OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2014 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 | 5 |
6 #ifdef V8_I18N_SUPPORT | 6 #ifdef V8_I18N_SUPPORT |
7 #include "src/runtime/runtime-utils.h" | 7 #include "src/runtime/runtime-utils.h" |
8 | 8 |
9 #include "src/api.h" | 9 #include "src/api.h" |
10 #include "src/api-natives.h" | 10 #include "src/api-natives.h" |
(...skipping 11 matching lines...) Expand all Loading... |
22 #include "unicode/dcfmtsym.h" | 22 #include "unicode/dcfmtsym.h" |
23 #include "unicode/decimfmt.h" | 23 #include "unicode/decimfmt.h" |
24 #include "unicode/dtfmtsym.h" | 24 #include "unicode/dtfmtsym.h" |
25 #include "unicode/dtptngen.h" | 25 #include "unicode/dtptngen.h" |
26 #include "unicode/locid.h" | 26 #include "unicode/locid.h" |
27 #include "unicode/numfmt.h" | 27 #include "unicode/numfmt.h" |
28 #include "unicode/numsys.h" | 28 #include "unicode/numsys.h" |
29 #include "unicode/rbbi.h" | 29 #include "unicode/rbbi.h" |
30 #include "unicode/smpdtfmt.h" | 30 #include "unicode/smpdtfmt.h" |
31 #include "unicode/timezone.h" | 31 #include "unicode/timezone.h" |
| 32 #include "unicode/translit.h" |
32 #include "unicode/uchar.h" | 33 #include "unicode/uchar.h" |
33 #include "unicode/ucol.h" | 34 #include "unicode/ucol.h" |
34 #include "unicode/ucurr.h" | 35 #include "unicode/ucurr.h" |
35 #include "unicode/uloc.h" | 36 #include "unicode/uloc.h" |
| 37 #include "unicode/unistr.h" |
36 #include "unicode/unum.h" | 38 #include "unicode/unum.h" |
37 #include "unicode/uversion.h" | 39 #include "unicode/uversion.h" |
38 | 40 |
39 | 41 |
40 namespace v8 { | 42 namespace v8 { |
41 namespace internal { | 43 namespace internal { |
42 | 44 |
43 RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) { | 45 RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) { |
44 HandleScope scope(isolate); | 46 HandleScope scope(isolate); |
45 Factory* factory = isolate->factory(); | 47 Factory* factory = isolate->factory(); |
(...skipping 696 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
742 } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) { | 744 } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) { |
743 return *isolate->factory()->NewStringFromStaticChars("letter"); | 745 return *isolate->factory()->NewStringFromStaticChars("letter"); |
744 } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) { | 746 } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) { |
745 return *isolate->factory()->NewStringFromStaticChars("kana"); | 747 return *isolate->factory()->NewStringFromStaticChars("kana"); |
746 } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) { | 748 } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) { |
747 return *isolate->factory()->NewStringFromStaticChars("ideo"); | 749 return *isolate->factory()->NewStringFromStaticChars("ideo"); |
748 } else { | 750 } else { |
749 return *isolate->factory()->NewStringFromStaticChars("unknown"); | 751 return *isolate->factory()->NewStringFromStaticChars("unknown"); |
750 } | 752 } |
751 } | 753 } |
| 754 |
| 755 namespace { |
| 756 void ConvertCaseWithTransliterator(icu::UnicodeString* input, |
| 757 const char* transliterator_id) { |
| 758 UErrorCode status = U_ZERO_ERROR; |
| 759 base::SmartPointer<icu::Transliterator> translit( |
| 760 icu::Transliterator::createInstance( |
| 761 icu::UnicodeString(transliterator_id, -1, US_INV), UTRANS_FORWARD, |
| 762 status)); |
| 763 if (U_FAILURE(status)) return; |
| 764 translit->transliterate(*input); |
| 765 } |
| 766 |
| 767 const UChar* GetUCharBufferFromFlat(const String::FlatContent& flat, |
| 768 base::SmartArrayPointer<uc16>* dest, |
| 769 int32_t length) { |
