pc_, 1); | |
| 2789 // Read the command line. | |
| 2790 char* line = ReadLine("sim> "); | |
| 2791 if (line == NULL) { | |
| 2792 break; | |
| 2793 } else { | |
| 2794 // Repeat last command by default. | |
| 2795 char* last_input = last_debugger_input(); | |
| 2796 if (strcmp(line, "\n") == 0 && (last_input != NULL)) { | |
| 2797 DeleteArray(line); | |
| 2798 line = last_input; | |
| 2799 } else { | |
| 2800 // Update the latest command ran | |
| 2801 set_last_debugger_input(line); | |
| 2802 } | |
| 2803 | |
| 2804 // Use sscanf to parse the individual parts of the command line. At the | |
| 2805 // moment no command expects more than two parameters. | |
| 2806 int argc = SScanF(line, | |
| 2807 "%" XSTR(COMMAND_SIZE) "s " | |
| 2808 "%" XSTR(ARG_SIZE) "s " | |
| 2809 "%" XSTR(ARG_SIZE) "s", | |
| 2810 cmd, arg1, arg2); | |
| 2811 | |
| 2812 // stepi / si ------------------------------------------------------------ | |
| 2813 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { | |
| 2814 // We are about to execute instructions, after which by default we | |
| 2815 // should increment the pc_. If it was set when reaching this debug | |
| 2816 // instruction, it has not been cleared because this instruction has not | |
| 2817 // completed yet. So clear it manually. | |
| 2818 pc_modified_ = false; | |
| 2819 | |
| 2820 if (argc == 1) { | |
| 2821 ExecuteInstruction(); | |
| 2822 } else { | |
| 2823 int64_t number_of_instructions_to_execute = 1; | |
| 2824 GetValue(arg1, &number_of_instructions_to_execute); | |
| 2825 | |
| 2826 set_log_parameters(log_parameters() | LOG_DISASM); | |
| 2827 while (number_of_instructions_to_execute-- > 0) { | |
| 2828 ExecuteInstruction(); | |
| 2829 } | |
| 2830 set_log_parameters(log_parameters() & ~LOG_DISASM); | |
| 2831 PrintF("\n"); | |
| 2832 } | |
| 2833 | |
| 2834 // If it was necessary, the pc has already been updated or incremented | |
| 2835 // when executing the instruction. So we do not want it to be updated | |
| 2836 // again. It will be cleared when exiting. | |
| 2837 pc_modified_ = true; | |
| 2838 | |
| 2839 // next / n -------------------------------------------------------------- | |
| 2840 } else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) { | |
| 2841 // Tell the simulator to break after the next executed BL. | |
| 2842 break_on_next_ = true; | |
| 2843 // Continue. | |
| 2844 done = true; | |
| 2845 | |
| 2846 // continue / cont / c --------------------------------------------------- | |
| 2847 } else if ((strcmp(cmd, "continue") == 0) || | |
| 2848 (strcmp(cmd, "cont") == 0) || | |
| 2849 (strcmp(cmd, "c") == 0)) { | |
| 2850 // Leave the debugger shell. | |
| 2851 done = true; | |
| 2852 | |
| 2853 // disassemble / disasm / di --------------------------------------------- | |
| 2854 } else if (strcmp(cmd, "disassemble") == 0 || | |
| 2855 strcmp(cmd, "disasm") == 0 || | |
| 2856 strcmp(cmd, "di") == 0) { | |
| 2857 int64_t n_of_instrs_to_disasm = 10; // default value. | |
| 2858 int64_t address = reinterpret_cast<int64_t>(pc_); // default value. | |
| 2859 if (argc >= 2) { // disasm <n of instrs> | |
| 2860 GetValue(arg1, &n_of_instrs_to_disasm); | |
| 2861 } | |
