Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 #include <cmath> | |
| 2 | |
| 3 #include "SkBitmap.h" | |
| 4 #include "skpdiff_util.h" | |
| 5 #include "SkPMetric.h" | |
| 6 | |
| 7 struct RGB { | |
| 8 float r, g, b; | |
| 9 }; | |
| 10 | |
| 11 struct LAB { | |
| 12 float l, a, b; | |
| 13 }; | |
| 14 | |
| 15 template<class T> | |
| 16 struct Image2D { | |
| 17 int width; | |
| 18 int height; | |
| 19 T* image; | |
| 20 | |
| 21 Image2D(int w, int h) | |
| 22 : width(w), | |
| 23 height(h) { | |
| 24 SkASSERT(w > 0); | |
| 25 SkASSERT(h > 0); | |
| 26 image = SkNEW_ARRAY(T, w * h); | |
| 27 } | |
| 28 | |
| 29 ~Image2D() { | |
| 30 SkDELETE_ARRAY(image); | |
| 31 } | |
| 32 | |
| 33 void readPixel(int x, int y, T* pixel) const { | |
| 34 SkASSERT(x >= 0); | |
| 35 SkASSERT(y >= 0); | |
| 36 SkASSERT(x < width); | |
| 37 SkASSERT(y < height); | |
| 38 *pixel = image[y * width + x]; | |
| 39 } | |
| 40 | |
| 41 void writePixel(int x, int y, const T& pixel) { | |
| 42 SkASSERT(x >= 0); | |
| 43 SkASSERT(y >= 0); | |
| 44 SkASSERT(x < width); | |
| 45 SkASSERT(y < height); | |
| 46 image[y * width + x] = pixel; | |
| 47 } | |
| 48 }; | |
| 49 | |
| 50 typedef Image2D<float> ImageL; | |
| 51 typedef Image2D<RGB> ImageRGB; | |
| 52 typedef Image2D<LAB> ImageLAB; | |
| 53 | |
| 54 template<class T> | |
|
bsalomon
2013/06/27 18:31:15
It seems like the template param should be restric
Zach Reizner
2013/06/27 18:48:49
I like the idea of moving the template params.
Th
| |
| 55 struct Image3D | |
| 56 { | |
| 57 int slices; | |
| 58 T** image; | |
| 59 | |
| 60 Image3D(int w, int h, int s) | |
| 61 : slices(s) { | |
| 62 SkASSERT(s > 0); | |
| 63 image = SkNEW_ARRAY(T*, s); | |
| 64 for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { | |
| 65 image[sliceIndex] = SkNEW_ARGS(T, (w, h)); | |
| 66 } | |
| 67 } | |
| 68 | |
| 69 ~Image3D() { | |
| 70 for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) { | |
| 71 SkDELETE(image[sliceIndex]); | |
| 72 } | |
| 73 SkDELETE_ARRAY(image); | |
| 74 } | |
| 75 | |
| 76 T* getLayer(int z) const { | |
| 77 SkASSERT(z >= 0); | |
| 78 SkASSERT(z < slices); | |
| 79 return image[z]; | |
| 80 } | |
| 81 }; | |
| 82 | |
| 83 typedef Image3D<ImageL> ImageL3D; | |
| 84 | |
| 85 | |
| 86 #define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc | |
| 87 | |
| 88 | |
| 89 void adobergb_to_cielab(float r, float g, float b, LAB* lab) { | |
|
bsalomon
2013/06/27 18:31:15
Does this mean the input is in Adobe RGB?
