Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(239)

Side by Side Diff: src/a64/macro-assembler-a64.h

Issue 181453002: Reset trunk to 3.24.35.4 (Closed) Base URL: https://v8.googlecode.com/svn/trunk
Patch Set: Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/a64/lithium-gap-resolver-a64.cc ('k') | src/a64/macro-assembler-a64.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_A64_MACRO_ASSEMBLER_A64_H_
29 #define V8_A64_MACRO_ASSEMBLER_A64_H_
30
31 #include <vector>
32
33 #include "v8globals.h"
34 #include "globals.h"
35
36 #include "a64/assembler-a64-inl.h"
37
38 namespace v8 {
39 namespace internal {
40
41 #define LS_MACRO_LIST(V) \
42 V(Ldrb, Register&, rt, LDRB_w) \
43 V(Strb, Register&, rt, STRB_w) \
44 V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
45 V(Ldrh, Register&, rt, LDRH_w) \
46 V(Strh, Register&, rt, STRH_w) \
47 V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
48 V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
49 V(Str, CPURegister&, rt, StoreOpFor(rt)) \
50 V(Ldrsw, Register&, rt, LDRSW_x)
51
52
53 // ----------------------------------------------------------------------------
54 // Static helper functions
55
56 // Generate a MemOperand for loading a field from an object.
57 inline MemOperand FieldMemOperand(Register object, int offset);
58 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
59
60 // Generate a MemOperand for loading a SMI from memory.
61 inline MemOperand UntagSmiMemOperand(Register object, int offset);
62
63
64 // ----------------------------------------------------------------------------
65 // MacroAssembler
66
67 enum BranchType {
68 // Copies of architectural conditions.
69 // The associated conditions can be used in place of those, the code will
70 // take care of reinterpreting them with the correct type.
71 integer_eq = eq,
72 integer_ne = ne,
73 integer_hs = hs,
74 integer_lo = lo,
75 integer_mi = mi,
76 integer_pl = pl,
77 integer_vs = vs,
78 integer_vc = vc,
79 integer_hi = hi,
80 integer_ls = ls,
81 integer_ge = ge,
82 integer_lt = lt,
83 integer_gt = gt,
84 integer_le = le,
85 integer_al = al,
86 integer_nv = nv,
87
88 // These two are *different* from the architectural codes al and nv.
89 // 'always' is used to generate unconditional branches.
90 // 'never' is used to not generate a branch (generally as the inverse
91 // branch type of 'always).
92 always, never,
93 // cbz and cbnz
94 reg_zero, reg_not_zero,
95 // tbz and tbnz
96 reg_bit_clear, reg_bit_set,
97
98 // Aliases.
99 kBranchTypeFirstCondition = eq,
100 kBranchTypeLastCondition = nv,
101 kBranchTypeFirstUsingReg = reg_zero,
102 kBranchTypeFirstUsingBit = reg_bit_clear
103 };
104
105 inline BranchType InvertBranchType(BranchType type) {
106 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
107 return static_cast<BranchType>(
108 InvertCondition(static_cast<Condition>(type)));
109 } else {
110 return static_cast<BranchType>(type ^ 1);
111 }
112 }
113
114 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
115 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
116 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
117 enum TargetAddressStorageMode {
118 CAN_INLINE_TARGET_ADDRESS,
119 NEVER_INLINE_TARGET_ADDRESS
120 };
121 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
122 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
123 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
124 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
125 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
126
127 class MacroAssembler : public Assembler {
128 public:
129 MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
130
131 inline Handle<Object> CodeObject();
132
133 // Instruction set functions ------------------------------------------------
134 // Logical macros.
135 inline void And(const Register& rd,
136 const Register& rn,
137 const Operand& operand);
138 inline void Ands(const Register& rd,
139 const Register& rn,
140 const Operand& operand);
141 inline void Bic(const Register& rd,
142 const Register& rn,
143 const Operand& operand);
144 inline void Bics(const Register& rd,
145 const Register& rn,
146 const Operand& operand);
147 inline void Orr(const Register& rd,
148 const Register& rn,
149 const Operand& operand);
150 inline void Orn(const Register& rd,
151 const Register& rn,
152 const Operand& operand);
153 inline void Eor(const Register& rd,
154 const Register& rn,
155 const Operand& operand);
156 inline void Eon(const Register& rd,
157 const Register& rn,
158 const Operand& operand);
159 inline void Tst(const Register& rn, const Operand& operand);
160 void LogicalMacro(const Register& rd,
161 const Register& rn,
162 const Operand& operand,
163 LogicalOp op);
164
165 // Add and sub macros.
166 inline void Add(const Register& rd,
167 const Register& rn,
168 const Operand& operand);
169 inline void Adds(const Register& rd,
170 const Register& rn,
171 const Operand& operand);
172 inline void Sub(const Register& rd,
173 const Register& rn,
174 const Operand& operand);
175 inline void Subs(const Register& rd,
176 const Register& rn,
177 const Operand& operand);
178 inline void Cmn(const Register& rn, const Operand& operand);
179 inline void Cmp(const Register& rn, const Operand& operand);
180 inline void Neg(const Register& rd,
181 const Operand& operand);
182 inline void Negs(const Register& rd,
183 const Operand& operand);
184
185 void AddSubMacro(const Register& rd,
186 const Register& rn,
187 const Operand& operand,
188 FlagsUpdate S,
189 AddSubOp op);
190
191 // Add/sub with carry macros.
192 inline void Adc(const Register& rd,
193 const Register& rn,
194 const Operand& operand);
195 inline void Adcs(const Register& rd,
196 const Register& rn,
197 const Operand& operand);
198 inline void Sbc(const Register& rd,
199 const Register& rn,
200 const Operand& operand);
201 inline void Sbcs(const Register& rd,
202 const Register& rn,
203 const Operand& operand);
204 inline void Ngc(const Register& rd,
205 const Operand& operand);
206 inline void Ngcs(const Register& rd,
207 const Operand& operand);
208 void AddSubWithCarryMacro(const Register& rd,
209 const Register& rn,
210 const Operand& operand,
211 FlagsUpdate S,
212 AddSubWithCarryOp op);
213
214 // Move macros.
215 void Mov(const Register& rd,
216 const Operand& operand,
217 DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
218 void Mov(const Register& rd, uint64_t imm);
219 inline void Mvn(const Register& rd, uint64_t imm);
220 void Mvn(const Register& rd, const Operand& operand);
221 static bool IsImmMovn(uint64_t imm, unsigned reg_size);
222 static bool IsImmMovz(uint64_t imm, unsigned reg_size);
223 static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
224
225 // Conditional macros.
226 inline void Ccmp(const Register& rn,
227 const Operand& operand,
228 StatusFlags nzcv,
229 Condition cond);
230 inline void Ccmn(const Register& rn,
231 const Operand& operand,
232 StatusFlags nzcv,
233 Condition cond);
234 void ConditionalCompareMacro(const Register& rn,
235 const Operand& operand,
236 StatusFlags nzcv,
237 Condition cond,
238 ConditionalCompareOp op);
239 void Csel(const Register& rd,
240 const Register& rn,
241 const Operand& operand,
242 Condition cond);
243
244 // Load/store macros.
245 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
246 inline void FN(const REGTYPE REG, const MemOperand& addr);
247 LS_MACRO_LIST(DECLARE_FUNCTION)
248 #undef DECLARE_FUNCTION
249
250 void LoadStoreMacro(const CPURegister& rt,
251 const MemOperand& addr,
252 LoadStoreOp op);
253
254 // V8-specific load/store helpers.
255 void Load(const Register& rt, const MemOperand& addr, Representation r);
256 void Store(const Register& rt, const MemOperand& addr, Representation r);
257
258 // Remaining instructions are simple pass-through calls to the assembler.
259 inline void Adr(const Register& rd, Label* label);
260 inline void Asr(const Register& rd, const Register& rn, unsigned shift);
261 inline void Asr(const Register& rd, const Register& rn, const Register& rm);
262
263 // Branch type inversion relies on these relations.