| 2862 if (argc >= 3) { // disasm <n of instrs> <address> | |
| 2863 GetValue(arg2, &address); | |
| 2864 } | |
| 2865 | |
| 2866 // Disassemble. | |
| 2867 PrintInstructionsAt(reinterpret_cast<Instruction*>(address), | |
| 2868 n_of_instrs_to_disasm); | |
| 2869 PrintF("\n"); | |
| 2870 | |
| 2871 // print / p ------------------------------------------------------------- | |
| 2872 } else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) { | |
| 2873 if (argc == 2) { | |
| 2874 if (strcmp(arg1, "all") == 0) { | |
| 2875 // TODO(all): better support for printing in the debugger. | |
| 2876 PrintRegisters(true); | |
| 2877 PrintFPRegisters(true); | |
| 2878 } else { | |
| 2879 if (!PrintValue(arg1)) { | |
| 2880 PrintF("%s unrecognized\n", arg1); | |
| 2881 } | |
| 2882 } | |
| 2883 } else { | |
| 2884 PrintF( | |
| 2885 "print <register>\n" | |
| 2886 " Print the content of a register. (alias 'p')\n" | |
| 2887 " 'print all' will print all registers.\n" | |
| 2888 " Use 'printobject' to get more details about the value.\n"); | |
| 2889 } | |
| 2890 | |
| 2891 // printobject / po ------------------------------------------------------ | |
| 2892 } else if ((strcmp(cmd, "printobject") == 0) || | |
| 2893 (strcmp(cmd, "po") == 0)) { | |
| 2894 if (argc == 2) { | |
| 2895 int64_t value; | |
| 2896 if (GetValue(arg1, &value)) { | |
| 2897 Object* obj = reinterpret_cast<Object*>(value); | |
| 2898 PrintF("%s: \n", arg1); | |
| 2899 #ifdef DEBUG | |
| 2900 obj->PrintLn(); | |
| 2901 #else | |
| 2902 obj->ShortPrint(); | |
| 2903 PrintF("\n"); | |
| 2904 #endif | |
| 2905 } else { | |
| 2906 PrintF("%s unrecognized\n", arg1); | |
| 2907 } | |
| 2908 } else { | |
| 2909 PrintF("printobject <value>\n" | |
| 2910 "printobject <register>\n" | |
| 2911 " Print details about the value. (alias 'po')\n"); | |
| 2912 } | |
| 2913 | |
| 2914 // stack / mem ---------------------------------------------------------- | |
| 2915 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { | |
| 2916 int64_t* cur = NULL; | |
| 2917 int64_t* end = NULL; | |
| 2918 int next_arg = 1; | |
| 2919 | |
| 2920 if (strcmp(cmd, "stack") == 0) { | |
| 2921 cur = reinterpret_cast<int64_t*>(jssp()); | |
| 2922 | |
| 2923 } else { // "mem" | |
| 2924 int64_t value; | |
| 2925 if (!GetValue(arg1, &value)) { | |
| 2926 PrintF("%s unrecognized\n", arg1); | |
| 2927 continue; | |
| 2928 } | |
| 2929 cur = reinterpret_cast<int64_t*>(value); | |
| 2930 next_arg++; | |
| 2931 } | |
| 2932 | |
| 2933 int64_t words = 0; | |
| 2934 if (argc == next_arg) { | |
| 2935 words = 10; | |
| 2936 } else if (argc == next_arg + 1) { | |
| 2937 if (!GetValue(argv[next_arg], &words)) { | |
| 2938 PrintF("%s unrecognized\n", argv[next_arg]); | |
| 2939 PrintF("Printing 10 double words by default"); | |
| 2940 words = 10; | |
| 2941 } | |
| 2942 } else { | |
| 2943 UNREACHABLE(); | |
| 2944 } | |
| 2945 end = cur + words; | |
| 2946 | |
| 2947 while (cur < end) { | |
| 2948 PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64, | |
| 2949 reinterpret_cast<uint64_t>(cur), *cur, *cur); | |
| 2950 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); | |
| 2951 int64_t value = *cur; | |