| 770 DCHECK(flat.IsFlat()); |
| 771 if (flat.IsOneByte()) { |
| 772 if (dest->is_empty()) { |
| 773 dest->Reset(NewArray<uc16>(length)); |
| 774 CopyChars(dest->get(), flat.ToOneByteVector().start(), length); |
| 775 } |
| 776 return reinterpret_cast<const UChar*>(dest->get()); |
| 777 } else { |
| 778 return reinterpret_cast<const UChar*>(flat.ToUC16Vector().start()); |
| 779 } |
| 780 } |
| 781 |
| 782 MUST_USE_RESULT Object* LocaleConvertCase(Handle<String> s, Isolate* isolate, |
| 783 bool is_to_upper, const char* lang) { |
| 784 int32_t src_length = s->length(); |
| 785 |
| 786 // Greek uppercasing has to be done via transliteration. |
| 787 // TODO(jshin): Drop this special-casing once ICU's regular case conversion |
| 788 // API supports Greek uppercasing. See |
| 789 // http://bugs.icu-project.org/trac/ticket/10582 . |
| 790 // In the meantime, if there's no Greek character in |s|, call this |
| 791 // function again with the root locale (lang=""). |
| 792 // ICU's C API for transliteration is nasty and we just use C++ API. |
| 793 if (V8_UNLIKELY(is_to_upper && lang[0] == 'e' && lang[1] == 'l')) { |
| 794 icu::UnicodeString converted; |
| 795 base::SmartArrayPointer<uc16> sap; |
| 796 { |
| 797 DisallowHeapAllocation no_gc; |
| 798 String::FlatContent flat = s->GetFlatContent(); |
| 799 const UChar* src = GetUCharBufferFromFlat(flat, &sap, src_length); |
| 800 // Starts with the source string (read-only alias with copy-on-write |
| 801 // semantics) and will be modified to contain the converted result. |
| 802 // Using read-only alias at first saves one copy operation if |
| 803 // transliteration does not change the input, which is rather rare. |
| 804 // Moreover, transliteration takes rather long so that saving one copy |
| 805 // helps only a little bit. |
| 806 converted.setTo(false, src, src_length); |
| 807 ConvertCaseWithTransliterator(&converted, "el-Upper"); |
| 808 } |
| 809 Handle<String> result; |
| 810 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 811 isolate, result, |
| 812 isolate->factory()->NewStringFromTwoByte(Vector<const uint16_t>( |
| 813 reinterpret_cast<const uint16_t*>(converted.getBuffer()), |
| 814 converted.length()))); |
| 815 return *result; |
| 816 } |
| 817 |
| 818 auto case_converter = is_to_upper ? u_strToUpper : u_strToLower; |
| 819 |
| 820 int32_t dest_length = src_length; |
| 821 UErrorCode status; |
| 822 Handle<SeqTwoByteString> result; |
| 823 base::SmartArrayPointer<uc16> sap; |
| 824 |
| 825 // This is not a real loop. It'll be executed only once (no overflow) or |
| 826 // twice (overflow). |
| 827 for (int i = 0; i < 2; ++i) { |
| 828 result = |
| 829 isolate->factory()->NewRawTwoByteString(dest_length).ToHandleChecked(); |
| 830 DisallowHeapAllocation no_gc; |
| 831 String::FlatContent flat = s->GetFlatContent(); |
| 832 const UChar* src = GetUCharBufferFromFlat(flat, &sap, src_length); |
| 833 status = U_ZERO_ERROR; |
| 834 dest_length = case_converter(reinterpret_cast<UChar*>(result->GetChars()), |
| 835 dest_length, src, src_length, lang, &status); |
| 836 if (status != U_BUFFER_OVERFLOW_ERROR) break; |
| 837 } |
| 838 |
| 839 // In most cases, the output will fill the destination buffer completely |
| 840 // leading to an unterminated string (U_STRING_NOT_TERMINATED_WARNING). |
| 841 // Only in rare cases, it'll be shorter than the destination buffer and |
| 842 // |result| has to be truncated. |
| 843 DCHECK(U_SUCCESS(status)); |
| 844 if (V8_LIKELY(status == U_STRING_NOT_TERMINATED_WARNING)) { |
| 845 DCHECK(dest_length == result->length()); |
| 846 return *result; |
| 847 } |
| 848 if (U_SUCCESS(status)) { |