264 STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
265 (reg_bit_clear == (reg_bit_set ^ 1)) &&
266 (always == (never ^ 1)));
267
268 void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
269
270 inline void B(Label* label);
271 inline void B(Condition cond, Label* label);
272 void B(Label* label, Condition cond);
273 inline void Bfi(const Register& rd,
274 const Register& rn,
275 unsigned lsb,
276 unsigned width);
277 inline void Bfxil(const Register& rd,
278 const Register& rn,
279 unsigned lsb,
280 unsigned width);
281 inline void Bind(Label* label);
282 inline void Bl(Label* label);
283 inline void Blr(const Register& xn);
284 inline void Br(const Register& xn);
285 inline void Brk(int code);
286 void Cbnz(const Register& rt, Label* label);
287 void Cbz(const Register& rt, Label* label);
288 inline void Cinc(const Register& rd, const Register& rn, Condition cond);
289 inline void Cinv(const Register& rd, const Register& rn, Condition cond);
290 inline void Cls(const Register& rd, const Register& rn);
291 inline void Clz(const Register& rd, const Register& rn);
292 inline void Cneg(const Register& rd, const Register& rn, Condition cond);
293 inline void CzeroX(const Register& rd, Condition cond);
294 inline void CmovX(const Register& rd, const Register& rn, Condition cond);
295 inline void Cset(const Register& rd, Condition cond);
296 inline void Csetm(const Register& rd, Condition cond);
297 inline void Csinc(const Register& rd,
298 const Register& rn,
299 const Register& rm,
300 Condition cond);
301 inline void Csinv(const Register& rd,
302 const Register& rn,
303 const Register& rm,
304 Condition cond);
305 inline void Csneg(const Register& rd,
306 const Register& rn,
307 const Register& rm,
308 Condition cond);
309 inline void Dmb(BarrierDomain domain, BarrierType type);
310 inline void Dsb(BarrierDomain domain, BarrierType type);
311 inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
312 inline void Extr(const Register& rd,
313 const Register& rn,
314 const Register& rm,
315 unsigned lsb);
316 inline void Fabs(const FPRegister& fd, const FPRegister& fn);
317 inline void Fadd(const FPRegister& fd,
318 const FPRegister& fn,
319 const FPRegister& fm);
320 inline void Fccmp(const FPRegister& fn,
321 const FPRegister& fm,
322 StatusFlags nzcv,
323 Condition cond);
324 inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
325 inline void Fcmp(const FPRegister& fn, double value);
326 inline void Fcsel(const FPRegister& fd,
327 const FPRegister& fn,
328 const FPRegister& fm,
329 Condition cond);
330 inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
331 inline void Fcvtas(const Register& rd, const FPRegister& fn);
332 inline void Fcvtau(const Register& rd, const FPRegister& fn);
333 inline void Fcvtms(const Register& rd, const FPRegister& fn);
334 inline void Fcvtmu(const Register& rd, const FPRegister& fn);
335 inline void Fcvtns(const Register& rd, const FPRegister& fn);
336 inline void Fcvtnu(const Register& rd, const FPRegister& fn);
337 inline void Fcvtzs(const Register& rd, const FPRegister& fn);
338 inline void Fcvtzu(const Register& rd, const FPRegister& fn);
339 inline void Fdiv(const FPRegister& fd,
340 const FPRegister& fn,
341 const FPRegister& fm);
342 inline void Fmadd(const FPRegister& fd,
343 const FPRegister& fn,
344 const FPRegister& fm,
345 const FPRegister& fa);
346 inline void Fmax(const FPRegister& fd,
347 const FPRegister& fn,
348 const FPRegister& fm);
349 inline void Fmaxnm(const FPRegister& fd,
350 const FPRegister& fn,
351 const FPRegister& fm);
352 inline void Fmin(const FPRegister& fd,
353 const FPRegister& fn,
354 const FPRegister& fm);
355 inline void Fminnm(const FPRegister& fd,
356 const FPRegister& fn,
357 const FPRegister& fm);
358 inline void Fmov(FPRegister fd, FPRegister fn);
359 inline void Fmov(FPRegister fd, Register rn);
360 inline void Fmov(FPRegister fd, double imm);
361 inline void Fmov(Register rd, FPRegister fn);
362 inline void Fmsub(const FPRegister& fd,
363 const FPRegister& fn,
364 const FPRegister& fm,
365 const FPRegister& fa);
366 inline void Fmul(const FPRegister& fd,
367 const FPRegister& fn,
368 const FPRegister& fm);
369 inline void Fneg(const FPRegister& fd, const FPRegister& fn);
370 inline void Fnmadd(const FPRegister& fd,
371 const FPRegister& fn,
372 const FPRegister& fm,
373 const FPRegister& fa);
374 inline void Fnmsub(const FPRegister& fd,
375 const FPRegister& fn,
376 const FPRegister& fm,
377 const FPRegister& fa);
378 inline void Frinta(const FPRegister& fd, const FPRegister& fn);
379 inline void Frintn(const FPRegister& fd, const FPRegister& fn);
380 inline void Frintz(const FPRegister& fd, const FPRegister& fn);
381 inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
382 inline void Fsub(const FPRegister& fd,
383 const FPRegister& fn,
384 const FPRegister& fm);
385 inline void Hint(SystemHint code);
386 inline void Hlt(int code);
387 inline void Isb();
388 inline void Ldnp(const CPURegister& rt,
389 const CPURegister& rt2,
390 const MemOperand& src);
391 inline void Ldp(const CPURegister& rt,
392 const CPURegister& rt2,
393 const MemOperand& src);
394 inline void Ldpsw(const Register& rt,
395 const Register& rt2,
396 const MemOperand& src);
397 inline void Ldr(const FPRegister& ft, double imm);
398 inline void Ldr(const Register& rt, uint64_t imm);
399 inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
400 inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
401 inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
402 inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
403 inline void Madd(const Register& rd,
404 const Register& rn,
405 const Register& rm,
406 const Register& ra);
407 inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
408 inline void Mov(const Register& rd, const Register& rm);
409 inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
410 inline void Mrs(const Register& rt, SystemRegister sysreg);
411 inline void Msr(SystemRegister sysreg, const Register& rt);
412 inline void Msub(const Register& rd,
413 const Register& rn,
414 const Register& rm,
415 const Register& ra);
416 inline void Mul(const Register& rd, const Register& rn, const Register& rm);
417 inline void Nop() { nop(); }
418 inline void Rbit(const Register& rd, const Register& rn);
419 inline void Ret(const Register& xn = lr);
420 inline void Rev(const Register& rd, const Register& rn);
421 inline void Rev16(const Register& rd, const Register& rn);
422 inline void Rev32(const Register& rd, const Register& rn);
423 inline void Ror(const Register& rd, const Register& rs, unsigned shift);
424 inline void Ror(const Register& rd, const Register& rn, const Register& rm);
425 inline void Sbfiz(const Register& rd,
426 const Register& rn,
427 unsigned lsb,
428 unsigned width);
429 inline void Sbfx(const Register& rd,
430 const Register& rn,
431 unsigned lsb,
432 unsigned width);
433 inline void Scvtf(const FPRegister& fd,
434 const Register& rn,
435 unsigned fbits = 0);
436 inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
437 inline void Smaddl(const Register& rd,
438 const Register& rn,
439 const Register& rm,
440 const Register& ra);
441 inline void Smsubl(const Register& rd,
442 const Register& rn,
443 const Register& rm,
444 const Register& ra);
445 inline void Smull(const Register& rd,
446 const Register& rn,
447 const Register& rm);
448 inline void Smulh(const Register& rd,
449 const Register& rn,
450 const Register& rm);
451 inline void Stnp(const CPURegister& rt,
452 const CPURegister& rt2,
453 const MemOperand& dst);
454 inline void Stp(const CPURegister& rt,
455 const CPURegister& rt2,
456 const MemOperand& dst);
457 inline void Sxtb(const Register& rd, const Register& rn);
458 inline void Sxth(const Register& rd, const Register& rn);
459 inline void Sxtw(const Register& rd, const Register& rn);
460 void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
461 void Tbz(const Register& rt, unsigned bit_pos, Label* label);
462 inline void Ubfiz(const Register& rd,
463 const Register& rn,
464 unsigned lsb,
465 unsigned width);
466 inline void Ubfx(const Register& rd,
467 const Register& rn,
468 unsigned lsb,
469 unsigned width);
470 inline void Ucvtf(const FPRegister& fd,
471 const Register& rn,
472 unsigned fbits = 0);
473 inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
474 inline void Umaddl(const Register& rd,
475 const Register& rn,
476 const Register& rm,
477 const Register& ra);
478 inline void Umsubl(const Register& rd,
479 const Register& rn,
480 const Register& rm,
481 const Register& ra);
482 inline void Uxtb(const Register& rd, const Register& rn);
483 inline void Uxth(const Register& rd, const Register& rn);
484 inline void Uxtw(const Register& rd, const Register& rn);
485
486 // Pseudo-instructions ------------------------------------------------------
487
488 // Compute rd = abs(rm).
489 // This function clobbers the condition flags.
490 //
491 // If rm is the minimum representable value, the result is not representable.
492 // Handlers for each case can be specified using the relevant labels.
493 void Abs(const Register& rd, const Register& rm,
494 Label * is_not_representable = NULL,
495 Label * is_representable = NULL);
496
497 // Push or pop up to 4 registers of the same width to or from the stack,
498 // using the current stack pointer as set by SetStackPointer.
499 //
500 // If an argument register is 'NoReg', all further arguments are also assumed
501 // to be 'NoReg', and are thus not pushed or popped.
502 //
503 // Arguments are ordered such that "Push(a, b);" is functionally equivalent
504 // to "Push(a); Push(b);".
505 //
506 // It is valid to push the same register more than once, and there is no
507 // restriction on the order in which registers are specified.
508 //
509 // It is not valid to pop into the same register more than once in one
510 // operation, not even into the zero register.
511 //
512 // If the current stack pointer (as set by SetStackPointer) is csp, then it
513 // must be aligned to 16 bytes on entry and the total size of the specified
514 // registers must also be a multiple of 16 bytes.
515 //
516 // Even if the current stack pointer is not the system stack pointer (csp),
517 // Push (and derived methods) will still modify the system stack pointer in
518 // order to comply with ABI rules about accessing memory below the system
519 // stack pointer.
520 //
521 // Other than the registers passed into Pop, the stack pointer and (possibly)
522 // the system stack pointer, these methods do not modify any other registers.
523 // Scratch registers such as Tmp0() and Tmp1() are preserved.
524 void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
525 const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
526 void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
527 const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
528
529 // Alternative forms of Push and Pop, taking a RegList or CPURegList that
530 // specifies the registers that are to be pushed or popped. Higher-numbered
531 // registers are associated with higher memory addresses (as in the A32 push
532 // and pop instructions).
533 //
534 // (Push|Pop)SizeRegList allow you to specify the register size as a
535 // parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are
536 // supported.
537 //
538 // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
539 void PushCPURegList(CPURegList registers);
540 void PopCPURegList(CPURegList registers);
541
542 inline void PushSizeRegList(RegList registers, unsigned reg_size,
543 CPURegister::RegisterType type = CPURegister::kRegister) {
544 PushCPURegList(CPURegList(type, reg_size, registers));
545 }
546 inline void PopSizeRegList(RegList registers, unsigned reg_size,
547 CPURegister::RegisterType type = CPURegister::kRegister) {
548 PopCPURegList(CPURegList(type, reg_size, registers));
549 }
550 inline void PushXRegList(RegList regs) {
551 PushSizeRegList(regs, kXRegSize);
552 }
553 inline void PopXRegList(RegList regs) {
554 PopSizeRegList(regs, kXRegSize);
555 }
556 inline void PushWRegList(RegList regs) {
557 PushSizeRegList(regs, kWRegSize);
558 }
559 inline void PopWRegList(RegList regs) {
560 PopSizeRegList(regs, kWRegSize);
561 }
562 inline void PushDRegList(RegList regs) {
563 PushSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
564 }
565 inline void PopDRegList(RegList regs) {
566 PopSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
567 }
568 inline void PushSRegList(RegList regs) {
569 PushSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
570 }
571 inline void PopSRegList(RegList regs) {
572 PopSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
573 }
574
575 // Push the specified register 'count' times.
576 void PushMultipleTimes(CPURegister src, Register count);
577 void PushMultipleTimes(CPURegister src, int count);
578
579 // This is a convenience method for pushing a single Handle<Object>.
580 inline void Push(Handle<Object> handle);
581 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
582
583 // Aliases of Push and Pop, required for V8 compatibility.
584 inline void push(Register src) {
585 Push(src);
586 }
587 inline void pop(Register dst) {
588 Pop(dst);
589 }
590
591 // Sometimes callers need to push or pop multiple registers in a way that is
592 // difficult to structure efficiently for fixed Push or Pop calls. This scope
593 // allows push requests to be queued up, then flushed at once. The
594 // MacroAssembler will try to generate the most efficient sequence required.
595 //
596 // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
597 // register sizes and types.
