| Index: experimental/skpdiff/SkPMetric.cpp
|
| diff --git a/experimental/skpdiff/SkPMetric.cpp b/experimental/skpdiff/SkPMetric.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b674b15cca06f87c984edfabf61bf8d20dcc103c
|
| --- /dev/null
|
| +++ b/experimental/skpdiff/SkPMetric.cpp
|
| @@ -0,0 +1,421 @@
|
| +#include <cmath>
|
| +
|
| +#include "SkBitmap.h"
|
| +#include "skpdiff_util.h"
|
| +#include "SkPMetric.h"
|
| +
|
| +struct RGB {
|
| + float r, g, b;
|
| +};
|
| +
|
| +struct LAB {
|
| + float l, a, b;
|
| +};
|
| +
|
| +template<class T>
|
| +struct Image2D {
|
| + int width;
|
| + int height;
|
| + T* image;
|
| +
|
| + Image2D(int w, int h)
|
| + : width(w),
|
| + height(h) {
|
| + SkASSERT(w > 0);
|
| + SkASSERT(h > 0);
|
| + image = SkNEW_ARRAY(T, w * h);
|
| + }
|
| +
|
| + ~Image2D() {
|
| + SkDELETE_ARRAY(image);
|
| + }
|
| +
|
| + void readPixel(int x, int y, T* pixel) const {
|
| + SkASSERT(x >= 0);
|
| + SkASSERT(y >= 0);
|
| + SkASSERT(x < width);
|
| + SkASSERT(y < height);
|
| + *pixel = image[y * width + x];
|
| + }
|
| +
|
| + void writePixel(int x, int y, const T& pixel) {
|
| + SkASSERT(x >= 0);
|
| + SkASSERT(y >= 0);
|
| + SkASSERT(x < width);
|
| + SkASSERT(y < height);
|
| + image[y * width + x] = pixel;
|
| + }
|
| +};
|
| +
|
| +typedef Image2D<float> ImageL;
|
| +typedef Image2D<RGB> ImageRGB;
|
| +typedef Image2D<LAB> ImageLAB;
|
| +
|
| +template<class T>
|
| +struct ImageArray
|
| +{
|
| + int slices;
|
| + Image2D<T>** image;
|
| +
|
| + ImageArray(int w, int h, int s)
|
| + : slices(s) {
|
| + SkASSERT(s > 0);
|
| + image = SkNEW_ARRAY(Image2D<T>*, s);
|
| + for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
|
| + image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h));
|
| + }
|
| + }
|
| +
|
| + ~ImageArray() {
|
| + for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
|
| + SkDELETE(image[sliceIndex]);
|
| + }
|
| + SkDELETE_ARRAY(image);
|
| + }
|
| +
|
| + Image2D<T>* getLayer(int z) const {
|
| + SkASSERT(z >= 0);
|
| + SkASSERT(z < slices);
|
| + return image[z];
|
| + }
|
| +};
|
| +
|
| +typedef ImageArray<float> ImageL3D;
|
| +
|
| +
|
| +#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc
|
| +
|
| +
|
| +void adobergb_to_cielab(float r, float g, float b, LAB* lab) {
|
| + // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding"
|
| + // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
|
| + // Section: 4.3.5.3
|
| + // See Also: http://en.wikipedia.org/wiki/Adobe_rgb
|
| + float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f);
|
| + float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f);
|
| + float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f);
|
| +
|
| + // The following is the white point in XYZ, so it's simply the row wise addition of the above
|
| + // matrix.