| 849 DCHECK(dest_length < result->length()); |
| 850 return *Handle<SeqTwoByteString>::cast( |
| 851 SeqString::Truncate(result, dest_length)); |
| 852 } |
| 853 return *s; |
| 854 } |
| 855 |
| 856 inline bool IsASCIIUpper(uint16_t ch) { return ch >= 'A' && ch <= 'Z'; } |
| 857 |
| 858 const uint8_t kToLower[256] = { |
| 859 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, |
| 860 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 861 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, |
| 862 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, |
| 863 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, |
| 864 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, |
| 865 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, |
| 866 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, |
| 867 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, |
| 868 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, |
| 869 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81, 0x82, 0x83, |
| 870 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, |
| 871 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, |
| 872 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, |
| 873 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, |
| 874 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF, |
| 875 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, |
| 876 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xD7, |
| 877 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, |
| 878 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, |
| 879 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, |
| 880 0xFC, 0xFD, 0xFE, 0xFF, |
| 881 }; |
| 882 |
| 883 inline uint16_t ToLatin1Lower(uint16_t ch) { |
| 884 return static_cast<uint16_t>(kToLower[ch]); |
| 885 } |
| 886 |
| 887 inline uint16_t ToASCIIUpper(uint16_t ch) { |
| 888 return ch & ~((ch >= 'a' && ch <= 'z') << 5); |
| 889 } |
| 890 |
| 891 // Does not work for U+00DF (sharp-s), U+00B5 (micron), U+00FF. |
| 892 inline uint16_t ToLatin1Upper(uint16_t ch) { |
| 893 DCHECK(ch != 0xDF && ch != 0xB5 && ch != 0xFF); |
| 894 return ch & |
| 895 ~(((ch >= 'a' && ch <= 'z') || (((ch & 0xE0) == 0xE0) && ch != 0xE7)) |
| 896 << 5); |
| 897 } |
| 898 |
| 899 template <typename Char> |
| 900 bool ToUpperFastASCII(const Vector<const Char>& src, |
| 901 Handle<SeqOneByteString> result) { |
| 902 // Do a faster loop for the case where all the characters are ASCII. |
| 903 uint16_t ored = 0; |
| 904 int32_t index = 0; |
| 905 for (auto it = src.begin(); it != src.end(); ++it) { |
| 906 uint16_t ch = static_cast<uint16_t>(*it); |
| 907 ored |= ch; |
| 908 result->SeqOneByteStringSet(index++, ToASCIIUpper(ch)); |
| 909 } |
| 910 return !(ored & ~0x7F); |
| 911 } |
| 912 |
| 913 const uint16_t sharp_s = 0xDF; |
| 914 |
| 915 template <typename Char> |
| 916 bool ToUpperOneByte(const Vector<const Char>& src, |
| 917 Handle<SeqOneByteString> result, int* sharp_s_count) { |
| 918 // Still pretty-fast path for the input with non-ASCII Latin-1 characters. |
| 919 |
| 920 // There are two special cases. |
| 921 // 1. U+00B5 and U+00FF are mapped to a character beyond U+00FF. |
| 922 // 2. Lower case sharp-S converts to "SS" (two characters) |
| 923 *sharp_s_count = 0; |
| 924 int32_t index = 0; |
| 925 for (auto it = src.begin(); it != src.end(); ++it) { |
| 926 uint16_t ch = static_cast<uint16_t>(*it); |
| 927 if (V8_UNLIKELY(ch == sharp_s)) { |
| 928 ++(*sharp_s_count); |
| 929 continue; |
| 930 } |
| 931 if (V8_UNLIKELY(ch == 0xB5 || ch == 0xFF)) { |
| 932 // Since this upper-cased character does not fit in an 8-bit string, we |
| 933 // need to take the 16-bit path. |
