| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "base/time.h" | |
| 6 | |
| 7 #include <CoreFoundation/CFDate.h> | |
| 8 #include <CoreFoundation/CFTimeZone.h> | |
| 9 #include <mach/mach_time.h> | |
| 10 #include <sys/sysctl.h> | |
| 11 #include <sys/time.h> | |
| 12 #include <sys/types.h> | |
| 13 #include <time.h> | |
| 14 | |
| 15 #include "base/basictypes.h" | |
| 16 #include "base/logging.h" | |
| 17 #include "base/mac/scoped_cftyperef.h" | |
| 18 | |
| 19 namespace { | |
| 20 | |
| 21 uint64_t ComputeCurrentTicks() { | |
| 22 #if defined(OS_IOS) | |
| 23 // On iOS mach_absolute_time stops while the device is sleeping. Instead use | |
| 24 // now - KERN_BOOTTIME to get a time difference that is not impacted by clock | |
| 25 // changes. KERN_BOOTTIME will be updated by the system whenever the system | |
| 26 // clock change. | |
| 27 struct timeval boottime; | |
| 28 int mib[2] = {CTL_KERN, KERN_BOOTTIME}; | |
| 29 size_t size = sizeof(boottime); | |
| 30 int kr = sysctl(mib, arraysize(mib), &boottime, &size, NULL, 0); | |
| 31 DCHECK_EQ(KERN_SUCCESS, kr); | |
| 32 base::TimeDelta time_difference = base::Time::Now() - | |
| 33 (base::Time::FromTimeT(boottime.tv_sec) + | |
| 34 base::TimeDelta::FromMicroseconds(boottime.tv_usec)); | |
| 35 return time_difference.InMicroseconds(); | |
| 36 #else | |
| 37 uint64_t absolute_micro; | |
| 38 | |
| 39 static mach_timebase_info_data_t timebase_info; | |
| 40 if (timebase_info.denom == 0) { | |
| 41 // Zero-initialization of statics guarantees that denom will be 0 before | |
| 42 // calling mach_timebase_info. mach_timebase_info will never set denom to | |
| 43 // 0 as that would be invalid, so the zero-check can be used to determine | |
| 44 // whether mach_timebase_info has already been called. This is | |
| 45 // recommended by Apple's QA1398. | |
| 46 kern_return_t kr = mach_timebase_info(&timebase_info); | |
| 47 DCHECK_EQ(KERN_SUCCESS, kr); | |
| 48 } | |
| 49 | |
| 50 // mach_absolute_time is it when it comes to ticks on the Mac. Other calls | |
| 51 // with less precision (such as TickCount) just call through to | |
| 52 // mach_absolute_time. | |
| 53 | |
| 54 // timebase_info converts absolute time tick units into nanoseconds. Convert | |
| 55 // to microseconds up front to stave off overflows. | |
| 56 absolute_micro = | |
| 57 mach_absolute_time() / base::Time::kNanosecondsPerMicrosecond * | |
| 58 timebase_info.numer / timebase_info.denom; | |
| 59 | |
| 60 // Don't bother with the rollover handling that the Windows version does. | |
| 61 // With numer and denom = 1 (the expected case), the 64-bit absolute time | |
| 62 // reported in nanoseconds is enough to last nearly 585 years. | |
| 63 return absolute_micro; | |
| 64 #endif // defined(OS_IOS) | |
| 65 } | |
| 66 | |
| 67 } // namespace | |
| 68 | |
| 69 namespace base { | |
| 70 | |
| 71 // The Time routines in this file use Mach and CoreFoundation APIs, since the | |
| 72 // POSIX definition of time_t in Mac OS X wraps around after 2038--and | |
| 73 // there are already cookie expiration dates, etc., past that time out in | |
| 74 // the field. Using CFDate prevents that problem, and using mach_absolute_time | |
| 75 // for TimeTicks gives us nice high-resolution interval timing. | |
| 76 | |
| 77 // Time ----------------------------------------------------------------------- | |
| 78 | |
| 79 // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC. | |
| 80 // The UNIX epoch is 1970-01-01 00:00:00 UTC. | |
| 81 // Windows uses a Gregorian epoch of 1601. We need to match this internally | |
| 82 // so that our time representations match across all platforms. See bug 14734. | |
| 83 // irb(main):010:0> Time.at(0).getutc() | |
| 84 // => Thu Jan 01 00:00:00 UTC 1970 | |
| 85 // irb(main):011:0> Time.at(-11644473600).getutc() | |
| 86 // => Mon Jan 01 00:00:00 UTC 1601 | |
| 87 static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600); | |
| 88 static const int64 kWindowsEpochDeltaMilliseconds = | |
| 89 kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond; | |
| 90 | |
| 91 // static | |
| 92 const int64 Time::kWindowsEpochDeltaMicroseconds = | |
| 93 kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; | |
| 94 | |
| 95 // Some functions in time.cc use time_t directly, so we provide an offset | |