|
| + const float xw = 0.5767f + 0.185556f + 0.188212f;
|
| + const float yw = 0.297361f + 0.627355f + 0.0752847f;
|
| + const float zw = 0.0270328f + 0.0706879f + 0.991248f;
|
| +
|
| + // This is the XYZ color point relative to the white point
|
| + float f[3] = { x / xw, y / yw, z / zw };
|
| +
|
| + // Conversion from XYZ to LAB taken from
|
| + // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation
|
| + for (int i = 0; i < 3; i++) {
|
| + if (f[i] >= 0.008856f) {
|
| + f[i] = powf(f[i], 1.0f / 3.0f);
|
| + } else {
|
| + f[i] = 7.787f * f[i] + 4.0f / 29.0f;
|
| + }
|
| + }
|
| + lab->l = 116.0f * f[1] - 16.0f;
|
| + lab->a = 500.0f * (f[0] - f[1]);
|
| + lab->b = 200.0f * (f[1] - f[2]);
|
| +}
|
| +
|
| +/// Converts a 8888 bitmap to LAB color space and puts it into the output
|
| +static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) {
|
| + SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config);
|
| +
|
| + int width = bitmap->width();
|
| + int height = bitmap->height();
|
| + SkASSERT(outImageLAB->width == width);
|
| + SkASSERT(outImageLAB->height == height);
|
| +
|
| + bitmap->lockPixels();
|
| + RGB rgb;
|
| + LAB lab;
|
| + for (int y = 0; y < height; y++) {
|
| + unsigned char* row = (unsigned char*)bitmap->getAddr(0, y);
|
| + for (int x = 0; x < width; x++) {
|
| + // Perform gamma correction which is assumed to be 2.2
|
| + rgb.r = powf(row[x * 4 + 2] / 255.0f, 2.2f);
|
| + rgb.g = powf(row[x * 4 + 1] / 255.0f, 2.2f);
|
| + rgb.b = powf(row[x * 4 + 0] / 255.0f, 2.2f);
|
| + adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab);
|
| + outImageLAB->writePixel(x, y, lab);
|
| + }
|
| + }
|
| + bitmap->unlockPixels();
|
| +}
|
| +
|
| +// From Barten SPIE 1989
|
| +static float contrast_sensitivity(float cyclesPerDegree, float luminance) {
|
| + float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f);
|
| + float b = 0.3f * powf(1 + 100.0 / luminance, 0.15f);
|
| + return a *
|
| + cyclesPerDegree *
|
| + expf(-b * cyclesPerDegree) *
|
| + sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree));
|
| +}
|
| +
|
| +// From Daly 1993
|
| +static float visual_mask(float contrast) {
|
| + float x = powf(392.498f * contrast, 0.7f);
|
| + x = powf(0.0153f * x, 4.0f);
|
| + return powf(1.0f + x, 0.25f);
|
| +}
|
| +
|
| +// From Ward Larson Siggraph 1997
|
| +static float threshold_vs_intensity(float adaptationLuminance) {
|
| + float logLum = log10f(adaptationLuminance);
|
| + float x;
|
| + if (logLum < -3.94f) {
|
| + x = -2.86f;
|
| + } else if (logLum < -1.44f) {
|
| + x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f;
|
| + } else if (logLum < -0.0184f) {
|
| + x = logLum - 0.395f;
|
| + } else if (logLum < 1.9f) {
|
| + x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f;
|
| + } else {
|
| + x = logLum - 1.255f;
|
| + }
|
| + return powf(10.0f, x);
|
| +}
|
| +
|
| +/// Simply takes the L channel from the input and puts it into the output
|
| +static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) {
|
| + for (int y = 0; y < imageLAB->height; y++) {
|
| + for (int x = 0; x < imageLAB->width; x++) {
|
| + LAB lab;
|
| + imageLAB->readPixel(x, y, &lab);
|
| + outImageL->writePixel(x, y, lab.l);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/// Convolves an image with the given filter in one direction and saves it to the output image
|
| +static void convolve(const ImageL* imageL,
|
| + bool vertical, const float* matrix, int radius,
|
| + ImageL* outImageL) {
|
| + SkASSERT(imageL->width == outImageL->width);
|
| + SkASSERT(imageL->height == outImageL->height);
|
| + for (int y = 0; y < imageL->height; y++) {
|
| + for (int x = 0; x < imageL->width; x++) {
|
| + float lSum = 0.0f;
|
| + float l;
|
| + for (int xx = -radius; xx <= radius; xx++) {
|
| + int nx = x;
|
| + int ny = y;
|
| +
|
| + // We mirror at edges so that edge pixels that the filter weighting still makes
|
| + // sense.