| 934 return false; |
| 935 } |
| 936 result->SeqOneByteStringSet(index++, ToLatin1Upper(ch)); |
| 937 } |
| 938 |
| 939 return true; |
| 940 } |
| 941 |
| 942 template <typename Char> |
| 943 void ToUpperWithSharpS(const Vector<const Char>& src, |
| 944 Handle<SeqOneByteString> result) { |
| 945 int32_t dest_index = 0; |
| 946 for (auto it = src.begin(); it != src.end(); ++it) { |
| 947 uint16_t ch = static_cast<uint16_t>(*it); |
| 948 if (ch == sharp_s) { |
| 949 result->SeqOneByteStringSet(dest_index++, 'S'); |
| 950 result->SeqOneByteStringSet(dest_index++, 'S'); |
| 951 } else { |
| 952 result->SeqOneByteStringSet(dest_index++, ToLatin1Upper(ch)); |
| 953 } |
| 954 } |
| 955 } |
| 956 |
| 957 } // namespace |
| 958 |
| 959 RUNTIME_FUNCTION(Runtime_StringToLowerCaseI18N) { |
| 960 HandleScope scope(isolate); |
| 961 DCHECK_EQ(args.length(), 1); |
| 962 CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
| 963 |
| 964 int length = s->length(); |
| 965 s = String::Flatten(s); |
| 966 // First scan the string for uppercase and non-ASCII characters: |
| 967 if (s->HasOnlyOneByteChars()) { |
| 968 unsigned first_index_to_lower = length; |
| 969 for (int index = 0; index < length; ++index) { |
| 970 // Blink specializes this path for one-byte strings, so it |
| 971 // does not need to do a generic get, but can do the equivalent |
| 972 // of SeqOneByteStringGet. |
| 973 uint16_t ch = s->Get(index); |
| 974 if (V8_UNLIKELY(IsASCIIUpper(ch) || ch & ~0x7F)) { |
| 975 first_index_to_lower = index; |
| 976 break; |
| 977 } |
| 978 } |
| 979 |
| 980 // Nothing to do if the string is all ASCII with no uppercase. |
| 981 if (first_index_to_lower == length) return *s; |
| 982 |
| 983 // We depend here on the invariant that the length of a Latin1 |
| 984 // string is invariant under ToLowerCase, and the result always |
| 985 // fits in the Latin1 range in the *root locale*. It does not hold |
| 986 // for ToUpperCase even in the root locale. |
| 987 Handle<SeqOneByteString> result; |
| 988 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 989 isolate, result, isolate->factory()->NewRawOneByteString(length)); |
| 990 |
| 991 DisallowHeapAllocation no_gc; |
| 992 String::FlatContent flat = s->GetFlatContent(); |
| 993 if (flat.IsOneByte()) { |
| 994 const uint8_t* src = flat.ToOneByteVector().start(); |
| 995 CopyChars(result->GetChars(), src, first_index_to_lower); |
| 996 for (int index = first_index_to_lower; index < length; ++index) { |
| 997 uint16_t ch = static_cast<uint16_t>(src[index]); |
| 998 result->SeqOneByteStringSet(index, ToLatin1Lower(ch)); |
| 999 } |
| 1000 } else { |
| 1001 const uint16_t* src = flat.ToUC16Vector().start(); |
| 1002 CopyChars(result->GetChars(), src, first_index_to_lower); |
| 1003 for (int index = first_index_to_lower; index < length; ++index) { |
| 1004 uint16_t ch = src[index]; |
| 1005 result->SeqOneByteStringSet(index, ToLatin1Lower(ch)); |
| 1006 } |
| 1007 } |
| 1008 |
| 1009 return *result; |
| 1010 } |
| 1011 |
| 1012 // Blink had an additional case here for ASCII 2-byte strings, but |
| 1013 // that is subsumed by the above code (assuming there isn't a false |
| 1014 // negative for HasOnlyOneByteChars). |
| 1015 |
| 1016 // Do a slower implementation for cases that include non-ASCII characters. |
| 1017 return LocaleConvertCase(s, isolate, false, ""); |
| 1018 } |
| 1019 |
| 1020 RUNTIME_FUNCTION(Runtime_StringToUpperCaseI18N) { |
| 1021 HandleScope scope(isolate); |
| 1022 DCHECK_EQ(args.length(), 1); |
| 1023 CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
| 1024 |
| 1025 // This function could be optimized for no-op cases the way lowercase |