598 class PushPopQueue {
599 public:
600 explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
601
602 ~PushPopQueue() {
603 ASSERT(queued_.empty());
604 }
605
606 void Queue(const CPURegister& rt) {
607 size_ += rt.SizeInBytes();
608 queued_.push_back(rt);
609 }
610
611 void PushQueued();
612 void PopQueued();
613
614 private:
615 MacroAssembler* masm_;
616 int size_;
617 std::vector<CPURegister> queued_;
618 };
619
620 // Poke 'src' onto the stack. The offset is in bytes.
621 //
622 // If the current stack pointer (according to StackPointer()) is csp, then
623 // csp must be aligned to 16 bytes.
624 void Poke(const CPURegister& src, const Operand& offset);
625
626 // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
627 //
628 // If the current stack pointer (according to StackPointer()) is csp, then
629 // csp must be aligned to 16 bytes.
630 void Peek(const CPURegister& dst, const Operand& offset);
631
632 // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
633 // with 'src2' at a higher address than 'src1'. The offset is in bytes.
634 //
635 // If the current stack pointer (according to StackPointer()) is csp, then
636 // csp must be aligned to 16 bytes.
637 void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
638
639 // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
640 // values peeked will be adjacent, with the value in 'dst2' being from a
641 // higher address than 'dst1'. The offset is in bytes.
642 //
643 // If the current stack pointer (according to StackPointer()) is csp, then
644 // csp must be aligned to 16 bytes.
645 void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
646
647 // Claim or drop stack space without actually accessing memory.
648 //
649 // In debug mode, both of these will write invalid data into the claimed or
650 // dropped space.
651 //
652 // If the current stack pointer (according to StackPointer()) is csp, then it
653 // must be aligned to 16 bytes and the size claimed or dropped must be a
654 // multiple of 16 bytes.
655 //
656 // Note that unit_size must be specified in bytes. For variants which take a
657 // Register count, the unit size must be a power of two.
658 inline void Claim(uint64_t count, uint64_t unit_size = kXRegSizeInBytes);
659 inline void Claim(const Register& count,
660 uint64_t unit_size = kXRegSizeInBytes);
661 inline void Drop(uint64_t count, uint64_t unit_size = kXRegSizeInBytes);
662 inline void Drop(const Register& count,
663 uint64_t unit_size = kXRegSizeInBytes);
664
665 // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
666 // register.
667 inline void ClaimBySMI(const Register& count_smi,
668 uint64_t unit_size = kXRegSizeInBytes);
669 inline void DropBySMI(const Register& count_smi,
670 uint64_t unit_size = kXRegSizeInBytes);
671
672 // Compare a register with an operand, and branch to label depending on the
673 // condition. May corrupt the status flags.
674 inline void CompareAndBranch(const Register& lhs,
675 const Operand& rhs,
676 Condition cond,
677 Label* label);
678
679 // Test the bits of register defined by bit_pattern, and branch if ANY of
680 // those bits are set. May corrupt the status flags.
681 inline void TestAndBranchIfAnySet(const Register& reg,
682 const uint64_t bit_pattern,
683 Label* label);
684
685 // Test the bits of register defined by bit_pattern, and branch if ALL of
686 // those bits are clear (ie. not set.) May corrupt the status flags.
687 inline void TestAndBranchIfAllClear(const Register& reg,
688 const uint64_t bit_pattern,
689 Label* label);
690
691 // Insert one or more instructions into the instruction stream that encode
692 // some caller-defined data. The instructions used will be executable with no
693 // side effects.
694 inline void InlineData(uint64_t data);
695
696 // Insert an instrumentation enable marker into the instruction stream.
697 inline void EnableInstrumentation();
698
699 // Insert an instrumentation disable marker into the instruction stream.
700 inline void DisableInstrumentation();
701
702 // Insert an instrumentation event marker into the instruction stream. These
703 // will be picked up by the instrumentation system to annotate an instruction
704 // profile. The argument marker_name must be a printable two character string;
705 // it will be encoded in the event marker.
706 inline void AnnotateInstrumentation(const char* marker_name);
707
708 // If emit_debug_code() is true, emit a run-time check to ensure that
709 // StackPointer() does not point below the system stack pointer.
710 //
711 // Whilst it is architecturally legal for StackPointer() to point below csp,
712 // it can be evidence of a potential bug because the ABI forbids accesses
713 // below csp.
714 //
715 // If emit_debug_code() is false, this emits no code.
716 //
717 // If StackPointer() is the system stack pointer, this emits no code.
718 void AssertStackConsistency();
719
720 // Preserve the callee-saved registers (as defined by AAPCS64).
721 //
722 // Higher-numbered registers are pushed before lower-numbered registers, and
723 // thus get higher addresses.
724 // Floating-point registers are pushed before general-purpose registers, and
725 // thus get higher addresses.
726 //
727 // Note that registers are not checked for invalid values. Use this method
728 // only if you know that the GC won't try to examine the values on the stack.
729 //
730 // This method must not be called unless the current stack pointer (as set by
731 // SetStackPointer) is the system stack pointer (csp), and is aligned to
732 // ActivationFrameAlignment().
733 void PushCalleeSavedRegisters();
734
735 // Restore the callee-saved registers (as defined by AAPCS64).
736 //
737 // Higher-numbered registers are popped after lower-numbered registers, and
738 // thus come from higher addresses.
739 // Floating-point registers are popped after general-purpose registers, and
740 // thus come from higher addresses.
741 //
742 // This method must not be called unless the current stack pointer (as set by
743 // SetStackPointer) is the system stack pointer (csp), and is aligned to
744 // ActivationFrameAlignment().
745 void PopCalleeSavedRegisters();
746
747 // Set the current stack pointer, but don't generate any code.
748 inline void SetStackPointer(const Register& stack_pointer) {
749 ASSERT(!AreAliased(stack_pointer, Tmp0(), Tmp1()));
750 sp_ = stack_pointer;
751 }
752
753 // Return the current stack pointer, as set by SetStackPointer.
754 inline const Register& StackPointer() const {
755 return sp_;
756 }
757
758 // Align csp for a frame, as per ActivationFrameAlignment, and make it the
759 // current stack pointer.
760 inline void AlignAndSetCSPForFrame() {
761 int sp_alignment = ActivationFrameAlignment();
762 // AAPCS64 mandates at least 16-byte alignment.
763 ASSERT(sp_alignment >= 16);
764 ASSERT(IsPowerOf2(sp_alignment));
765 Bic(csp, StackPointer(), sp_alignment - 1);
766 SetStackPointer(csp);
767 }
768
769 // Push the system stack pointer (csp) down to allow the same to be done to
770 // the current stack pointer (according to StackPointer()). This must be
771 // called _before_ accessing the memory.
772 //
773 // This is necessary when pushing or otherwise adding things to the stack, to
774 // satisfy the AAPCS64 constraint that the memory below the system stack
775 // pointer is not accessed.
776 //
777 // This method asserts that StackPointer() is not csp, since the call does
778 // not make sense in that context.
779 //
780 // TODO(jbramley): Currently, this method can only accept values of 'space'
781 // that can be encoded in one instruction. Refer to the implementation for
782 // details.
783 inline void BumpSystemStackPointer(const Operand& space);
784
785 // Helpers ------------------------------------------------------------------
786 // Root register.
787 inline void InitializeRootRegister();
788
789 // Load an object from the root table.
790 void LoadRoot(Register destination,
791 Heap::RootListIndex index);
792 // Store an object to the root table.
793 void StoreRoot(Register source,
794 Heap::RootListIndex index);
795
796 // Load both TrueValue and FalseValue roots.
797 void LoadTrueFalseRoots(Register true_root, Register false_root);
798
799 void LoadHeapObject(Register dst, Handle<HeapObject> object);
800
801 void LoadObject(Register result, Handle<Object> object) {
802 AllowDeferredHandleDereference heap_object_check;
803 if (object->IsHeapObject()) {
804 LoadHeapObject(result, Handle<HeapObject>::cast(object));
805 } else {
806 ASSERT(object->IsSmi());
807 Mov(result, Operand(object));
808 }
809 }
810
811 static int SafepointRegisterStackIndex(int reg_code);
812
813 // This is required for compatibility with architecture independant code.
814 // Remove if not needed.
815 inline void Move(Register dst, Register src) { Mov(dst, src); }
816
817 void LoadInstanceDescriptors(Register map,
818 Register descriptors);
819 void EnumLengthUntagged(Register dst, Register map);
820 void EnumLengthSmi(Register dst, Register map);
821 void NumberOfOwnDescriptors(Register dst, Register map);
822
823 template<typename Field>
824 void DecodeField(Register reg) {
825 static const uint64_t shift = Field::kShift + kSmiShift;
826 static const uint64_t setbits = CountSetBits(Field::kMask, 32);
827 Ubfx(reg, reg, shift, setbits);
828 }
829
830 // ---- SMI and Number Utilities ----
831
832 inline void SmiTag(Register dst, Register src);
833 inline void SmiTag(Register smi);
834 inline void SmiUntag(Register dst, Register src);
835 inline void SmiUntag(Register smi);
836 inline void SmiUntagToDouble(FPRegister dst,
837 Register src,
838 UntagMode mode = kNotSpeculativeUntag);
839 inline void SmiUntagToFloat(FPRegister dst,
840 Register src,
841 UntagMode mode = kNotSpeculativeUntag);
842
843 // Compute the absolute value of 'smi' and leave the result in 'smi'
844 // register. If 'smi' is the most negative SMI, the absolute value cannot
845 // be represented as a SMI and a jump to 'slow' is done.
846 void SmiAbs(const Register& smi, Label* slow);
847
848 inline void JumpIfSmi(Register value,
849 Label* smi_label,
850 Label* not_smi_label = NULL);
851 inline void JumpIfNotSmi(Register value, Label* not_smi_label);
852 inline void JumpIfBothSmi(Register value1,
853 Register value2,
854 Label* both_smi_label,
855 Label* not_smi_label = NULL);
856 inline void JumpIfEitherSmi(Register value1,
857 Register value2,
858 Label* either_smi_label,
859 Label* not_smi_label = NULL);
860 inline void JumpIfEitherNotSmi(Register value1,
861 Register value2,
862 Label* not_smi_label);
863 inline void JumpIfBothNotSmi(Register value1,
864 Register value2,
865 Label* not_smi_label);
866
867 // Abort execution if argument is a smi, enabled via --debug-code.
868 void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
869 void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
870
871 // Abort execution if argument is not a name, enabled via --debug-code.
872 void AssertName(Register object);
873
874 // Abort execution if argument is not a string, enabled via --debug-code.
875 void AssertString(Register object);
876
877 void JumpForHeapNumber(Register object,
878 Register heap_number_map,
879 Label* on_heap_number,
880 Label* on_not_heap_number = NULL);
881 void JumpIfHeapNumber(Register object,
882 Label* on_heap_number,
883 Register heap_number_map = NoReg);
884 void JumpIfNotHeapNumber(Register object,
885 Label* on_not_heap_number,
886 Register heap_number_map = NoReg);
887
888 // Jump to label if the input double register contains -0.0.