| 2952 Heap* current_heap = v8::internal::Isolate::Current()->heap(); | |
| 2953 if (((value & 1) == 0) || current_heap->Contains(obj)) { | |
| 2954 PrintF(" ("); | |
| 2955 if ((value & kSmiTagMask) == 0) { | |
| 2956 STATIC_ASSERT(kSmiValueSize == 32); | |
| 2957 int32_t untagged = (value >> kSmiShift) & 0xffffffff; | |
| 2958 PrintF("smi %" PRId32, untagged); | |
| 2959 } else { | |
| 2960 obj->ShortPrint(); | |
| 2961 } | |
| 2962 PrintF(")"); | |
| 2963 } | |
| 2964 PrintF("\n"); | |
| 2965 cur++; | |
| 2966 } | |
| 2967 | |
| 2968 // trace / t ------------------------------------------------------------- | |
| 2969 } else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) { | |
| 2970 if ((log_parameters() & (LOG_DISASM | LOG_REGS)) != | |
| 2971 (LOG_DISASM | LOG_REGS)) { | |
| 2972 PrintF("Enabling disassembly and registers tracing\n"); | |
| 2973 set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS); | |
| 2974 } else { | |
| 2975 PrintF("Disabling disassembly and registers tracing\n"); | |
| 2976 set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS)); | |
| 2977 } | |
| 2978 | |
| 2979 // break / b ------------------------------------------------------------- | |
| 2980 } else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) { | |
| 2981 if (argc == 2) { | |
| 2982 int64_t value; | |
| 2983 if (GetValue(arg1, &value)) { | |
| 2984 SetBreakpoint(reinterpret_cast<Instruction*>(value)); | |
| 2985 } else { | |
| 2986 PrintF("%s unrecognized\n", arg1); | |
| 2987 } | |
| 2988 } else { | |
| 2989 ListBreakpoints(); | |
| 2990 PrintF("Use `break <address>` to set or disable a breakpoint\n"); | |
| 2991 } | |
| 2992 | |
| 2993 // gdb ------------------------------------------------------------------- | |
| 2994 } else if (strcmp(cmd, "gdb") == 0) { | |
| 2995 PrintF("Relinquishing control to gdb.\n"); | |
| 2996 OS::DebugBreak(); | |
| 2997 PrintF("Regaining control from gdb.\n"); | |
| 2998 | |
| 2999 // sysregs --------------------------------------------------------------- | |
| 3000 } else if (strcmp(cmd, "sysregs") == 0) { | |
| 3001 PrintSystemRegisters(); | |
| 3002 | |
| 3003 // help / h -------------------------------------------------------------- | |
| 3004 } else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) { | |
| 3005 PrintF( | |
| 3006 "stepi / si\n" | |
| 3007 " stepi <n>\n" | |
| 3008 " Step <n> instructions.\n" | |
| 3009 "next / n\n" | |
| 3010 " Continue execution until a BL instruction is reached.\n" | |
| 3011 " At this point a breakpoint is set just after this BL.\n" | |
| 3012 " Then execution is resumed. It will probably later hit the\n" | |
| 3013 " breakpoint just set.\n" | |
| 3014 "continue / cont / c\n" | |
| 3015 " Continue execution from here.\n" | |
| 3016 "disassemble / disasm / di\n" | |
| 3017 " disassemble <n> <address>\n" | |
| 3018 " Disassemble <n> instructions from current <address>.\n" | |
| 3019 " By default <n> is 20 and <address> is the current pc.\n" | |
| 3020 "print / p\n" | |
| 3021 " print <register>\n" | |
| 3022 " Print the content of a register.\n" | |
| 3023 " 'print all' will print all registers.\n" | |
| 3024 " Use 'printobject' to get more details about the value.\n" | |