| 1026 // counterpart is, but in empirical testing, few actual calls to upper() |
| 1027 // are no-ops. So, it wouldn't be worth the extra time for pre-scanning. |
| 1028 |
| 1029 int32_t length = s->length(); |
| 1030 s = String::Flatten(s); |
| 1031 |
| 1032 if (s->HasOnlyOneByteChars()) { |
| 1033 Handle<SeqOneByteString> result; |
| 1034 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 1035 isolate, result, isolate->factory()->NewRawOneByteString(length)); |
| 1036 |
| 1037 int sharp_s_count; |
| 1038 bool is_result_single_byte; |
| 1039 { |
| 1040 DisallowHeapAllocation no_gc; |
| 1041 String::FlatContent flat = s->GetFlatContent(); |
| 1042 // If it was ok to slow down ASCII-only input slightly, ToUpperFastASCII |
| 1043 // could be removed because ToUpperOneByte is pretty fast now (it |
| 1044 // does not call ICU API any more.). |
| 1045 if (flat.IsOneByte()) { |
| 1046 Vector<const uint8_t> src = flat.ToOneByteVector(); |
| 1047 if (ToUpperFastASCII(src, result)) return *result; |
| 1048 is_result_single_byte = ToUpperOneByte(src, result, &sharp_s_count); |
| 1049 } else { |
| 1050 DCHECK(flat.IsTwoByte()); |
| 1051 Vector<const uint16_t> src = flat.ToUC16Vector(); |
| 1052 if (ToUpperFastASCII(src, result)) return *result; |
| 1053 is_result_single_byte = ToUpperOneByte(src, result, &sharp_s_count); |
| 1054 } |
| 1055 } |
| 1056 |
| 1057 // Go to the full Unicode path if there are characters whose uppercase |
| 1058 // is beyond the Latin-1 range (cannot be represented in OneByteString). |
| 1059 if (V8_UNLIKELY(!is_result_single_byte)) { |
| 1060 return LocaleConvertCase(s, isolate, true, ""); |
| 1061 } |
| 1062 |
| 1063 if (sharp_s_count == 0) return *result; |
| 1064 |
| 1065 // We have sharp_s_count sharp-s characters, but the result is still |
| 1066 // in the Latin-1 range. |
| 1067 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 1068 isolate, result, |
| 1069 isolate->factory()->NewRawOneByteString(length + sharp_s_count)); |
| 1070 DisallowHeapAllocation no_gc; |
| 1071 String::FlatContent flat = s->GetFlatContent(); |
| 1072 if (flat.IsOneByte()) { |
| 1073 ToUpperWithSharpS(flat.ToOneByteVector(), result); |
| 1074 } else { |
| 1075 ToUpperWithSharpS(flat.ToUC16Vector(), result); |
| 1076 } |
| 1077 |
| 1078 return *result; |
| 1079 } |
| 1080 |
| 1081 return LocaleConvertCase(s, isolate, true, ""); |
| 1082 } |
| 1083 |
| 1084 RUNTIME_FUNCTION(Runtime_StringLocaleConvertCase) { |
| 1085 HandleScope scope(isolate); |
| 1086 DCHECK_EQ(args.length(), 3); |
| 1087 CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
| 1088 CONVERT_BOOLEAN_ARG_CHECKED(is_upper, 1); |
| 1089 CONVERT_ARG_HANDLE_CHECKED(SeqOneByteString, lang, 2); |
| 1090 |
| 1091 // All the languages requiring special handling ("az", "el", "lt", "tr") |
| 1092 // have a 2-letter language code. |
| 1093 DCHECK(lang->length() == 2); |
| 1094 uint8_t lang_str[3]; |
| 1095 memcpy(lang_str, lang->GetChars(), 2); |
| 1096 lang_str[2] = 0; |
| 1097 s = String::Flatten(s); |
| 1098 // TODO(jshin): Consider adding a fast path for ASCII or Latin-1. The fastpath |
| 1099 // in the root locale needs to be adjusted for az, lt and tr because even case |
| 1100 // mapping of ASCII range characters are different in those locales. |
| 1101 // Greek (el) does not require any adjustment, though. |
| 1102 return LocaleConvertCase(s, isolate, is_upper, |
| 1103 reinterpret_cast<const char*>(lang_str)); |
| 1104 } |
| 1105 |
752 } // namespace internal | 1106 } // namespace internal |
753 } // namespace v8 | 1107 } // namespace v8 |
754 | 1108 |
755 #endif // V8_I18N_SUPPORT | 1109 #endif // V8_I18N_SUPPORT |
OLD | NEW |