889 void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
890
891 // Generate code to do a lookup in the number string cache. If the number in
892 // the register object is found in the cache the generated code falls through
893 // with the result in the result register. The object and the result register
894 // can be the same. If the number is not found in the cache the code jumps to
895 // the label not_found with only the content of register object unchanged.
896 void LookupNumberStringCache(Register object,
897 Register result,
898 Register scratch1,
899 Register scratch2,
900 Register scratch3,
901 Label* not_found);
902
903 // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
904 // output.
905 void ClampInt32ToUint8(Register in_out);
906 void ClampInt32ToUint8(Register output, Register input);
907
908 // Saturate a double in input to an unsigned 8-bit integer in output.
909 void ClampDoubleToUint8(Register output,
910 DoubleRegister input,
911 DoubleRegister dbl_scratch);
912
913 // Try to convert a double to a signed 32-bit int.
914 // This succeeds if the result compares equal to the input, so inputs of -0.0
915 // are converted to 0 and handled as a success.
916 void TryConvertDoubleToInt32(Register as_int,
917 FPRegister value,
918 FPRegister scratch_d,
919 Label* on_successful_conversion,
920 Label* on_failed_conversion = NULL) {
921 ASSERT(as_int.Is32Bits());
922 TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
923 on_failed_conversion);
924 }
925
926 // Try to convert a double to a signed 64-bit int.
927 // This succeeds if the result compares equal to the input, so inputs of -0.0
928 // are converted to 0 and handled as a success.
929 void TryConvertDoubleToInt64(Register as_int,
930 FPRegister value,
931 FPRegister scratch_d,
932 Label* on_successful_conversion,
933 Label* on_failed_conversion = NULL) {
934 ASSERT(as_int.Is64Bits());
935 TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
936 on_failed_conversion);
937 }
938
939 // ---- Object Utilities ----
940
941 // Copy fields from 'src' to 'dst', where both are tagged objects.
942 // The 'temps' list is a list of X registers which can be used for scratch
943 // values. The temps list must include at least one register, and it must not
944 // contain Tmp0() or Tmp1().
945 //
946 // Currently, CopyFields cannot make use of more than three registers from
947 // the 'temps' list.
948 //
949 // As with several MacroAssembler methods, Tmp0() and Tmp1() will be used.
950 void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
951
952 // Copies a number of bytes from src to dst. All passed registers are
953 // clobbered. On exit src and dst will point to the place just after where the
954 // last byte was read or written and length will be zero. Hint may be used to
955 // determine which is the most efficient algorithm to use for copying.
956 void CopyBytes(Register dst,
957 Register src,
958 Register length,
959 Register scratch,
960 CopyHint hint = kCopyUnknown);
961
962 // Initialize fields with filler values. Fields starting at start_offset not
963 // including end_offset are overwritten with the value in filler. At the end
964 // of the loop, start_offset takes the value of end_offset.
965 void InitializeFieldsWithFiller(Register start_offset,
966 Register end_offset,
967 Register filler);
968
969 // ---- String Utilities ----
970
971
972 // Jump to label if either object is not a sequential ASCII string.
973 // Optionally perform a smi check on the objects first.
974 void JumpIfEitherIsNotSequentialAsciiStrings(
975 Register first,
976 Register second,
977 Register scratch1,
978 Register scratch2,
979 Label* failure,
980 SmiCheckType smi_check = DO_SMI_CHECK);
981
982 // Check if instance type is sequential ASCII string and jump to label if
983 // it is not.
984 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
985 Register scratch,
986 Label* failure);
987
988 // Checks if both instance types are sequential ASCII strings and jumps to
989 // label if either is not.
990 void JumpIfEitherInstanceTypeIsNotSequentialAscii(
991 Register first_object_instance_type,
992 Register second_object_instance_type,
993 Register scratch1,
994 Register scratch2,
995 Label* failure);
996
997 // Checks if both instance types are sequential ASCII strings and jumps to
998 // label if either is not.
999 void JumpIfBothInstanceTypesAreNotSequentialAscii(
1000 Register first_object_instance_type,
1001 Register second_object_instance_type,
1002 Register scratch1,
1003 Register scratch2,
1004 Label* failure);
1005
1006 void JumpIfNotUniqueName(Register type, Label* not_unique_name);
1007
1008 // ---- Calling / Jumping helpers ----
1009
1010 // This is required for compatibility in architecture indepenedant code.
1011 inline void jmp(Label* L) { B(L); }
1012
1013 // Passes thrown value to the handler of top of the try handler chain.
1014 // Register value must be x0.
1015 void Throw(Register value,
1016 Register scratch1,
1017 Register scratch2,
1018 Register scratch3,
1019 Register scratch4);
1020
1021 // Propagates an uncatchable exception to the top of the current JS stack's
1022 // handler chain. Register value must be x0.
1023 void ThrowUncatchable(Register value,
1024 Register scratch1,
1025 Register scratch2,
1026 Register scratch3,
1027 Register scratch4);
1028
1029 // Throw a message string as an exception.
1030 void Throw(BailoutReason reason);
1031
1032 // Throw a message string as an exception if a condition is not true.
1033 void ThrowIf(Condition cc, BailoutReason reason);
1034
1035 // Throw a message string as an exception if the value is a smi.
1036 void ThrowIfSmi(const Register& value, BailoutReason reason);
1037
1038 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1039 void TailCallStub(CodeStub* stub);
1040
1041 void CallRuntime(const Runtime::Function* f,
1042 int num_arguments,
1043 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1044
1045 void CallRuntime(Runtime::FunctionId id,
1046 int num_arguments,
1047 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1048 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1049 }
1050
1051 // TODO(all): Why does this variant save FP regs unconditionally?
1052 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1053 const Runtime::Function* function = Runtime::FunctionForId(id);
1054 CallRuntime(function, function->nargs, kSaveFPRegs);
1055 }
1056
1057 void TailCallRuntime(Runtime::FunctionId fid,
1058 int num_arguments,
1059 int result_size);
1060
1061 int ActivationFrameAlignment();
1062
1063 // Calls a C function.
1064 // The called function is not allowed to trigger a
1065 // garbage collection, since that might move the code and invalidate the
1066 // return address (unless this is somehow accounted for by the called
1067 // function).
1068 void CallCFunction(ExternalReference function,
1069 int num_reg_arguments);
1070 void CallCFunction(ExternalReference function,
1071 int num_reg_arguments,
1072 int num_double_arguments);
1073 void CallCFunction(Register function,
1074 int num_reg_arguments,
1075 int num_double_arguments);
1076
1077 // Calls an API function. Allocates HandleScope, extracts returned value
1078 // from handle and propagates exceptions.
1079 // 'stack_space' is the space to be unwound on exit (includes the call JS
1080 // arguments space and the additional space allocated for the fast call).
1081 // 'spill_offset' is the offset from the stack pointer where
1082 // CallApiFunctionAndReturn can spill registers.
1083 void CallApiFunctionAndReturn(Register function_address,
1084 ExternalReference thunk_ref,
1085 int stack_space,
1086 int spill_offset,
1087 MemOperand return_value_operand,
1088 MemOperand* context_restore_operand);
1089
1090 // The number of register that CallApiFunctionAndReturn will need to save on
1091 // the stack. The space for these registers need to be allocated in the
1092 // ExitFrame before calling CallApiFunctionAndReturn.
1093 static const int kCallApiFunctionSpillSpace = 4;
1094
1095 // Jump to a runtime routine.
1096 void JumpToExternalReference(const ExternalReference& builtin);
1097 // Tail call of a runtime routine (jump).
1098 // Like JumpToExternalReference, but also takes care of passing the number
1099 // of parameters.
1100 void TailCallExternalReference(const ExternalReference& ext,
1101 int num_arguments,
1102 int result_size);
1103 void CallExternalReference(const ExternalReference& ext,
1104 int num_arguments);
1105
1106
1107 // Invoke specified builtin JavaScript function. Adds an entry to
1108 // the unresolved list if the name does not resolve.
1109 void InvokeBuiltin(Builtins::JavaScript id,
1110 InvokeFlag flag,
1111 const CallWrapper& call_wrapper = NullCallWrapper());
1112
1113 // Store the code object for the given builtin in the target register and
1114 // setup the function in x1.
1115 // TODO(all): Can we use another register than x1?
1116 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1117
1118 // Store the function for the given builtin in the target register.
1119 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1120
1121 void Jump(Register target);
1122 void Jump(Address target, RelocInfo::Mode rmode);
1123 void Jump(Handle<Code> code, RelocInfo::Mode rmode);
1124 void Jump(intptr_t target, RelocInfo::Mode rmode);
1125
1126 void Call(Register target);
1127 void Call(Label* target);
1128 void Call(Address target, RelocInfo::Mode rmode);
1129 void Call(Handle<Code> code,
1130 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1131 TypeFeedbackId ast_id = TypeFeedbackId::None());
1132
1133 // For every Call variant, there is a matching CallSize function that returns
1134 // the size (in bytes) of the call sequence.
1135 static int CallSize(Register target);
1136 static int CallSize(Label* target);
1137 static int CallSize(Address target, RelocInfo::Mode rmode);
1138 static int CallSize(Handle<Code> code,
1139 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1140 TypeFeedbackId ast_id = TypeFeedbackId::None());
1141
1142 // Registers used through the invocation chain are hard-coded.
1143 // We force passing the parameters to ensure the contracts are correctly
1144 // honoured by the caller.
1145 // 'function' must be x1.
1146 // 'actual' must use an immediate or x0.
1147 // 'expected' must use an immediate or x2.
1148 // 'call_kind' must be x5.
1149 void InvokePrologue(const ParameterCount& expected,
1150 const ParameterCount& actual,
1151 Handle<Code> code_constant,
1152 Register code_reg,
1153 Label* done,
1154 InvokeFlag flag,
1155 bool* definitely_mismatches,
1156 const CallWrapper& call_wrapper);
1157 void InvokeCode(Register code,
1158 const ParameterCount& expected,
1159 const ParameterCount& actual,
1160 InvokeFlag flag,
1161 const CallWrapper& call_wrapper);
1162 // Invoke the JavaScript function in the given register.
1163 // Changes the current context to the context in the function before invoking.
