Index: experimental/skpdiff/SkPMetric.cpp |
diff --git a/experimental/skpdiff/SkPMetric.cpp b/experimental/skpdiff/SkPMetric.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b674b15cca06f87c984edfabf61bf8d20dcc103c |
--- /dev/null |
+++ b/experimental/skpdiff/SkPMetric.cpp |
@@ -0,0 +1,421 @@ |
+#include <cmath> |
+ |
+#include "SkBitmap.h" |
+#include "skpdiff_util.h" |
+#include "SkPMetric.h" |
+ |
+struct RGB { |
+ float r, g, b; |
+}; |
+ |
+struct LAB { |
+ float l, a, b; |
+}; |
+ |
+template<class T> |
+struct Image2D { |
+ int width; |
+ int height; |
+ T* image; |
+ |
+ Image2D(int w, int h) |
+ : width(w), |
+ height(h) { |
+ SkASSERT(w > 0); |
+ SkASSERT(h > 0); |
+ image = SkNEW_ARRAY(T, w * h); |
+ } |
+ |
+ ~Image2D() { |
+ SkDELETE_ARRAY(image); |
+ } |
+ |
+ void readPixel(int x, int y, T* pixel) const { |
+ SkASSERT(x >= 0); |
+ SkASSERT(y >= 0); |
+ SkASSERT(x < width); |
+ SkASSERT(y < height); |
+ *pixel = image[y * width + x]; |
+ } |
+ |
+ void writePixel(int x, int y, const T& pixel) { |
+ SkASSERT(x >= 0); |
+ SkASSERT(y >= 0); |
+ SkASSERT(x < width); |
+ SkASSERT(y < height); |
+ image[y * width + x] = pixel; |
+ } |
+}; |
+ |
+typedef Image2D<float> ImageL; |
+typedef Image2D<RGB> ImageRGB; |
+typedef Image2D<LAB> ImageLAB; |
+ |
+template<class T> |
+struct ImageArray |
+{ |
+ int slices; |
+ Image2D<T>** image; |
+ |
+ ImageArray(int w, int h, int s) |
+ : slices(s) { |
+ SkASSERT(s > 0); |
+ image = SkNEW_ARRAY(Image2D<T>*, s); |
+ for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
+ image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h)); |
+ } |
+ } |
+ |
+ ~ImageArray() { |
+ for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { |
+ SkDELETE(image[sliceIndex]); |
+ } |
+ SkDELETE_ARRAY(image); |
+ } |
+ |
+ Image2D<T>* getLayer(int z) const { |
+ SkASSERT(z >= 0); |
+ SkASSERT(z < slices); |
+ return image[z]; |
+ } |
+}; |
+ |
+typedef ImageArray<float> ImageL3D; |
+ |
+ |
+#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc |
+ |
+ |
+void adobergb_to_cielab(float r, float g, float b, LAB* lab) { |
+ // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding" |
+ // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf |
+ // Section: 4.3.5.3 |
+ // See Also: http://en.wikipedia.org/wiki/Adobe_rgb |
+ float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f); |
+ float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f); |
+ float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f); |
+ |
+ // The following is the white point in XYZ, so it's simply the row wise addition of the above |
+ // matrix. |
+ const float xw = 0.5767f + 0.185556f + 0.188212f; |
+ const float yw = 0.297361f + 0.627355f + 0.0752847f; |
+ const float zw = 0.0270328f + 0.0706879f + 0.991248f; |
+ |
+ // This is the XYZ color point relative to the white point |
+ float f[3] = { x / xw, y / yw, z / zw }; |
+ |
+ // Conversion from XYZ to LAB taken from |
+ // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation |
+ for (int i = 0; i < 3; i++) { |
+ if (f[i] >= 0.008856f) { |
+ f[i] = powf(f[i], 1.0f / 3.0f); |
+ } else { |
+ f[i] = 7.787f * f[i] + 4.0f / 29.0f; |
+ } |
+ } |
+ lab->l = 116.0f * f[1] - 16.0f; |
+ lab->a = 500.0f * (f[0] - f[1]); |
+ lab->b = 200.0f * (f[1] - f[2]); |
+} |
+ |
+/// Converts a 8888 bitmap to LAB color space and puts it into the output |
+static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) { |
+ SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config); |
+ |
+ int width = bitmap->width(); |
+ int height = bitmap->height(); |
+ SkASSERT(outImageLAB->width == width); |
+ SkASSERT(outImageLAB->height == height); |
+ |
+ bitmap->lockPixels(); |
+ RGB rgb; |
+ LAB lab; |
+ for (int y = 0; y < height; y++) { |
+ unsigned char* row = (unsigned char*)bitmap->getAddr(0, y); |
+ for (int x = 0; x < width; x++) { |
+ // Perform gamma correction which is assumed to be 2.2 |
+ rgb.r = powf(row[x * 4 + 2] / 255.0f, 2.2f); |
+ rgb.g = powf(row[x * 4 + 1] / 255.0f, 2.2f); |
+ rgb.b = powf(row[x * 4 + 0] / 255.0f, 2.2f); |
+ adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab); |
+ outImageLAB->writePixel(x, y, lab); |
+ } |
+ } |
+ bitmap->unlockPixels(); |
+} |
+ |
+// From Barten SPIE 1989 |