| 3025 "printobject / po\n" | |
| 3026 " printobject <value>\n" | |
| 3027 " printobject <register>\n" | |
| 3028 " Print details about the value.\n" | |
| 3029 "stack\n" | |
| 3030 " stack [<words>]\n" | |
| 3031 " Dump stack content, default dump 10 words\n" | |
| 3032 "mem\n" | |
| 3033 " mem <address> [<words>]\n" | |
| 3034 " Dump memory content, default dump 10 words\n" | |
| 3035 "trace / t\n" | |
| 3036 " Toggle disassembly and register tracing\n" | |
| 3037 "break / b\n" | |
| 3038 " break : list all breakpoints\n" | |
| 3039 " break <address> : set / enable / disable a breakpoint.\n" | |
| 3040 "gdb\n" | |
| 3041 " Enter gdb.\n" | |
| 3042 "sysregs\n" | |
| 3043 " Print all system registers (including NZCV).\n"); | |
| 3044 } else { | |
| 3045 PrintF("Unknown command: %s\n", cmd); | |
| 3046 PrintF("Use 'help' for more information.\n"); | |
| 3047 } | |
| 3048 } | |
| 3049 if (cleared_log_disasm_bit == true) { | |
| 3050 set_log_parameters(log_parameters_ | LOG_DISASM); | |
| 3051 } | |
| 3052 } | |
| 3053 } | |
| 3054 | |
| 3055 | |
| 3056 // Calls into the V8 runtime are based on this very simple interface. | |
| 3057 // Note: To be able to return two values from some calls the code in runtime.cc | |
| 3058 // uses the ObjectPair structure. | |
| 3059 // The simulator assumes all runtime calls return two 64-bits values. If they | |
| 3060 // don't, register x1 is clobbered. This is fine because x1 is caller-saved. | |
| 3061 struct ObjectPair { | |
| 3062 int64_t res0; | |
| 3063 int64_t res1; | |
| 3064 }; | |
| 3065 | |
| 3066 | |
| 3067 typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, | |
| 3068 int64_t arg1, | |
| 3069 int64_t arg2, | |
| 3070 int64_t arg3, | |
| 3071 int64_t arg4, | |
| 3072 int64_t arg5, | |
| 3073 int64_t arg6, | |
| 3074 int64_t arg7); | |
| 3075 | |
| 3076 typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2); | |
| 3077 typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2); | |
| 3078 typedef double (*SimulatorRuntimeFPCall)(double arg1); | |
| 3079 typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2); | |
| 3080 | |
| 3081 // This signature supports direct call in to API function native callback | |
| 3082 // (refer to InvocationCallback in v8.h). | |
| 3083 typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); | |
| 3084 typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); | |
| 3085 | |
| 3086 // This signature supports direct call to accessor getter callback. | |
| 3087 typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); | |
| 3088 typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1, | |
| 3089 void* arg2); | |
| 3090 | |
| 3091 void Simulator::VisitException(Instruction* instr) { | |
| 3092 // Define some colour codes to use for log messages. | |
| 3093 // TODO(jbramley): Find a more elegant way of defining these. | |
| 3094 char const* const clr_normal = (FLAG_log_colour) ? ("\033[m") | |
| 3095 : (""); | |
| 3096 char const* const clr_debug_number = (FLAG_log_colour) ? ("\033[1;33m") | |
| 3097 : (""); | |
| 3098 char const* const clr_debug_message = (FLAG_log_colour) ? ("\033[0;33m") | |
| 3099 : (""); | |