1164 void InvokeFunction(Register function,
1165 const ParameterCount& actual,
1166 InvokeFlag flag,
1167 const CallWrapper& call_wrapper);
1168 void InvokeFunction(Register function,
1169 const ParameterCount& expected,
1170 const ParameterCount& actual,
1171 InvokeFlag flag,
1172 const CallWrapper& call_wrapper);
1173 void InvokeFunction(Handle<JSFunction> function,
1174 const ParameterCount& expected,
1175 const ParameterCount& actual,
1176 InvokeFlag flag,
1177 const CallWrapper& call_wrapper);
1178
1179
1180 // ---- Floating point helpers ----
1181
1182 // Perform a conversion from a double to a signed int64. If the input fits in
1183 // range of the 64-bit result, execution branches to done. Otherwise,
1184 // execution falls through, and the sign of the result can be used to
1185 // determine if overflow was towards positive or negative infinity.
1186 //
1187 // On successful conversion, the least significant 32 bits of the result are
1188 // equivalent to the ECMA-262 operation "ToInt32".
1189 //
1190 // Only public for the test code in test-code-stubs-a64.cc.
1191 void TryConvertDoubleToInt64(Register result,
1192 DoubleRegister input,
1193 Label* done);
1194
1195 // Performs a truncating conversion of a floating point number as used by
1196 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1197 // Exits with 'result' holding the answer.
1198 void TruncateDoubleToI(Register result, DoubleRegister double_input);
1199
1200 // Performs a truncating conversion of a heap number as used by
1201 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1202 // must be different registers. Exits with 'result' holding the answer.
1203 void TruncateHeapNumberToI(Register result, Register object);
1204
1205 // Converts the smi or heap number in object to an int32 using the rules
1206 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1207 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1208 // different registers.
1209 void TruncateNumberToI(Register object,
1210 Register result,
1211 Register heap_number_map,
1212 Label* not_int32);
1213
1214 // ---- Code generation helpers ----
1215
1216 void set_generating_stub(bool value) { generating_stub_ = value; }
1217 bool generating_stub() const { return generating_stub_; }
1218 #if DEBUG
1219 void set_allow_macro_instructions(bool value) {
1220 allow_macro_instructions_ = value;
1221 }
1222 bool allow_macro_instructions() const { return allow_macro_instructions_; }
1223 #endif
1224 bool use_real_aborts() const { return use_real_aborts_; }
1225 void set_has_frame(bool value) { has_frame_ = value; }
1226 bool has_frame() const { return has_frame_; }
1227 bool AllowThisStubCall(CodeStub* stub);
1228
1229 class NoUseRealAbortsScope {
1230 public:
1231 explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1232 saved_(masm->use_real_aborts_), masm_(masm) {
1233 masm_->use_real_aborts_ = false;
1234 }
1235 ~NoUseRealAbortsScope() {
1236 masm_->use_real_aborts_ = saved_;
1237 }
1238 private:
1239 bool saved_;
1240 MacroAssembler* masm_;
1241 };
1242
1243 #ifdef ENABLE_DEBUGGER_SUPPORT
1244 // ---------------------------------------------------------------------------
1245 // Debugger Support
1246
1247 void DebugBreak();
1248 #endif
1249 // ---------------------------------------------------------------------------
1250 // Exception handling
1251
1252 // Push a new try handler and link into try handler chain.
1253 void PushTryHandler(StackHandler::Kind kind, int handler_index);
1254
1255 // Unlink the stack handler on top of the stack from the try handler chain.
1256 // Must preserve the result register.
1257 void PopTryHandler();
1258
1259
1260 // ---------------------------------------------------------------------------
1261 // Allocation support
1262
1263 // Allocate an object in new space or old pointer space. The object_size is
1264 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1265 // is passed. The allocated object is returned in result.
1266 //
1267 // If the new space is exhausted control continues at the gc_required label.
1268 // In this case, the result and scratch registers may still be clobbered.
1269 // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
1270 void Allocate(Register object_size,
1271 Register result,
1272 Register scratch1,
1273 Register scratch2,
1274 Label* gc_required,
1275 AllocationFlags flags);
1276
1277 void Allocate(int object_size,
1278 Register result,
1279 Register scratch1,
1280 Register scratch2,
1281 Label* gc_required,
1282 AllocationFlags flags);
1283
1284 // Undo allocation in new space. The object passed and objects allocated after
1285 // it will no longer be allocated. The caller must make sure that no pointers
1286 // are left to the object(s) no longer allocated as they would be invalid when
1287 // allocation is undone.
1288 void UndoAllocationInNewSpace(Register object, Register scratch);
1289
1290 void AllocateTwoByteString(Register result,
1291 Register length,
1292 Register scratch1,
1293 Register scratch2,
1294 Register scratch3,
1295 Label* gc_required);
1296 void AllocateAsciiString(Register result,
1297 Register length,
1298 Register scratch1,
1299 Register scratch2,
1300 Register scratch3,
1301 Label* gc_required);
1302 void AllocateTwoByteConsString(Register result,
1303 Register length,
1304 Register scratch1,
1305 Register scratch2,
1306 Label* gc_required);
1307 void AllocateAsciiConsString(Register result,
1308 Register length,
1309 Register scratch1,
1310 Register scratch2,
1311 Label* gc_required);
1312 void AllocateTwoByteSlicedString(Register result,
1313 Register length,
1314 Register scratch1,
1315 Register scratch2,
1316 Label* gc_required);
1317 void AllocateAsciiSlicedString(Register result,
1318 Register length,
1319 Register scratch1,
1320 Register scratch2,
1321 Label* gc_required);
1322
1323 // Allocates a heap number or jumps to the gc_required label if the young
1324 // space is full and a scavenge is needed.
1325 // All registers are clobbered.
1326 // If no heap_number_map register is provided, the function will take care of
1327 // loading it.
1328 void AllocateHeapNumber(Register result,
1329 Label* gc_required,
1330 Register scratch1,
1331 Register scratch2,
1332 Register heap_number_map = NoReg);
1333 void AllocateHeapNumberWithValue(Register result,
1334 DoubleRegister value,
1335 Label* gc_required,
1336 Register scratch1,
1337 Register scratch2,
1338 Register heap_number_map = NoReg);
1339
1340 // ---------------------------------------------------------------------------
1341 // Support functions.
1342
1343 // Try to get function prototype of a function and puts the value in the
1344 // result register. Checks that the function really is a function and jumps
1345 // to the miss label if the fast checks fail. The function register will be
1346 // untouched; the other registers may be clobbered.
1347 enum BoundFunctionAction {
1348 kMissOnBoundFunction,
1349 kDontMissOnBoundFunction
1350 };
1351
1352 void TryGetFunctionPrototype(Register function,
1353 Register result,
1354 Register scratch,
1355 Label* miss,
1356 BoundFunctionAction action =
1357 kDontMissOnBoundFunction);
1358
1359 // Compare object type for heap object. heap_object contains a non-Smi
1360 // whose object type should be compared with the given type. This both
1361 // sets the flags and leaves the object type in the type_reg register.
1362 // It leaves the map in the map register (unless the type_reg and map register
1363 // are the same register). It leaves the heap object in the heap_object
1364 // register unless the heap_object register is the same register as one of the
1365 // other registers.
1366 void CompareObjectType(Register heap_object,
1367 Register map,
1368 Register type_reg,
1369 InstanceType type);
1370
1371
1372 // Compare object type for heap object, and branch if equal (or not.)
1373 // heap_object contains a non-Smi whose object type should be compared with
1374 // the given type. This both sets the flags and leaves the object type in
1375 // the type_reg register. It leaves the map in the map register (unless the
1376 // type_reg and map register are the same register). It leaves the heap
1377 // object in the heap_object register unless the heap_object register is the
1378 // same register as one of the other registers.
1379 void JumpIfObjectType(Register object,
1380 Register map,
1381 Register type_reg,
1382 InstanceType type,
1383 Label* if_cond_pass,
1384 Condition cond = eq);
1385
1386 void JumpIfNotObjectType(Register object,
1387 Register map,
1388 Register type_reg,
1389 InstanceType type,
1390 Label* if_not_object);
1391
1392 // Compare instance type in a map. map contains a valid map object whose
1393 // object type should be compared with the given type. This both
1394 // sets the flags and leaves the object type in the type_reg register.
1395 void CompareInstanceType(Register map,
1396 Register type_reg,
1397 InstanceType type);
1398
1399 // Compare an object's map with the specified map. Condition flags are set
1400 // with result of map compare.
1401 void CompareMap(Register obj,
1402 Register scratch,
1403 Handle<Map> map);
1404
1405 // As above, but the map of the object is already loaded into the register
1406 // which is preserved by the code generated.
1407 void CompareMap(Register obj_map,
1408 Handle<Map> map);
1409
1410 // Check if the map of an object is equal to a specified map and branch to
1411 // label if not. Skip the smi check if not required (object is known to be a
1412 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1413 // against maps that are ElementsKind transition maps of the specified map.
1414 void CheckMap(Register obj,
1415 Register scratch,
1416 Handle<Map> map,
1417 Label* fail,
1418 SmiCheckType smi_check_type);
1419
1420
1421 void CheckMap(Register obj,
1422 Register scratch,
1423 Heap::RootListIndex index,
1424 Label* fail,
1425 SmiCheckType smi_check_type);
1426
1427 // As above, but the map of the object is already loaded into obj_map, and is
1428 // preserved.
1429 void CheckMap(Register obj_map,
1430 Handle<Map> map,
1431 Label* fail,
1432 SmiCheckType smi_check_type);
1433
1434 // Check if the map of an object is equal to a specified map and branch to a
1435 // specified target if equal. Skip the smi check if not required (object is
1436 // known to be a heap object)
1437 void DispatchMap(Register obj,
1438 Register scratch,
1439 Handle<Map> map,
1440 Handle<Code> success,
1441 SmiCheckType smi_check_type);
1442
1443 // Test the bitfield of the heap object map with mask and set the condition
1444 // flags. The object register is preserved.
1445 void TestMapBitfield(Register object, uint64_t mask);
1446
1447 // Load the elements kind field of an object, and return it in the result
1448 // register.
1449 void LoadElementsKind(Register result, Register object);
1450
1451 // Compare the object in a register to a value from the root list.
1452 // Uses the Tmp0() register as scratch.
1453 void CompareRoot(const Register& obj, Heap::RootListIndex index);
1454
1455 // Compare the object in a register to a value and jump if they are equal.
1456 void JumpIfRoot(const Register& obj,
1457 Heap::RootListIndex index,
1458 Label* if_equal);
1459
1460 // Compare the object in a register to a value and jump if they are not equal.
1461 void JumpIfNotRoot(const Register& obj,
1462 Heap::RootListIndex index,
1463 Label* if_not_equal);
1464
1465 // Load and check the instance type of an object for being a unique name.
1466 // Loads the type into the second argument register.