http://e
Zach Reizner
2013/06/27 18:48:49
The input is assumed to be Adobe RGB. Adobe RGB ha
| |
| 90 // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorIma ge Encoding" | |
| 91 // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf | |
| 92 // Section: 4.3.5.3 | |
| 93 // See Also: http://en.wikipedia.org/wiki/Adobe_rgb | |
| 94 float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f); | |
| 95 float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f); | |
| 96 float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f); | |
| 97 | |
| 98 // The following is the white point in XYZ, so it's simply the row wise addi tion of the above | |
| 99 // matrix. | |
| 100 const float xw = 0.5767f + 0.185556f + 0.188212f; | |
| 101 const float yw = 0.297361f + 0.627355f + 0.0752847f; | |
| 102 const float zw = 0.0270328f + 0.0706879f + 0.991248f; | |
| 103 | |
| 104 // This is the XYZ color point relative to the white point | |
| 105 float f[3] = { x / xw, y / yw, z / zw }; | |
| 106 | |
| 107 // Conversion from XYZ to LAB taken from | |
| 108 // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation | |
| 109 for (int i = 0; i < 3; i++) { | |
| 110 if (f[i] >= 0.008856f) { | |
| 111 f[i] = powf(f[i], 1.0f / 3.0f); | |
| 112 } else { | |
| 113 f[i] = 7.787f * f[i] + 4.0f / 29.0f; | |
| 114 } | |
| 115 } | |
| 116 lab->l = 116.0f * f[1] - 16.0f; | |
| 117 lab->a = 500.0f * (f[0] - f[1]); | |
| 118 lab->b = 200.0f * (f[1] - f[2]); | |
| 119 } | |
| 120 | |
| 121 /// Converts a 8888 bitmap to LAB color space and puts it into the output | |
| 122 static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) { | |
| 123 SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config); | |
| 124 | |
| 125 int width = bitmap->width(); | |
| 126 int height = bitmap->height(); | |
| 127 SkASSERT(outImageLAB->width == width); | |
| 128 SkASSERT(outImageLAB->height == height); | |
| 129 | |
| 130 bitmap->lockPixels(); | |
| 131 RGB rgb; | |
| 132 LAB lab; | |
| 133 for (int y = 0; y < height; y++) { | |
| 134 unsigned char* row = (unsigned char*)bitmap->getAddr(0, y); | |
| 135 for (int x = 0; x < width; x++) { | |
| 136 // Perform gamma correction which is assumed to be 2.2 | |
| 137 rgb.r = powf(row[x * 4 + 2] / 255.0f, 2.2f); | |
| 138 rgb.g = powf(row[x * 4 + 1] / 255.0f, 2.2f); | |
| 139 rgb.b = powf(row[x * 4 + 0] / 255.0f, 2.2f); | |
| 140 adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab); | |
| 141 outImageLAB->writePixel(x, y, lab); | |
| 142 } | |
| 143 } | |
| 144 bitmap->unlockPixels(); | |
| 145 } | |
| 146 | |
| 147 // From Barten SPIE 1989 | |
| 148 static float contrast_sensitivity(float cyclesPerDegree, float luminance) { | |
| 149 float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f); | |
| 150 float b = 0.3f * powf(1 + 100.0 / luminance, 0.15f); | |
| 151 return a * | |
| 152 cyclesPerDegree * | |
| 153 expf(-b * cyclesPerDegree) * | |
| 154 sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree)); | |
| 155 } | |
| 156 | |
| 157 // From Daly 1993 | |
| 158 static float visual_mask(float contrast) { | |
| 159 float x = powf(392.498f * contrast, 0.7f); | |
| 160 x = powf(0.0153f * x, 4.0f); | |
| 161 return powf(1.0f + x, 0.25f); | |
| 162 } | |
| 163 | |
| 164 // From Ward Larson Siggraph 1997 | |
| 165 static float threshold_vs_intensity(float adaptationLuminance) { | |
| 166 float logLum = log10f(adaptationLuminance); | |
| 167 float x; | |
| 168 if (logLum < -3.94f) { | |
| 169 x = -2.86f; | |
| 170 } else if (logLum < -1.44f) { | |
| 171 x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f; | |
| 172 } else if (logLum < -0.0184f) { | |
| 173 x = logLum - 0.395f; | |
| 174 } else if (logLum < 1.9f) { | |
| 175 x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f; | |
| 176 } else { | |
| 177 x = logLum - 1.255f; | |
| 178 } | |
| 179 return powf(10.0f, x); | |
| 180 } | |
| 181 | |
| 182 /// Simply takes the L channel from the input and puts it into the output | |
| 183 static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) { | |
| 184 for (int y = 0; y < imageLAB->height; y++) { | |
| 185 for (int x = 0; x < imageLAB->width; x++) { | |
| 186 LAB lab; | |
| 187 imageLAB->readPixel(x, y, &lab); | |
| 188 outImageL->writePixel(x, y, lab.l); | |