| 3100 char const* const clr_printf = (FLAG_log_colour) ? ("\033[0;32m") | |
| 3101 : (""); | |
| 3102 | |
| 3103 switch (instr->Mask(ExceptionMask)) { | |
| 3104 case HLT: { | |
| 3105 if (instr->ImmException() == kImmExceptionIsDebug) { | |
| 3106 // Read the arguments encoded inline in the instruction stream. | |
| 3107 uint32_t code; | |
| 3108 uint32_t parameters; | |
| 3109 char const * message; | |
| 3110 | |
| 3111 ASSERT(sizeof(*pc_) == 1); | |
| 3112 memcpy(&code, pc_ + kDebugCodeOffset, sizeof(code)); | |
| 3113 memcpy(¶meters, pc_ + kDebugParamsOffset, sizeof(parameters)); | |
| 3114 message = reinterpret_cast<char const *>(pc_ + kDebugMessageOffset); | |
| 3115 | |
| 3116 // Always print something when we hit a debug point that breaks. | |
| 3117 // We are going to break, so printing something is not an issue in | |
| 3118 // terms of speed. | |
| 3119 if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) { | |
| 3120 if (message != NULL) { | |
| 3121 PrintF("%sDebugger hit %d: %s%s%s\n", | |
| 3122 clr_debug_number, | |
| 3123 code, | |
| 3124 clr_debug_message, | |
| 3125 message, | |
| 3126 clr_normal); | |
| 3127 } else { | |
| 3128 PrintF("%sDebugger hit %d.%s\n", | |
| 3129 clr_debug_number, | |
| 3130 code, | |
| 3131 clr_normal); | |
| 3132 } | |
| 3133 } | |
| 3134 | |
| 3135 // Other options. | |
| 3136 switch (parameters & kDebuggerTracingDirectivesMask) { | |
| 3137 case TRACE_ENABLE: | |
| 3138 set_log_parameters(log_parameters() | parameters); | |
| 3139 if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); } | |
| 3140 if (parameters & LOG_REGS) { PrintRegisters(); } | |
| 3141 if (parameters & LOG_FP_REGS) { PrintFPRegisters(); } | |
| 3142 break; | |
| 3143 case TRACE_DISABLE: | |
| 3144 set_log_parameters(log_parameters() & ~parameters); | |
| 3145 break; | |
| 3146 case TRACE_OVERRIDE: | |
| 3147 set_log_parameters(parameters); | |
| 3148 break; | |
| 3149 default: | |
| 3150 // We don't support a one-shot LOG_DISASM. | |
| 3151 ASSERT((parameters & LOG_DISASM) == 0); | |
| 3152 // Don't print information that is already being traced. | |
| 3153 parameters &= ~log_parameters(); | |
| 3154 // Print the requested information. | |
| 3155 if (parameters & LOG_SYS_REGS) PrintSystemRegisters(true); | |
| 3156 if (parameters & LOG_REGS) PrintRegisters(true); | |
| 3157 if (parameters & LOG_FP_REGS) PrintFPRegisters(true); | |
| 3158 } | |
| 3159 | |
| 3160 // The stop parameters are inlined in the code. Skip them: | |
| 3161 // - Skip to the end of the message string. | |
| 3162 pc_ += kDebugMessageOffset + strlen(message) + 1; | |
| 3163 // - Advance to the next aligned location. | |
| 3164 pc_ = AlignUp(pc_, kInstructionSize); | |
| 3165 // - Verify that the unreachable marker is present. | |
| 3166 ASSERT(pc_->Mask(ExceptionMask) == HLT); | |
| 3167 ASSERT(pc_->ImmException() == kImmExceptionIsUnreachable); | |
| 3168 // - Skip past the unreachable marker. | |
| 3169 set_pc(pc_->NextInstruction()); | |
| 3170 | |
| 3171 // Check if the debugger should break. | |
| 3172 if (parameters & BREAK) Debug(); | |
| 3173 | |
| 3174 } else if (instr->ImmException() == kImmExceptionIsRedirectedCall) { | |