1467 // The object and type arguments can be the same register; in that case it
1468 // will be overwritten with the type.
1469 // Fall-through if the object was a string and jump on fail otherwise.
1470 inline void IsObjectNameType(Register object, Register type, Label* fail);
1471
1472 inline void IsObjectJSObjectType(Register heap_object,
1473 Register map,
1474 Register scratch,
1475 Label* fail);
1476
1477 // Check the instance type in the given map to see if it corresponds to a
1478 // JS object type. Jump to the fail label if this is not the case and fall
1479 // through otherwise. However if fail label is NULL, no branch will be
1480 // performed and the flag will be updated. You can test the flag for "le"
1481 // condition to test if it is a valid JS object type.
1482 inline void IsInstanceJSObjectType(Register map,
1483 Register scratch,
1484 Label* fail);
1485
1486 // Load and check the instance type of an object for being a string.
1487 // Loads the type into the second argument register.
1488 // The object and type arguments can be the same register; in that case it
1489 // will be overwritten with the type.
1490 // Jumps to not_string or string appropriate. If the appropriate label is
1491 // NULL, fall through.
1492 inline void IsObjectJSStringType(Register object, Register type,
1493 Label* not_string, Label* string = NULL);
1494
1495 // Compare the contents of a register with an operand, and branch to true,
1496 // false or fall through, depending on condition.
1497 void CompareAndSplit(const Register& lhs,
1498 const Operand& rhs,
1499 Condition cond,
1500 Label* if_true,
1501 Label* if_false,
1502 Label* fall_through);
1503
1504 // Test the bits of register defined by bit_pattern, and branch to
1505 // if_any_set, if_all_clear or fall_through accordingly.
1506 void TestAndSplit(const Register& reg,
1507 uint64_t bit_pattern,
1508 Label* if_all_clear,
1509 Label* if_any_set,
1510 Label* fall_through);
1511
1512 // Check if a map for a JSObject indicates that the object has fast elements.
1513 // Jump to the specified label if it does not.
1514 void CheckFastElements(Register map,
1515 Register scratch,
1516 Label* fail);
1517
1518 // Check if a map for a JSObject indicates that the object can have both smi
1519 // and HeapObject elements. Jump to the specified label if it does not.
1520 void CheckFastObjectElements(Register map,
1521 Register scratch,
1522 Label* fail);
1523
1524 // Check if a map for a JSObject indicates that the object has fast smi only
1525 // elements. Jump to the specified label if it does not.
1526 void CheckFastSmiElements(Register map, Register scratch, Label* fail);
1527
1528 // Check to see if number can be stored as a double in FastDoubleElements.
1529 // If it can, store it at the index specified by key_reg in the array,
1530 // otherwise jump to fail.
1531 void StoreNumberToDoubleElements(Register value_reg,
1532 Register key_reg,
1533 Register elements_reg,
1534 Register scratch1,
1535 FPRegister fpscratch1,
1536 FPRegister fpscratch2,
1537 Label* fail,
1538 int elements_offset = 0);
1539
1540 // Picks out an array index from the hash field.
1541 // Register use:
1542 // hash - holds the index's hash. Clobbered.
1543 // index - holds the overwritten index on exit.
1544 void IndexFromHash(Register hash, Register index);
1545
1546 // ---------------------------------------------------------------------------
1547 // Inline caching support.
1548
1549 void EmitSeqStringSetCharCheck(Register string,
1550 Register index,
1551 SeqStringSetCharCheckIndexType index_type,
1552 Register scratch,
1553 uint32_t encoding_mask);
1554
1555 // Generate code for checking access rights - used for security checks
1556 // on access to global objects across environments. The holder register
1557 // is left untouched, whereas both scratch registers are clobbered.
1558 void CheckAccessGlobalProxy(Register holder_reg,
1559 Register scratch,
1560 Label* miss);
1561
1562 // Hash the interger value in 'key' register.
1563 // It uses the same algorithm as ComputeIntegerHash in utils.h.
1564 void GetNumberHash(Register key, Register scratch);
1565
1566 // Load value from the dictionary.
1567 //
1568 // elements - holds the slow-case elements of the receiver on entry.
1569 // Unchanged unless 'result' is the same register.
1570 //
1571 // key - holds the smi key on entry.
1572 // Unchanged unless 'result' is the same register.
1573 //
1574 // result - holds the result on exit if the load succeeded.
1575 // Allowed to be the same as 'key' or 'result'.
1576 // Unchanged on bailout so 'key' or 'result' can be used
1577 // in further computation.
1578 void LoadFromNumberDictionary(Label* miss,
1579 Register elements,
1580 Register key,
1581 Register result,
1582 Register scratch0,
1583 Register scratch1,
1584 Register scratch2,
1585 Register scratch3);
1586
1587 // ---------------------------------------------------------------------------
1588 // Frames.
1589
1590 // Activation support.
1591 // Note that Tmp0() and Tmp1() are used as a scratch registers. This is safe
1592 // because these methods are not used in Crankshaft.
1593 void EnterFrame(StackFrame::Type type);
1594 void LeaveFrame(StackFrame::Type type);
1595
1596 // Returns map with validated enum cache in object register.
1597 void CheckEnumCache(Register object,
1598 Register null_value,
1599 Register scratch0,
1600 Register scratch1,
1601 Register scratch2,
1602 Register scratch3,
1603 Label* call_runtime);
1604
1605 // AllocationMemento support. Arrays may have an associated
1606 // AllocationMemento object that can be checked for in order to pretransition
1607 // to another type.
1608 // On entry, receiver should point to the array object.
1609 // If allocation info is present, the Z flag is set (so that the eq
1610 // condition will pass).
1611 void TestJSArrayForAllocationMemento(Register receiver,
1612 Register scratch1,
1613 Register scratch2,
1614 Label* no_memento_found);
1615
1616 void JumpIfJSArrayHasAllocationMemento(Register receiver,
1617 Register scratch1,
1618 Register scratch2,
1619 Label* memento_found) {
1620 Label no_memento_found;
1621 TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
1622 &no_memento_found);
1623 B(eq, memento_found);
1624 Bind(&no_memento_found);
1625 }
1626
1627 // The stack pointer has to switch between csp and jssp when setting up and
1628 // destroying the exit frame. Hence preserving/restoring the registers is
1629 // slightly more complicated than simple push/pop operations.
1630 void ExitFramePreserveFPRegs();
1631 void ExitFrameRestoreFPRegs();
1632
1633 // Generates function and stub prologue code.
1634 void Prologue(PrologueFrameMode frame_mode);
1635
1636 // Enter exit frame. Exit frames are used when calling C code from generated
1637 // (JavaScript) code.
1638 //
1639 // The stack pointer must be jssp on entry, and will be set to csp by this
1640 // function. The frame pointer is also configured, but the only other
1641 // registers modified by this function are the provided scratch register, and
1642 // jssp.
1643 //
1644 // The 'extra_space' argument can be used to allocate some space in the exit
1645 // frame that will be ignored by the GC. This space will be reserved in the
1646 // bottom of the frame immediately above the return address slot.
1647 //
1648 // Set up a stack frame and registers as follows:
1649 // fp[8]: CallerPC (lr)
1650 // fp -> fp[0]: CallerFP (old fp)
1651 // fp[-8]: SPOffset (new csp)
1652 // fp[-16]: CodeObject()
1653 // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1654 // csp[8]: Memory reserved for the caller if extra_space != 0.
1655 // Alignment padding, if necessary.
1656 // csp -> csp[0]: Space reserved for the return address.
1657 //
1658 // This function also stores the new frame information in the top frame, so
1659 // that the new frame becomes the current frame.
1660 void EnterExitFrame(bool save_doubles,
1661 const Register& scratch,
1662 int extra_space = 0);
1663
1664 // Leave the current exit frame, after a C function has returned to generated
1665 // (JavaScript) code.
1666 //
1667 // This effectively unwinds the operation of EnterExitFrame:
1668 // * Preserved doubles are restored (if restore_doubles is true).
1669 // * The frame information is removed from the top frame.
1670 // * The exit frame is dropped.
1671 // * The stack pointer is reset to jssp.
1672 //
1673 // The stack pointer must be csp on entry.
1674 void LeaveExitFrame(bool save_doubles,
1675 const Register& scratch,
1676 bool restore_context);
1677
1678 void LoadContext(Register dst, int context_chain_length);
1679
1680 // ---------------------------------------------------------------------------
1681 // StatsCounter support
1682
1683 void SetCounter(StatsCounter* counter, int value, Register scratch1,
1684 Register scratch2);
1685 void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1686 Register scratch2);
1687 void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1688 Register scratch2);
1689
1690 // ---------------------------------------------------------------------------
1691 // Garbage collector support (GC).
1692
1693 enum RememberedSetFinalAction {
1694 kReturnAtEnd,
1695 kFallThroughAtEnd
1696 };
1697
1698 // Record in the remembered set the fact that we have a pointer to new space
1699 // at the address pointed to by the addr register. Only works if addr is not
1700 // in new space.
1701 void RememberedSetHelper(Register object, // Used for debug code.
1702 Register addr,
1703 Register scratch,
1704 SaveFPRegsMode save_fp,
1705 RememberedSetFinalAction and_then);
1706
1707 // Push and pop the registers that can hold pointers, as defined by the
1708 // RegList constant kSafepointSavedRegisters.
1709 void PushSafepointRegisters();
1710 void PopSafepointRegisters();
1711
1712 void PushSafepointFPRegisters();
1713 void PopSafepointFPRegisters();
1714
1715 // Store value in register src in the safepoint stack slot for register dst.
1716 void StoreToSafepointRegisterSlot(Register src, Register dst) {
1717 Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1718 }
1719
1720 // Load the value of the src register from its safepoint stack slot
1721 // into register dst.
1722 void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1723 Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1724 }
1725
1726 void CheckPageFlagSet(const Register& object,
1727 const Register& scratch,
1728 int mask,
1729 Label* if_any_set);
1730
1731 void CheckPageFlagClear(const Register& object,
1732 const Register& scratch,
1733 int mask,
1734 Label* if_all_clear);
1735
1736 void CheckMapDeprecated(Handle<Map> map,
1737 Register scratch,
1738 Label* if_deprecated);
1739
1740 // Check if object is in new space and jump accordingly.
1741 // Register 'object' is preserved.
1742 void JumpIfNotInNewSpace(Register object,
1743 Label* branch) {
1744 InNewSpace(object, ne, branch);
1745 }
1746
1747 void JumpIfInNewSpace(Register object,
1748 Label* branch) {
1749 InNewSpace(object, eq, branch);
1750 }
1751
1752 // Notify the garbage collector that we wrote a pointer into an object.