| 189 } | |
| 190 } | |
| 191 } | |
| 192 | |
| 193 /// Convolves an image with the given filter in one direction and saves it to th e output image | |
| 194 static void convolve(const ImageL* imageL, | |
| 195 bool vertical, const float* matrix, int radius, | |
| 196 ImageL* outImageL) { | |
| 197 SkASSERT(imageL->width == outImageL->width); | |
| 198 SkASSERT(imageL->height == outImageL->height); | |
| 199 for (int y = 0; y < imageL->height; y++) { | |
| 200 for (int x = 0; x < imageL->width; x++) { | |
| 201 float lSum = 0.0f; | |
| 202 float l; | |
| 203 for (int xx = -radius; xx <= radius; xx++) { | |
| 204 int nx = x; | |
| 205 int ny = y; | |
| 206 if (vertical) { | |
| 207 ny += xx; | |
| 208 } else { | |
| 209 nx += xx; | |
| 210 } | |
| 211 if (nx < 0) { | |
|
bsalomon
2013/06/27 18:31:15
should these four ifs be done inside the vertical/
| |
| 212 nx = -nx; | |
| 213 } | |
| 214 if (ny < 0) { | |
| 215 ny = -ny; | |
| 216 } | |
| 217 if (nx >= imageL->width) { | |
| 218 nx = imageL->width + (imageL->width - nx - 1); | |
| 219 } | |
| 220 if (ny >= imageL->height) { | |
| 221 ny = imageL->height + (imageL->height - ny - 1); | |
| 222 } | |
| 223 imageL->readPixel(nx, ny, &l); | |
| 224 float weight = matrix[xx + radius]; | |
| 225 lSum += l * weight; | |
| 226 } | |
| 227 outImageL->writePixel(x, y, lSum); | |
| 228 } | |
| 229 } | |
| 230 } | |
| 231 | |
| 232 float pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB) { | |
| 233 int width = baselineLAB->width; | |
| 234 int height = baselineLAB->height; | |
| 235 int maxLevels = (int)log2(width < height ? width : height); | |
| 236 | |
| 237 const float fov = M_PI / 180.0f * 45.0f; | |
| 238 float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f); | |
| 239 float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / M_PI); | |
| 240 | |
| 241 ImageL3D baselineL(width, height, maxLevels); | |
| 242 ImageL3D testL(width, height, maxLevels); | |
| 243 ImageL scratchImageL(width, height); | |
| 244 float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels); | |
| 245 float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2); | |
| 246 float* contrast = SkNEW_ARRAY(float, maxLevels - 2); | |
| 247 | |
| 248 lab_to_l(baselineLAB, baselineL.getLayer(0)); | |
| 249 lab_to_l(testLAB, testL.getLayer(0)); | |
| 250 | |
| 251 // Compute cpd - Cycles per degree on the pyramid | |
| 252 cyclesPerDegree[0] = 0.5f * pixelsPerDegree; | |
| 253 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { | |
| 254 cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f; | |
| 255 } | |
| 256 | |
| 257 const float filterMatrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f }; | |
| 258 // Compute G - The convolved lum for the baseline | |
| 259 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { | |
| 260 convolve(baselineL.getLayer(levelIndex - 1), false, filterMatrix, 2, &sc ratchImageL); | |
| 261 convolve(&scratchImageL, true, filterMatrix, 2, baselineL.getLayer(level Index)); | |
| 262 } | |
| 263 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) { | |
| 264 convolve(testL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratc hImageL); | |
| 265 convolve(&scratchImageL, true, filterMatrix, 2, testL.getLayer(levelInde x)); | |
| 266 } | |
| 267 | |
| 268 // Compute F_freq - The elevation f | |
| 269 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { | |
| 270 float cpd = cyclesPerDegree[levelIndex]; | |
| 271 thresholdFactorFrequency[levelIndex] = contrastSensitivityMax / | |
| 272 contrast_sensitivity(cpd, 100.0f) ; | |
| 273 } | |
| 274 | |
| 275 int failures = 0; | |
| 276 // Calculate F | |
| 277 for (int y = 0; y < height; y++) { | |
| 278 for (int x = 0; x < width; x++) { | |
| 279 float lBaseline; | |
| 280 float lTest; | |
| 281 baselineL.getLayer(0)->readPixel(x, y, &lBaseline); | |
| 282 testL.getLayer(0)->readPixel(x, y, &lTest); | |
| 283 | |
| 284 float avgLBaseline; | |
| 285 float avgLTest; | |
| 286 baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline); | |
| 287 testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest); | |
| 288 | |
| 289 float lAdapt = 0.5f * (avgLBaseline + avgLTest); | |
| 290 if (lAdapt < 1e-5) { | |
| 291 lAdapt = 1e-5; | |
| 292 } | |
| 293 | |