| 3175 // TODO(all): Extract the call redirection code into a separate | |
| 3176 // function. | |
| 3177 | |
| 3178 Redirection* redirection = Redirection::FromHltInstruction(instr); | |
| 3179 | |
| 3180 // The called C code might itself call simulated code, so any | |
| 3181 // caller-saved registers (including lr) could still be clobbered by a | |
| 3182 // redirected call. | |
| 3183 Instruction* return_address = lr(); | |
| 3184 | |
| 3185 // TODO(jbramley): Make external_function() a template so that we don't | |
| 3186 // have to explicitly cast the result for each redirection type. | |
| 3187 int64_t external = | |
| 3188 reinterpret_cast<int64_t>(redirection->external_function()); | |
| 3189 | |
| 3190 TraceSim("Call to host function at %p\n", | |
| 3191 reinterpret_cast<void*>(redirection->external_function())); | |
| 3192 | |
| 3193 // SP must be 16 bytes aligned at the call interface. | |
| 3194 bool stack_alignment_exception = ((sp() & 0xf) != 0); | |
| 3195 if (stack_alignment_exception) { | |
| 3196 TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp()); | |
| 3197 FATAL("ALIGNMENT EXCEPTION"); | |
| 3198 } | |
| 3199 | |
| 3200 switch (redirection->type()) { | |
| 3201 default: | |
| 3202 TraceSim("Type: Unknown.\n"); | |
| 3203 UNREACHABLE(); | |
| 3204 break; | |
| 3205 | |
| 3206 case ExternalReference::BUILTIN_CALL: { | |
| 3207 // MaybeObject* f(v8::internal::Arguments). | |
| 3208 TraceSim("Type: BUILTIN_CALL\n"); | |
| 3209 SimulatorRuntimeCall target = | |
| 3210 reinterpret_cast<SimulatorRuntimeCall>(external); | |
| 3211 | |
| 3212 // We don't know how many arguments are being passed, but we can | |
| 3213 // pass 8 without touching the stack. They will be ignored by the | |
| 3214 // host function if they aren't used. | |
| 3215 TraceSim("Arguments: " | |
| 3216 "0x%016" PRIx64 ", 0x%016" PRIx64 ", " | |
| 3217 "0x%016" PRIx64 ", 0x%016" PRIx64 ", " | |
| 3218 "0x%016" PRIx64 ", 0x%016" PRIx64 ", " | |
| 3219 "0x%016" PRIx64 ", 0x%016" PRIx64, | |
| 3220 xreg(0), xreg(1), xreg(2), xreg(3), | |
| 3221 xreg(4), xreg(5), xreg(6), xreg(7)); | |
| 3222 ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3), | |
| 3223 xreg(4), xreg(5), xreg(6), xreg(7)); | |
| 3224 TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64"}\n", | |
| 3225 result.res0, result.res1); | |
| 3226 #ifdef DEBUG | |
| 3227 CorruptAllCallerSavedCPURegisters(); | |
| 3228 #endif | |
| 3229 set_xreg(0, result.res0); | |
| 3230 set_xreg(1, result.res1); | |
| 3231 break; | |
| 3232 } | |
| 3233 | |
| 3234 case ExternalReference::DIRECT_API_CALL: { | |
| 3235 // void f(v8::FunctionCallbackInfo&) | |
| 3236 TraceSim("Type: DIRECT_API_CALL\n"); | |
| 3237 SimulatorRuntimeDirectApiCall target = | |
| 3238 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); | |
| 3239 TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0)); | |
| 3240 target(xreg(0)); | |
| 3241 TraceSim("No return value."); | |
| 3242 #ifdef DEBUG | |
| 3243 CorruptAllCallerSavedCPURegisters(); | |
| 3244 #endif | |
| 3245 break; | |
| 3246 } | |
| 3247 | |
| 3248 case ExternalReference::BUILTIN_COMPARE_CALL: { | |
| 3249 // int f(double, double) | |