|
| + if (vertical) {
|
| + ny += xx;
|
| + if (ny < 0) {
|
| + ny = -ny;
|
| + }
|
| + if (ny >= imageL->height) {
|
| + ny = imageL->height + (imageL->height - ny - 1);
|
| + }
|
| + } else {
|
| + nx += xx;
|
| + if (nx < 0) {
|
| + nx = -nx;
|
| + }
|
| + if (nx >= imageL->width) {
|
| + nx = imageL->width + (imageL->width - nx - 1);
|
| + }
|
| + }
|
| +
|
| + imageL->readPixel(nx, ny, &l);
|
| + float weight = matrix[xx + radius];
|
| + lSum += l * weight;
|
| + }
|
| + outImageL->writePixel(x, y, lSum);
|
| + }
|
| + }
|
| +}
|
| +
|
| +float pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB) {
|
| + int width = baselineLAB->width;
|
| + int height = baselineLAB->height;
|
| + int maxLevels = (int)log2(width < height ? width : height);
|
| +
|
| + const float fov = M_PI / 180.0f * 45.0f;
|
| + float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f);
|
| + float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / M_PI);
|
| +
|
| + ImageL3D baselineL(width, height, maxLevels);
|
| + ImageL3D testL(width, height, maxLevels);
|
| + ImageL scratchImageL(width, height);
|
| + float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels);
|
| + float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2);
|
| + float* contrast = SkNEW_ARRAY(float, maxLevels - 2);
|
| +
|
| + lab_to_l(baselineLAB, baselineL.getLayer(0));
|
| + lab_to_l(testLAB, testL.getLayer(0));
|
| +
|
| + // Compute cpd - Cycles per degree on the pyramid
|
| + cyclesPerDegree[0] = 0.5f * pixelsPerDegree;
|
| + for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
| + cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f;
|
| + }
|
| +
|
| + const float filterMatrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f };
|
| + // Compute G - The convolved lum for the baseline
|
| + for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
| + convolve(baselineL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL);
|
| + convolve(&scratchImageL, true, filterMatrix, 2, baselineL.getLayer(levelIndex));
|
| + }
|
| + for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
| + convolve(testL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL);
|
| + convolve(&scratchImageL, true, filterMatrix, 2, testL.getLayer(levelIndex));
|
| + }
|
| +
|
| + // Compute F_freq - The elevation f
|
| + for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
| + float cpd = cyclesPerDegree[levelIndex];
|
| + thresholdFactorFrequency[levelIndex] = contrastSensitivityMax /
|
| + contrast_sensitivity(cpd, 100.0f);
|
| + }
|
| +
|
| + int failures = 0;
|
| + // Calculate F
|
| + for (int y = 0; y < height; y++) {
|
| + for (int x = 0; x < width; x++) {
|
| + float lBaseline;
|
| + float lTest;
|
| + baselineL.getLayer(0)->readPixel(x, y, &lBaseline);
|
| + testL.getLayer(0)->readPixel(x, y, &lTest);
|
| +
|
| + float avgLBaseline;
|
| + float avgLTest;
|
| + baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline);
|
| + testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest);
|
| +
|
| + float lAdapt = 0.5f * (avgLBaseline + avgLTest);
|
| + if (lAdapt < 1e-5) {
|
| + lAdapt = 1e-5;
|
| + }
|
| +
|
| + float contrastSum = 0.0f;
|
| + for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
| + float baselineL0, baselineL1, baselineL2;
|
| + float testL0, testL1, testL2;
|
| + baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0);
|
| + testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0);
|
| + baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1);
|
| + testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1);
|
| + baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2);
|
| + testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2);
|
| +
|
| + float baselineContrast1 = fabsf(baselineL0 - baselineL1);
|
| + float testContrast1 = fabsf(testL0 - testL1);
|
| + float numerator = (baselineContrast1 > testContrast1) ?