+static float contrast_sensitivity(float cyclesPerDegree, float luminance) { |
+ float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f); |
+ float b = 0.3f * powf(1 + 100.0 / luminance, 0.15f); |
+ return a * |
+ cyclesPerDegree * |
+ expf(-b * cyclesPerDegree) * |
+ sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree)); |
+} |
+ |
+// From Daly 1993 |
+static float visual_mask(float contrast) { |
+ float x = powf(392.498f * contrast, 0.7f); |
+ x = powf(0.0153f * x, 4.0f); |
+ return powf(1.0f + x, 0.25f); |
+} |
+ |
+// From Ward Larson Siggraph 1997 |
+static float threshold_vs_intensity(float adaptationLuminance) { |
+ float logLum = log10f(adaptationLuminance); |
+ float x; |
+ if (logLum < -3.94f) { |
+ x = -2.86f; |
+ } else if (logLum < -1.44f) { |
+ x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f; |
+ } else if (logLum < -0.0184f) { |
+ x = logLum - 0.395f; |
+ } else if (logLum < 1.9f) { |
+ x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f; |
+ } else { |
+ x = logLum - 1.255f; |
+ } |
+ return powf(10.0f, x); |
+} |
+ |
+/// Simply takes the L channel from the input and puts it into the output |
+static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) { |
+ for (int y = 0; y < imageLAB->height; y++) { |
+ for (int x = 0; x < imageLAB->width; x++) { |
+ LAB lab; |
+ imageLAB->readPixel(x, y, &lab); |
+ outImageL->writePixel(x, y, lab.l); |
+ } |
+ } |
+} |
+ |
+/// Convolves an image with the given filter in one direction and saves it to the output image |
+static void convolve(const ImageL* imageL, |
+ bool vertical, const float* matrix, int radius, |
+ ImageL* outImageL) { |
+ SkASSERT(imageL->width == outImageL->width); |
+ SkASSERT(imageL->height == outImageL->height); |
+ for (int y = 0; y < imageL->height; y++) { |
+ for (int x = 0; x < imageL->width; x++) { |
+ float lSum = 0.0f; |
+ float l; |
+ for (int xx = -radius; xx <= radius; xx++) { |
+ int nx = x; |
+ int ny = y; |
+ |
+ // We mirror at edges so that edge pixels that the filter weighting still makes |
+ // sense. |
+ if (vertical) { |
+ ny += xx; |
+ if (ny < 0) { |
+ ny = -ny; |
+ } |
+ if (ny >= imageL->height) { |
+ ny = imageL->height + (imageL->height - ny - 1); |
+ } |
+ } else { |
+ nx += xx; |
+ if (nx < 0) { |
+ nx = -nx; |
+ } |
+ if (nx >= imageL->width) { |
+ nx = imageL->width + (imageL->width - nx - 1); |
+ } |
+ } |
+ |
+ imageL->readPixel(nx, ny, &l); |
+ float weight = matrix[xx + radius]; |
+ lSum += l * weight; |
+ } |
+ outImageL->writePixel(x, y, lSum); |
+ } |
+ } |
+} |
+ |
+float pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB) { |
+ int width = baselineLAB->width; |
+ int height = baselineLAB->height; |
+ int maxLevels = (int)log2(width < height ? width : height); |
+ |
+ const float fov = M_PI / 180.0f * 45.0f; |
+ float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f); |
+ float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / M_PI); |
+ |
+ ImageL3D baselineL(width, height, maxLevels); |
+ ImageL3D testL(width, height, maxLevels); |
+ ImageL scratchImageL(width, height); |
+ float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels); |
+ float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2); |
+ float* contrast = SkNEW_ARRAY(float, maxLevels - 2); |
+ |
+ lab_to_l(baselineLAB, baselineL.getLayer(0)); |
+ lab_to_l(testLAB, testL.getLayer(0)); |
+ |
+ // Compute cpd - Cycles per degree on the pyramid |
+ cyclesPerDegree[0] = 0.5f * pixelsPerDegree; |
+ for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
+ cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f; |
+ } |
+ |
+ const float filterMatrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f }; |
+ // Compute G - The convolved lum for the baseline |
+ for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
+ convolve(baselineL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL); |
+ convolve(&scratchImageL, true, filterMatrix, 2, baselineL.getLayer(levelIndex)); |
+ } |
+ for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { |
+ convolve(testL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL); |
+ convolve(&scratchImageL, true, filterMatrix, 2, testL.getLayer(levelIndex)); |
+ } |
+ |
+ // Compute F_freq - The elevation f |