1753 // |object| is the object being stored into, |value| is the object being
1754 // stored. value and scratch registers are clobbered by the operation.
1755 // The offset is the offset from the start of the object, not the offset from
1756 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
1757 void RecordWriteField(
1758 Register object,
1759 int offset,
1760 Register value,
1761 Register scratch,
1762 LinkRegisterStatus lr_status,
1763 SaveFPRegsMode save_fp,
1764 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1765 SmiCheck smi_check = INLINE_SMI_CHECK);
1766
1767 // As above, but the offset has the tag presubtracted. For use with
1768 // MemOperand(reg, off).
1769 inline void RecordWriteContextSlot(
1770 Register context,
1771 int offset,
1772 Register value,
1773 Register scratch,
1774 LinkRegisterStatus lr_status,
1775 SaveFPRegsMode save_fp,
1776 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1777 SmiCheck smi_check = INLINE_SMI_CHECK) {
1778 RecordWriteField(context,
1779 offset + kHeapObjectTag,
1780 value,
1781 scratch,
1782 lr_status,
1783 save_fp,
1784 remembered_set_action,
1785 smi_check);
1786 }
1787
1788 // For a given |object| notify the garbage collector that the slot |address|
1789 // has been written. |value| is the object being stored. The value and
1790 // address registers are clobbered by the operation.
1791 void RecordWrite(
1792 Register object,
1793 Register address,
1794 Register value,
1795 LinkRegisterStatus lr_status,
1796 SaveFPRegsMode save_fp,
1797 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1798 SmiCheck smi_check = INLINE_SMI_CHECK);
1799
1800 // Checks the color of an object. If the object is already grey or black
1801 // then we just fall through, since it is already live. If it is white and
1802 // we can determine that it doesn't need to be scanned, then we just mark it
1803 // black and fall through. For the rest we jump to the label so the
1804 // incremental marker can fix its assumptions.
1805 void EnsureNotWhite(Register object,
1806 Register scratch1,
1807 Register scratch2,
1808 Register scratch3,
1809 Register scratch4,
1810 Label* object_is_white_and_not_data);
1811
1812 // Detects conservatively whether an object is data-only, i.e. it does need to
1813 // be scanned by the garbage collector.
1814 void JumpIfDataObject(Register value,
1815 Register scratch,
1816 Label* not_data_object);
1817
1818 // Helper for finding the mark bits for an address.
1819 // Note that the behaviour slightly differs from other architectures.
1820 // On exit:
1821 // - addr_reg is unchanged.
1822 // - The bitmap register points at the word with the mark bits.
1823 // - The shift register contains the index of the first color bit for this
1824 // object in the bitmap.
1825 inline void GetMarkBits(Register addr_reg,
1826 Register bitmap_reg,
1827 Register shift_reg);
1828
1829 // Check if an object has a given incremental marking color.
1830 void HasColor(Register object,
1831 Register scratch0,
1832 Register scratch1,
1833 Label* has_color,
1834 int first_bit,
1835 int second_bit);
1836
1837 void JumpIfBlack(Register object,
1838 Register scratch0,
1839 Register scratch1,
1840 Label* on_black);
1841
1842
1843 // Get the location of a relocated constant (its address in the constant pool)
1844 // from its load site.
1845 void GetRelocatedValueLocation(Register ldr_location,
1846 Register result);
1847
1848
1849 // ---------------------------------------------------------------------------
1850 // Debugging.
1851
1852 // Calls Abort(msg) if the condition cond is not satisfied.
1853 // Use --debug_code to enable.
1854 void Assert(Condition cond, BailoutReason reason);
1855 void AssertRegisterIsClear(Register reg, BailoutReason reason);
1856 void AssertRegisterIsRoot(
1857 Register reg,
1858 Heap::RootListIndex index,
1859 BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1860 void AssertFastElements(Register elements);
1861
1862 // Abort if the specified register contains the invalid color bit pattern.
1863 // The pattern must be in bits [1:0] of 'reg' register.
1864 //
1865 // If emit_debug_code() is false, this emits no code.
1866 void AssertHasValidColor(const Register& reg);
1867
1868 // Abort if 'object' register doesn't point to a string object.
1869 //
1870 // If emit_debug_code() is false, this emits no code.
1871 void AssertIsString(const Register& object);
1872
1873 // Like Assert(), but always enabled.
1874 void Check(Condition cond, BailoutReason reason);
1875 void CheckRegisterIsClear(Register reg, BailoutReason reason);
1876
1877 // Print a message to stderr and abort execution.
1878 void Abort(BailoutReason reason);
1879
1880 // Conditionally load the cached Array transitioned map of type
1881 // transitioned_kind from the native context if the map in register
1882 // map_in_out is the cached Array map in the native context of
1883 // expected_kind.
1884 void LoadTransitionedArrayMapConditional(
1885 ElementsKind expected_kind,
1886 ElementsKind transitioned_kind,
1887 Register map_in_out,
1888 Register scratch,
1889 Label* no_map_match);
1890
1891 void LoadArrayFunction(Register function);
1892 void LoadGlobalFunction(int index, Register function);
1893
1894 // Load the initial map from the global function. The registers function and
1895 // map can be the same, function is then overwritten.
1896 void LoadGlobalFunctionInitialMap(Register function,
1897 Register map,
1898 Register scratch);
1899
1900 // --------------------------------------------------------------------------
1901 // Set the registers used internally by the MacroAssembler as scratch
1902 // registers. These registers are used to implement behaviours which are not
1903 // directly supported by A64, and where an intermediate result is required.
1904 //
1905 // Both tmp0 and tmp1 may be set to any X register except for xzr, sp,
1906 // and StackPointer(). Also, they must not be the same register (though they
1907 // may both be NoReg).
1908 //
1909 // It is valid to set either or both of these registers to NoReg if you don't
1910 // want the MacroAssembler to use any scratch registers. In a debug build, the
1911 // Assembler will assert that any registers it uses are valid. Be aware that
1912 // this check is not present in release builds. If this is a problem, use the
1913 // Assembler directly.
1914 void SetScratchRegisters(const Register& tmp0, const Register& tmp1) {
1915 // V8 assumes the macro assembler uses ip0 and ip1 as temp registers.
1916 ASSERT(tmp0.IsNone() || tmp0.Is(ip0));
1917 ASSERT(tmp1.IsNone() || tmp1.Is(ip1));
1918
1919 ASSERT(!AreAliased(xzr, csp, tmp0, tmp1));
1920 ASSERT(!AreAliased(StackPointer(), tmp0, tmp1));
1921 tmp0_ = tmp0;
1922 tmp1_ = tmp1;
1923 }
1924
1925 const Register& Tmp0() const {
1926 return tmp0_;
1927 }
1928
1929 const Register& Tmp1() const {
1930 return tmp1_;
1931 }
1932
1933 const Register WTmp0() const {
1934 return Register::Create(tmp0_.code(), kWRegSize);
1935 }
1936
1937 const Register WTmp1() const {
1938 return Register::Create(tmp1_.code(), kWRegSize);
1939 }
1940
1941 void SetFPScratchRegister(const FPRegister& fptmp0) {
1942 fptmp0_ = fptmp0;
1943 }
1944
1945 const FPRegister& FPTmp0() const {
1946 return fptmp0_;
1947 }
1948
1949 const Register AppropriateTempFor(
1950 const Register& target,
1951 const CPURegister& forbidden = NoCPUReg) const {
1952 Register candidate = forbidden.Is(Tmp0()) ? Tmp1() : Tmp0();
1953 ASSERT(!candidate.Is(target));
1954 return Register::Create(candidate.code(), target.SizeInBits());
1955 }
1956
1957 const FPRegister AppropriateTempFor(
1958 const FPRegister& target,
1959 const CPURegister& forbidden = NoCPUReg) const {
1960 USE(forbidden);
1961 FPRegister candidate = FPTmp0();
1962 ASSERT(!candidate.Is(forbidden));
1963 ASSERT(!candidate.Is(target));
1964 return FPRegister::Create(candidate.code(), target.SizeInBits());
1965 }
1966
1967 // Like printf, but print at run-time from generated code.
1968 //
1969 // The caller must ensure that arguments for floating-point placeholders
1970 // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1971 // placeholders are Registers.
1972 //
1973 // A maximum of four arguments may be given to any single Printf call. The
1974 // arguments must be of the same type, but they do not need to have the same
1975 // size.
1976 //
1977 // The following registers cannot be printed:
1978 // Tmp0(), Tmp1(), StackPointer(), csp.
1979 //
1980 // This function automatically preserves caller-saved registers so that
1981 // calling code can use Printf at any point without having to worry about
1982 // corruption. The preservation mechanism generates a lot of code. If this is
1983 // a problem, preserve the important registers manually and then call
1984 // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1985 // implicitly preserved.
1986 //
1987 // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be
1988 // preserved, and can be printed. This allows Printf to be used during debug
1989 // code.
1990 //
1991 // This function assumes (and asserts) that the current stack pointer is
1992 // callee-saved, not caller-saved. This is most likely the case anyway, as a
1993 // caller-saved stack pointer doesn't make a lot of sense.
1994 void Printf(const char * format,
1995 const CPURegister& arg0 = NoCPUReg,
1996 const CPURegister& arg1 = NoCPUReg,
1997 const CPURegister& arg2 = NoCPUReg,
1998 const CPURegister& arg3 = NoCPUReg);
1999
2000 // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
2001 //
2002 // The return code from the system printf call will be returned in x0.
2003 void PrintfNoPreserve(const char * format,
2004 const CPURegister& arg0 = NoCPUReg,
2005 const CPURegister& arg1 = NoCPUReg,
2006 const CPURegister& arg2 = NoCPUReg,
2007 const CPURegister& arg3 = NoCPUReg);
2008
2009 // Code ageing support functions.
2010
2011 // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a
2012 // function as old, it replaces some of the function prologue (generated by
2013 // FullCodeGenerator::Generate) with a call to a special stub (ultimately
2014 // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
2015 // function prologue to its initial young state (indicating that it has been
2016 // recently run) and continues. A young function is therefore one which has a
2017 // normal frame setup sequence, and an old function has a code age sequence
2018 // which calls a code ageing stub.
2019
2020 // Set up a basic stack frame for young code (or code exempt from ageing) with
2021 // type FUNCTION. It may be patched later for code ageing support. This is
2022 // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
2023 //
2024 // This function takes an Assembler so it can be called from either a
2025 // MacroAssembler or a PatchingAssembler context.
2026 static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
2027
2028 // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
2029 void EmitFrameSetupForCodeAgePatching();
2030
2031 // Emit a code age sequence that calls the relevant code age stub. The code
2032 // generated by this sequence is expected to replace the code generated by
2033 // EmitFrameSetupForCodeAgePatching, and represents an old function.