| 3250 TraceSim("Type: BUILTIN_COMPARE_CALL\n"); | |
| 3251 SimulatorRuntimeCompareCall target = | |
| 3252 reinterpret_cast<SimulatorRuntimeCompareCall>(external); | |
| 3253 TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); | |
| 3254 int64_t result = target(dreg(0), dreg(1)); | |
| 3255 TraceSim("Returned: %" PRId64 "\n", result); | |
| 3256 #ifdef DEBUG | |
| 3257 CorruptAllCallerSavedCPURegisters(); | |
| 3258 #endif | |
| 3259 set_xreg(0, result); | |
| 3260 break; | |
| 3261 } | |
| 3262 | |
| 3263 case ExternalReference::BUILTIN_FP_CALL: { | |
| 3264 // double f(double) | |
| 3265 TraceSim("Type: BUILTIN_FP_CALL\n"); | |
| 3266 SimulatorRuntimeFPCall target = | |
| 3267 reinterpret_cast<SimulatorRuntimeFPCall>(external); | |
| 3268 TraceSim("Argument: %f\n", dreg(0)); | |
| 3269 double result = target(dreg(0)); | |
| 3270 TraceSim("Returned: %f\n", result); | |
| 3271 #ifdef DEBUG | |
| 3272 CorruptAllCallerSavedCPURegisters(); | |
| 3273 #endif | |
| 3274 set_dreg(0, result); | |
| 3275 break; | |
| 3276 } | |
| 3277 | |
| 3278 case ExternalReference::BUILTIN_FP_FP_CALL: { | |
| 3279 // double f(double, double) | |
| 3280 TraceSim("Type: BUILTIN_FP_FP_CALL\n"); | |
| 3281 SimulatorRuntimeFPFPCall target = | |
| 3282 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); | |
| 3283 TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); | |
| 3284 double result = target(dreg(0), dreg(1)); | |
| 3285 TraceSim("Returned: %f\n", result); | |
| 3286 #ifdef DEBUG | |
| 3287 CorruptAllCallerSavedCPURegisters(); | |
| 3288 #endif | |
| 3289 set_dreg(0, result); | |
| 3290 break; | |
| 3291 } | |
| 3292 | |
| 3293 case ExternalReference::BUILTIN_FP_INT_CALL: { | |
| 3294 // double f(double, int) | |
| 3295 TraceSim("Type: BUILTIN_FP_INT_CALL\n"); | |
| 3296 SimulatorRuntimeFPIntCall target = | |
| 3297 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); | |
| 3298 TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0)); | |
| 3299 double result = target(dreg(0), wreg(0)); | |
| 3300 TraceSim("Returned: %f\n", result); | |
| 3301 #ifdef DEBUG | |
| 3302 CorruptAllCallerSavedCPURegisters(); | |
| 3303 #endif | |
| 3304 set_dreg(0, result); | |
| 3305 break; | |
| 3306 } | |
| 3307 | |
| 3308 case ExternalReference::DIRECT_GETTER_CALL: { | |
| 3309 // void f(Local<String> property, PropertyCallbackInfo& info) | |
| 3310 TraceSim("Type: DIRECT_GETTER_CALL\n"); | |
| 3311 SimulatorRuntimeDirectGetterCall target = | |
| 3312 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); | |
| 3313 TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n", | |
| 3314 xreg(0), xreg(1)); | |
| 3315 target(xreg(0), xreg(1)); | |
| 3316 TraceSim("No return value."); | |
| 3317 #ifdef DEBUG | |
| 3318 CorruptAllCallerSavedCPURegisters(); | |
| 3319 #endif | |
| 3320 break; | |
| 3321 } | |
| 3322 | |
| 3323 case ExternalReference::PROFILING_API_CALL: { | |
| 3324 // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback) | |
| 3325 TraceSim("Type: PROFILING_API_CALL\n"); | |
| 3326 SimulatorRuntimeProfilingApiCall target = | |
| 3327 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); | |
| 3328 void* arg1 = Redirection::ReverseRedirection(xreg(1)); | |