+ for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
+ float cpd = cyclesPerDegree[levelIndex]; |
+ thresholdFactorFrequency[levelIndex] = contrastSensitivityMax / |
+ contrast_sensitivity(cpd, 100.0f); |
+ } |
+ |
+ int failures = 0; |
+ // Calculate F |
+ for (int y = 0; y < height; y++) { |
+ for (int x = 0; x < width; x++) { |
+ float lBaseline; |
+ float lTest; |
+ baselineL.getLayer(0)->readPixel(x, y, &lBaseline); |
+ testL.getLayer(0)->readPixel(x, y, &lTest); |
+ |
+ float avgLBaseline; |
+ float avgLTest; |
+ baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline); |
+ testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest); |
+ |
+ float lAdapt = 0.5f * (avgLBaseline + avgLTest); |
+ if (lAdapt < 1e-5) { |
+ lAdapt = 1e-5; |
+ } |
+ |
+ float contrastSum = 0.0f; |
+ for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
+ float baselineL0, baselineL1, baselineL2; |
+ float testL0, testL1, testL2; |
+ baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0); |
+ testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0); |
+ baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1); |
+ testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1); |
+ baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2); |
+ testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2); |
+ |
+ float baselineContrast1 = fabsf(baselineL0 - baselineL1); |
+ float testContrast1 = fabsf(testL0 - testL1); |
+ float numerator = (baselineContrast1 > testContrast1) ? |
+ baselineContrast1 : testContrast1; |
+ |
+ float baselineContrast2 = fabsf(baselineL2); |
+ float testContrast2 = fabsf(testL2); |
+ float denominator = (baselineContrast2 > testContrast2) ? |
+ baselineContrast2 : testContrast2; |
+ |
+ // Avoid divides by close to zero |
+ if (denominator < 1e-5) { |
+ denominator = 1e-5; |
+ } |
+ |
+ contrast[levelIndex] = numerator / denominator; |
+ contrastSum += contrast[levelIndex]; |
+ } |
+ |
+ if (contrastSum < 1e-5) { |
+ contrastSum = 1e-5; |
+ } |
+ |
+ float F = 0.0f; |
+ for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { |
+ float mask = visual_mask(contrast[levelIndex] * |
+ contrast_sensitivity(cyclesPerDegree[levelIndex], lAdapt)); |
+ |
+ F += contrast[levelIndex] + |
+ thresholdFactorFrequency[levelIndex] * mask / contrastSum; |
+ } |
+ |
+ if (F < 1.0f) { |
+ F = 1.0f; |
+ } |
+ |
+ if (F > 10.0f) { |
+ F = 10.0f; |
+ } |
+ |
+ |
+ bool isFailure = false; |
+ if (fabsf(lBaseline - lTest) > F * threshold_vs_intensity(lAdapt)) { |
+ isFailure = true; |
+ } else { |
+ LAB baselineColor; |
+ LAB testColor; |
+ baselineLAB->readPixel(x, y, &baselineColor); |
+ testLAB->readPixel(x, y, &testColor); |
+ float contrastA = baselineColor.a - testColor.a; |
+ float contrastB = baselineColor.b - testColor.b; |
+ float colorScale = 1.0f; |
+ if (lAdapt < 10.0f) { |
+ colorScale = lAdapt / 10.0f; |
+ } |
+ colorScale *= colorScale; |
+ |
+ if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F) |
+ { |
+ isFailure = true; |
+ } |
+ } |
+ |
+ if (isFailure) { |
+ failures++; |
+ } |
+ } |
+ } |
+ |
+ SkDELETE_ARRAY(cyclesPerDegree); |
+ SkDELETE_ARRAY(contrast); |
+ SkDELETE_ARRAY(thresholdFactorFrequency); |
+ return (double)failures; |
+} |
+ |
+const char* SkPMetric::getName() { |
+ return "perceptual"; |
+} |
+ |
+int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) { |
+ int diffID = fQueuedDiffs.count(); |
+ double startTime = get_seconds(); |
+ QueuedDiff* diff = fQueuedDiffs.push(); |
+ |
+ // Ensure the images are comparable |
+ if (baseline->width() != test->width() || baseline->height() != test->height() || |
+ baseline->width() <= 0 || baseline->height() <= 0) { |
+ diff->finished = true; |
+ diff->result = 0.0; |
+ return diffID; |
+ } |
+ |
+ ImageLAB baselineLAB(baseline->width(), baseline->height()); |
+ ImageLAB testLAB(baseline->width(), baseline->height()); |
+ |
+ bitmap_to_cielab(baseline, &baselineLAB); |
+ bitmap_to_cielab(test, &testLAB); |
+ |
+ diff->result = pmetric(&baselineLAB, &testLAB); |
+ |
+ SkDebugf("Time: %f\n", (get_seconds() - startTime)); |
+ |
+ return diffID; |
+} |
+ |
+ |
+bool SkPMetric::isFinished(int id) { |
+ return fQueuedDiffs[id].finished; |
+} |
+ |
+double SkPMetric::getResult(int id) { |
+ return fQueuedDiffs[id].result; |
+} |