|
| + baselineContrast1 : testContrast1;
|
| +
|
| + float baselineContrast2 = fabsf(baselineL2);
|
| + float testContrast2 = fabsf(testL2);
|
| + float denominator = (baselineContrast2 > testContrast2) ?
|
| + baselineContrast2 : testContrast2;
|
| +
|
| + // Avoid divides by close to zero
|
| + if (denominator < 1e-5) {
|
| + denominator = 1e-5;
|
| + }
|
| +
|
| + contrast[levelIndex] = numerator / denominator;
|
| + contrastSum += contrast[levelIndex];
|
| + }
|
| +
|
| + if (contrastSum < 1e-5) {
|
| + contrastSum = 1e-5;
|
| + }
|
| +
|
| + float F = 0.0f;
|
| + for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
| + float mask = visual_mask(contrast[levelIndex] *
|
| + contrast_sensitivity(cyclesPerDegree[levelIndex], lAdapt));
|
| +
|
| + F += contrast[levelIndex] +
|
| + thresholdFactorFrequency[levelIndex] * mask / contrastSum;
|
| + }
|
| +
|
| + if (F < 1.0f) {
|
| + F = 1.0f;
|
| + }
|
| +
|
| + if (F > 10.0f) {
|
| + F = 10.0f;
|
| + }
|
| +
|
| +
|
| + bool isFailure = false;
|
| + if (fabsf(lBaseline - lTest) > F * threshold_vs_intensity(lAdapt)) {
|
| + isFailure = true;
|
| + } else {
|
| + LAB baselineColor;
|
| + LAB testColor;
|
| + baselineLAB->readPixel(x, y, &baselineColor);
|
| + testLAB->readPixel(x, y, &testColor);
|
| + float contrastA = baselineColor.a - testColor.a;
|
| + float contrastB = baselineColor.b - testColor.b;
|
| + float colorScale = 1.0f;
|
| + if (lAdapt < 10.0f) {
|
| + colorScale = lAdapt / 10.0f;
|
| + }
|
| + colorScale *= colorScale;
|
| +
|
| + if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F)
|
| + {
|
| + isFailure = true;
|
| + }
|
| + }
|
| +
|
| + if (isFailure) {
|
| + failures++;
|
| + }
|
| + }
|
| + }
|
| +
|
| + SkDELETE_ARRAY(cyclesPerDegree);
|
| + SkDELETE_ARRAY(contrast);
|
| + SkDELETE_ARRAY(thresholdFactorFrequency);
|
| + return (double)failures;
|
| +}
|
| +
|
| +const char* SkPMetric::getName() {
|
| + return "perceptual";
|
| +}
|
| +
|
| +int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) {
|
| + int diffID = fQueuedDiffs.count();
|
| + double startTime = get_seconds();
|
| + QueuedDiff* diff = fQueuedDiffs.push();
|
| +
|
| + // Ensure the images are comparable
|
| + if (baseline->width() != test->width() || baseline->height() != test->height() ||
|
| + baseline->width() <= 0 || baseline->height() <= 0) {
|
| + diff->finished = true;
|
| + diff->result = 0.0;
|
| + return diffID;
|
| + }
|
| +
|
| + ImageLAB baselineLAB(baseline->width(), baseline->height());
|
| + ImageLAB testLAB(baseline->width(), baseline->height());
|
| +
|
| + bitmap_to_cielab(baseline, &baselineLAB);
|
| + bitmap_to_cielab(test, &testLAB);
|
| +
|
| + diff->result = pmetric(&baselineLAB, &testLAB);
|
| +
|
| + SkDebugf("Time: %f\n", (get_seconds() - startTime));
|
| +
|
| + return diffID;
|
| +}
|
| +
|
| +
|
| +bool SkPMetric::isFinished(int id) {
|
| + return fQueuedDiffs[id].finished;
|
| +}
|
| +
|
| +double SkPMetric::getResult(int id) {
|
| + return fQueuedDiffs[id].result;
|
| +}
|
|
|