2034 //
2035 // If stub is NULL, this function generates the code age sequence but omits
2036 // the stub address that is normally embedded in the instruction stream. This
2037 // can be used by debug code to verify code age sequences.
2038 static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
2039
2040 // Call EmitCodeAgeSequence from a MacroAssembler context.
2041 void EmitCodeAgeSequence(Code* stub);
2042
2043 // Return true if the sequence is a young sequence geneated by
2044 // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
2045 // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
2046 static bool IsYoungSequence(byte* sequence);
2047
2048 #ifdef DEBUG
2049 // Return true if the sequence is a code age sequence generated by
2050 // EmitCodeAgeSequence.
2051 static bool IsCodeAgeSequence(byte* sequence);
2052 #endif
2053
2054 // Jumps to found label if a prototype map has dictionary elements.
2055 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
2056 Register scratch1, Label* found);
2057
2058 private:
2059 // Helpers for CopyFields.
2060 // These each implement CopyFields in a different way.
2061 void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
2062 Register scratch1, Register scratch2,
2063 Register scratch3);
2064 void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
2065 Register scratch1, Register scratch2);
2066 void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
2067 Register scratch1);
2068
2069 // The actual Push and Pop implementations. These don't generate any code
2070 // other than that required for the push or pop. This allows
2071 // (Push|Pop)CPURegList to bundle together run-time assertions for a large
2072 // block of registers.
2073 //
2074 // Note that size is per register, and is specified in bytes.
2075 void PushHelper(int count, int size,
2076 const CPURegister& src0, const CPURegister& src1,
2077 const CPURegister& src2, const CPURegister& src3);
2078 void PopHelper(int count, int size,
2079 const CPURegister& dst0, const CPURegister& dst1,
2080 const CPURegister& dst2, const CPURegister& dst3);
2081
2082 // Perform necessary maintenance operations before a push or pop.
2083 //
2084 // Note that size is specified in bytes.
2085 void PrepareForPush(Operand total_size);
2086 void PrepareForPop(Operand total_size);
2087
2088 void PrepareForPush(int count, int size) { PrepareForPush(count * size); }
2089 void PrepareForPop(int count, int size) { PrepareForPop(count * size); }
2090
2091 // Call Printf. On a native build, a simple call will be generated, but if the
2092 // simulator is being used then a suitable pseudo-instruction is used. The
2093 // arguments and stack (csp) must be prepared by the caller as for a normal
2094 // AAPCS64 call to 'printf'.
2095 //
2096 // The 'type' argument specifies the type of the optional arguments.
2097 void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister);
2098
2099 // Helper for throwing exceptions. Compute a handler address and jump to
2100 // it. See the implementation for register usage.
2101 void JumpToHandlerEntry(Register exception,
2102 Register object,
2103 Register state,
2104 Register scratch1,
2105 Register scratch2);
2106
2107 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
2108 void InNewSpace(Register object,
2109 Condition cond, // eq for new space, ne otherwise.
2110 Label* branch);
2111
2112 // Try to convert a double to an int so that integer fast-paths may be
2113 // used. Not every valid integer value is guaranteed to be caught.
2114 // It supports both 32-bit and 64-bit integers depending whether 'as_int'
2115 // is a W or X register.
2116 //
2117 // This does not distinguish between +0 and -0, so if this distinction is
2118 // important it must be checked separately.
2119 void TryConvertDoubleToInt(Register as_int,
2120 FPRegister value,
2121 FPRegister scratch_d,
2122 Label* on_successful_conversion,
2123 Label* on_failed_conversion = NULL);
2124
2125 bool generating_stub_;
2126 #if DEBUG
2127 // Tell whether any of the macro instruction can be used. When false the
2128 // MacroAssembler will assert if a method which can emit a variable number
2129 // of instructions is called.
2130 bool allow_macro_instructions_;
2131 #endif
2132 bool has_frame_;
2133
2134 // The Abort method should call a V8 runtime function, but the CallRuntime
2135 // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
2136 // use a simpler abort mechanism that doesn't depend on CEntryStub.
2137 //
2138 // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
2139 // being generated.
2140 bool use_real_aborts_;
2141
2142 // This handle will be patched with the code object on installation.
2143 Handle<Object> code_object_;
2144
2145 // The register to use as a stack pointer for stack operations.
2146 Register sp_;
2147
2148 // Scratch registers used internally by the MacroAssembler.
2149 Register tmp0_;
2150 Register tmp1_;
2151 FPRegister fptmp0_;
2152
2153 void InitializeNewString(Register string,
2154 Register length,
2155 Heap::RootListIndex map_index,
2156 Register scratch1,
2157 Register scratch2);
2158
2159 public:
2160 // Far branches resolving.
2161 //
2162 // The various classes of branch instructions with immediate offsets have
2163 // different ranges. While the Assembler will fail to assemble a branch
2164 // exceeding its range, the MacroAssembler offers a mechanism to resolve
2165 // branches to too distant targets, either by tweaking the generated code to
2166 // use branch instructions with wider ranges or generating veneers.
2167 //
2168 // Currently branches to distant targets are resolved using unconditional
2169 // branch isntructions with a range of +-128MB. If that becomes too little
2170 // (!), the mechanism can be extended to generate special veneers for really
2171 // far targets.
2172
2173 // Returns true if we should emit a veneer as soon as possible for a branch
2174 // which can at most reach to specified pc.
2175 bool ShouldEmitVeneer(int max_reachable_pc,
2176 int margin = kVeneerDistanceMargin);
2177
2178 // The maximum code size generated for a veneer. Currently one branch
2179 // instruction. This is for code size checking purposes, and can be extended
2180 // in the future for example if we decide to add nops between the veneers.
2181 static const int kMaxVeneerCodeSize = 1 * kInstructionSize;
2182
2183 // Emits veneers for branches that are approaching their maximum range.
2184 // If need_protection is true, the veneers are protected by a branch jumping
2185 // over the code.
2186 void EmitVeneers(bool need_protection);
2187 void EmitVeneersGuard();
2188 // Checks wether veneers need to be emitted at this point.
2189 void CheckVeneers(bool need_protection);
2190
2191 // Helps resolve branching to labels potentially out of range.
2192 // If the label is not bound, it registers the information necessary to later
2193 // be able to emit a veneer for this branch if necessary.
2194 // If the label is bound, it returns true if the label (or the previous link
2195 // in the label chain) is out of range. In that case the caller is responsible
2196 // for generating appropriate code.
2197 // Otherwise it returns false.
2198 // This function also checks wether veneers need to be emitted.
2199 bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2200 ImmBranchType branch_type);
2201
2202 private:
2203 // We generate a veneer for a branch if we reach within this distance of the
2204 // limit of the range.
2205 static const int kVeneerDistanceMargin = 4 * KB;
2206 int unresolved_branches_first_limit() const {
2207 ASSERT(!unresolved_branches_.empty());
2208 return unresolved_branches_.begin()->first;
2209 }
2210 };
2211
2212
2213 // Use this scope when you need a one-to-one mapping bewteen methods and
2214 // instructions. This scope prevents the MacroAssembler from being called and
2215 // literal pools from being emitted. It also asserts the number of instructions
2216 // emitted is what you specified when creating the scope.
2217 class InstructionAccurateScope BASE_EMBEDDED {
2218 public:
2219 InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
2220 : masm_(masm)
2221 #ifdef DEBUG
2222 ,
2223 size_(count * kInstructionSize)
2224 #endif
2225 {
2226 // Before blocking the const pool, see if it needs to be emitted.
2227 masm_->CheckConstPool(false, true);
2228
2229 masm_->StartBlockConstPool();
2230 #ifdef DEBUG
2231 if (count != 0) {
2232 masm_->bind(&start_);
2233 }
2234 previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2235 masm_->set_allow_macro_instructions(false);
2236 #endif
2237 }
2238
2239 ~InstructionAccurateScope() {
2240 masm_->EndBlockConstPool();
2241 #ifdef DEBUG
2242 if (start_.is_bound()) {
2243 ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2244 }
2245 masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2246 #endif
2247 }
2248
2249 private:
2250 MacroAssembler* masm_;
2251 #ifdef DEBUG
2252 size_t size_;
2253 Label start_;
2254 bool previous_allow_macro_instructions_;
2255 #endif
2256 };
2257
2258
2259 inline MemOperand ContextMemOperand(Register context, int index) {
2260 return MemOperand(context, Context::SlotOffset(index));
2261 }
2262
2263 inline MemOperand GlobalObjectMemOperand() {
2264 return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
2265 }
2266
2267
2268 // Encode and decode information about patchable inline SMI checks.
2269 class InlineSmiCheckInfo {
2270 public:
2271 explicit InlineSmiCheckInfo(Address info);
2272
2273 bool HasSmiCheck() const {
2274 return smi_check_ != NULL;
2275 }
2276
2277 const Register& SmiRegister() const {
2278 return reg_;
2279 }
2280
2281 Instruction* SmiCheck() const {
2282 return smi_check_;
2283 }
2284
2285 // Use MacroAssembler::InlineData to emit information about patchable inline
2286 // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2287 // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2288 //
2289 // The generated patch information can be read using the InlineSMICheckInfo
2290 // class.
2291 static void Emit(MacroAssembler* masm, const Register& reg,
2292 const Label* smi_check);
2293
2294 // Emit information to indicate that there is no inline SMI check.
2295 static void EmitNotInlined(MacroAssembler* masm) {
2296 Label unbound;
2297 Emit(masm, NoReg, &unbound);
2298 }
2299
2300 private:
2301 Register reg_;
2302 Instruction* smi_check_;
2303
2304 // Fields in the data encoded by InlineData.
2305
2306 // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2307 // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2308 // used in a patchable check. The Emit() method checks this.
2309 //
2310 // Note that the total size of the fields is restricted by the underlying
2311 // storage size handled by the BitField class, which is a uint32_t.
2312 class RegisterBits : public BitField<unsigned, 0, 5> {};
2313 class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2314 };
2315
2316 } } // namespace v8::internal
2317
2318 #ifdef GENERATED_CODE_COVERAGE
2319 #error "Unsupported option"
2320 #define CODE_COVERAGE_STRINGIFY(x) #x
2321 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2322 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2323 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2324 #else
2325 #define ACCESS_MASM(masm) masm->
2326 #endif
2327
2328 #endif // V8_A64_MACRO_ASSEMBLER_A64_H_
OLDNEW
« no previous file with comments | « src/a64/lithium-gap-resolver-a64.cc ('k') | src/a64/macro-assembler-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698