| 294 float contrastSum = 0.0f; | |
| 295 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { | |
| 296 float baselineL0, baselineL1, baselineL2; | |
| 297 float testL0, testL1, testL2; | |
| 298 baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0) ; | |
| 299 testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0); | |
| 300 baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1) ; | |
| 301 testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1); | |
| 302 baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2) ; | |
| 303 testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2); | |
| 304 | |
| 305 float baselineContrast1 = fabsf(baselineL0 - baselineL1); | |
| 306 float testContrast1 = fabsf(testL0 - testL1); | |
| 307 float numerator = (baselineContrast1 > testContrast1) ? | |
| 308 baselineContrast1 : testContrast1; | |
| 309 | |
| 310 float baselineContrast2 = fabsf(baselineL2); | |
| 311 float testContrast2 = fabsf(testL2); | |
| 312 float denominator = (baselineContrast2 > testContrast2) ? | |
| 313 baselineContrast2 : testContrast2; | |
| 314 | |
| 315 // Avoid divides by close to zero | |
| 316 if (denominator < 1e-5) { | |
| 317 denominator = 1e-5; | |
| 318 } | |
| 319 | |
| 320 contrast[levelIndex] = numerator / denominator; | |
| 321 contrastSum += contrast[levelIndex]; | |
| 322 } | |
| 323 | |
| 324 if (contrastSum < 1e-5) { | |
| 325 contrastSum = 1e-5; | |
| 326 } | |
| 327 | |
| 328 float F = 0.0f; | |
| 329 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) { | |
| 330 float mask = visual_mask(contrast[levelIndex] * | |
| 331 contrast_sensitivity(cyclesPerDegree[levelIndex], l Adapt)); | |
| 332 | |
| 333 F += contrast[levelIndex] + | |
| 334 thresholdFactorFrequency[levelIndex] * mask / contrastSum; | |
| 335 } | |
| 336 | |
| 337 if (F < 1.0f) { | |
| 338 F = 1.0f; | |
| 339 } | |
| 340 | |
| 341 if (F > 10.0f) { | |
| 342 F = 10.0f; | |
| 343 } | |
| 344 | |
| 345 | |
| 346 bool isFailure = false; | |
| 347 if (fabsf(lBaseline - lTest) > F * threshold_vs_intensity(lAdapt)) { | |
| 348 isFailure = true; | |
| 349 } else { | |
| 350 LAB baselineColor; | |
| 351 LAB testColor; | |
| 352 baselineLAB->readPixel(x, y, &baselineColor); | |
| 353 testLAB->readPixel(x, y, &testColor); | |
| 354 float contrastA = baselineColor.a - testColor.a; | |
| 355 float contrastB = baselineColor.b - testColor.b; | |
| 356 float colorScale = 1.0f; | |
| 357 if (lAdapt < 10.0f) { | |
| 358 colorScale = lAdapt / 10.0f; | |
| 359 } | |
| 360 colorScale *= colorScale; | |
| 361 | |
| 362 if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F) | |
| 363 { | |
| 364 isFailure = true; | |
| 365 } | |
| 366 } | |
| 367 | |
| 368 if (isFailure) { | |
| 369 failures++; | |
| 370 } | |
| 371 } | |
| 372 } | |
| 373 | |
| 374 SkDELETE_ARRAY(cyclesPerDegree); | |
| 375 SkDELETE_ARRAY(contrast); | |
| 376 SkDELETE_ARRAY(thresholdFactorFrequency); | |
| 377 return (double)failures; | |
| 378 } | |
| 379 | |
| 380 const char* SkPMetric::getName() { | |
| 381 return "perceptual"; | |
| 382 } | |
| 383 | |
| 384 int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) { | |
| 385 int diffID = fQueuedDiffs.count(); | |
| 386 double startTime = get_seconds(); | |
| 387 QueuedDiff* diff = fQueuedDiffs.push(); | |
| 388 | |
| 389 // Ensure the images are comparable | |
| 390 if (baseline->width() != test->width() || baseline->height() != test->height () || | |
| 391 baseline->width() <= 0 || baseline->height() <= 0) { | |
| 392 diff->finished = true; | |
| 393 diff->result = 0.0; | |
| 394 return diffID; | |
| 395 } | |
| 396 | |
| 397 ImageLAB baselineLAB(baseline->width(), baseline->height()); | |
| 398 ImageLAB testLAB(baseline->width(), baseline->height()); | |
| 399 | |
| 400 bitmap_to_cielab(baseline, &baselineLAB); | |
| 401 bitmap_to_cielab(test, &testLAB); | |
| 402 | |
| 403 diff->result = pmetric(&baselineLAB, &testLAB); | |
| 404 | |
| 405 SkDebugf("Time: %f\n", (get_seconds() - startTime)); | |
| 406 | |
| 407 return diffID; | |
| 408 } | |
| 409 | |
| 410 | |
| 411 bool SkPMetric::isFinished(int id) { | |
| 412 return fQueuedDiffs[id].finished; | |
| 413 } | |
| 414 | |
| 415 double SkPMetric::getResult(int id) { | |
| 416 return fQueuedDiffs[id].result; | |
| 417 } | |
| OLD | NEW |