| 3329 TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1); | |
| 3330 target(xreg(0), arg1); | |
| 3331 TraceSim("No return value."); | |
| 3332 #ifdef DEBUG | |
| 3333 CorruptAllCallerSavedCPURegisters(); | |
| 3334 #endif | |
| 3335 break; | |
| 3336 } | |
| 3337 | |
| 3338 case ExternalReference::PROFILING_GETTER_CALL: { | |
| 3339 // void f(Local<String> property, PropertyCallbackInfo& info, | |
| 3340 // AccessorGetterCallback callback) | |
| 3341 TraceSim("Type: PROFILING_GETTER_CALL\n"); | |
| 3342 SimulatorRuntimeProfilingGetterCall target = | |
| 3343 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( | |
| 3344 external); | |
| 3345 void* arg2 = Redirection::ReverseRedirection(xreg(2)); | |
| 3346 TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n", | |
| 3347 xreg(0), xreg(1), arg2); | |
| 3348 target(xreg(0), xreg(1), arg2); | |
| 3349 TraceSim("No return value."); | |
| 3350 #ifdef DEBUG | |
| 3351 CorruptAllCallerSavedCPURegisters(); | |
| 3352 #endif | |
| 3353 break; | |
| 3354 } | |
| 3355 } | |
| 3356 | |
| 3357 set_lr(return_address); | |
| 3358 set_pc(return_address); | |
| 3359 } else if (instr->ImmException() == kImmExceptionIsPrintf) { | |
| 3360 // Read the argument encoded inline in the instruction stream. | |
| 3361 uint32_t type; | |
| 3362 ASSERT(sizeof(*pc_) == 1); | |
| 3363 memcpy(&type, pc_ + kPrintfTypeOffset, sizeof(type)); | |
| 3364 | |
| 3365 const char* format = reg<const char*>(0); | |
| 3366 | |
| 3367 // Pass all of the relevant PCS registers onto printf. It doesn't | |
| 3368 // matter if we pass too many as the extra ones won't be read. | |
| 3369 int result; | |
| 3370 fputs(clr_printf, stream_); | |
| 3371 if (type == CPURegister::kRegister) { | |
| 3372 result = fprintf(stream_, format, | |
| 3373 xreg(1), xreg(2), xreg(3), xreg(4), | |
| 3374 xreg(5), xreg(6), xreg(7)); | |
| 3375 } else if (type == CPURegister::kFPRegister) { | |
| 3376 result = fprintf(stream_, format, | |
| 3377 dreg(0), dreg(1), dreg(2), dreg(3), | |
| 3378 dreg(4), dreg(5), dreg(6), dreg(7)); | |
| 3379 } else { | |
| 3380 ASSERT(type == CPURegister::kNoRegister); | |
| 3381 result = fprintf(stream_, "%s", format); | |
| 3382 } | |
| 3383 fputs(clr_normal, stream_); | |
| 3384 set_xreg(0, result); | |
| 3385 | |
| 3386 // TODO(jbramley): Consider clobbering all caller-saved registers here. | |
| 3387 | |
| 3388 // The printf parameters are inlined in the code, so skip them. | |
| 3389 set_pc(pc_->InstructionAtOffset(kPrintfLength)); | |
| 3390 | |
| 3391 // Set LR as if we'd just called a native printf function. | |
| 3392 set_lr(pc()); | |
| 3393 | |
| 3394 } else if (instr->ImmException() == kImmExceptionIsUnreachable) { | |
| 3395 fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n", | |
| 3396 reinterpret_cast<void*>(pc_)); | |
| 3397 abort(); | |
| 3398 | |
| 3399 } else { | |
| 3400 OS::DebugBreak(); | |
| 3401 } | |
| 3402 break; | |
| 3403 } | |
| 3404 | |
| 3405 default: | |
| 3406 UNIMPLEMENTED(); | |
| 3407 } | |
| 3408 } | |
| 3409 | |
| 3410 #endif // USE_SIMULATOR | |
| 3411 | |
| 3412 } } // namespace v8::internal | |
| 3413 | |
| 3414 #endif // V8_TARGET_ARCH_A64 | |
| OLD | NEW |