| 96 // to convert from time_t (Unix epoch) and internal (Windows epoch). | |
| 97 // static | |
| 98 const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; | |
| 99 | |
| 100 // static | |
| 101 Time Time::Now() { | |
| 102 return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); | |
| 103 } | |
| 104 | |
| 105 // static | |
| 106 Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { | |
| 107 if (t == 0) | |
| 108 return Time(); // Consider 0 as a null Time. | |
| 109 if (t == std::numeric_limits<CFAbsoluteTime>::max()) | |
| 110 return Max(); | |
| 111 return Time(static_cast<int64>( | |
| 112 (t + kCFAbsoluteTimeIntervalSince1970) * kMicrosecondsPerSecond) + | |
| 113 kWindowsEpochDeltaMicroseconds); | |
| 114 } | |
| 115 | |
| 116 CFAbsoluteTime Time::ToCFAbsoluteTime() const { | |
| 117 if (is_null()) | |
| 118 return 0; // Consider 0 as a null Time. | |
| 119 if (is_max()) | |
| 120 return std::numeric_limits<CFAbsoluteTime>::max(); | |
| 121 return (static_cast<CFAbsoluteTime>(us_ - kWindowsEpochDeltaMicroseconds) / | |
| 122 kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; | |
| 123 } | |
| 124 | |
| 125 // static | |
| 126 Time Time::NowFromSystemTime() { | |
| 127 // Just use Now() because Now() returns the system time. | |
| 128 return Now(); | |
| 129 } | |
| 130 | |
| 131 // static | |
| 132 Time Time::FromExploded(bool is_local, const Exploded& exploded) { | |
| 133 CFGregorianDate date; | |
| 134 date.second = exploded.second + | |
| 135 exploded.millisecond / static_cast<double>(kMillisecondsPerSecond); | |
| 136 date.minute = exploded.minute; | |
| 137 date.hour = exploded.hour; | |
| 138 date.day = exploded.day_of_month; | |
| 139 date.month = exploded.month; | |
| 140 date.year = exploded.year; | |
| 141 | |
| 142 base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | |
| 143 is_local ? CFTimeZoneCopySystem() : NULL); | |
| 144 CFAbsoluteTime seconds = CFGregorianDateGetAbsoluteTime(date, time_zone) + | |
| 145 kCFAbsoluteTimeIntervalSince1970; | |
| 146 return Time(static_cast<int64>(seconds * kMicrosecondsPerSecond) + | |
| 147 kWindowsEpochDeltaMicroseconds); | |
| 148 } | |
| 149 | |
| 150 void Time::Explode(bool is_local, Exploded* exploded) const { | |
| 151 // Avoid rounding issues, by only putting the integral number of seconds | |
| 152 // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). | |
| 153 int64 microsecond = us_ % kMicrosecondsPerSecond; | |
| 154 if (microsecond < 0) | |
| 155 microsecond += kMicrosecondsPerSecond; | |
| 156 CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) - | |
| 157 kWindowsEpochDeltaSeconds - | |
| 158 kCFAbsoluteTimeIntervalSince1970; | |
| 159 | |
| 160 base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | |
| 161 is_local ? CFTimeZoneCopySystem() : NULL); | |
| 162 CFGregorianDate date = CFAbsoluteTimeGetGregorianDate(seconds, time_zone); | |
| 163 // 1 = Monday, ..., 7 = Sunday. | |
| 164 int cf_day_of_week = CFAbsoluteTimeGetDayOfWeek(seconds, time_zone); | |
| 165 | |
| 166 exploded->year = date.year; | |
| 167 exploded->month = date.month; | |
| 168 exploded->day_of_week = cf_day_of_week % 7; | |
| 169 exploded->day_of_month = date.day; | |
| 170 exploded->hour = date.hour; | |
| 171 exploded->minute = date.minute; | |
| 172 // Make sure seconds are rounded down towards -infinity. | |
| 173 exploded->second = floor(date.second); | |
| 174 // Calculate milliseconds ourselves, since we rounded the |seconds|, making | |
| 175 // sure to round towards -infinity. | |
| 176 exploded->millisecond = | |
| 177 (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : | |
| 178 (microsecond - kMicrosecondsPerMillisecond + 1) / | |
| 179 kMicrosecondsPerMillisecond; | |
| 180 } | |
| 181 | |
| 182 // TimeTicks ------------------------------------------------------------------ | |
| 183 | |
| 184 // static | |
| 185 TimeTicks TimeTicks::Now() { | |
| 186 return TimeTicks(ComputeCurrentTicks()); | |
| 187 } | |
| 188 | |
| 189 // static | |
| 190 TimeTicks TimeTicks::HighResNow() { | |
| 191 return Now(); | |
| 192 } | |
| 193 | |
| 194 // static | |
| 195 TimeTicks TimeTicks::NowFromSystemTraceTime() { | |
| 196 return HighResNow(); | |
| 197 } | |
| 198 | |
| 199 } // namespace base | |
| OLD | NEW |