| Index: src/pathops/SkDLineIntersection.cpp
|
| diff --git a/src/pathops/SkDLineIntersection.cpp b/src/pathops/SkDLineIntersection.cpp
|
| index 13c0dbbef42b82d33409f571af6d976f179f57aa..3b88b8870238ba63111d72084907d4de541dea93 100644
|
| --- a/src/pathops/SkDLineIntersection.cpp
|
| +++ b/src/pathops/SkDLineIntersection.cpp
|
| @@ -75,13 +75,51 @@ int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
|
| return computePoints(a, used);
|
| }
|
|
|
| -/*
|
| - Determine the intersection point of two line segments
|
| - Return FALSE if the lines don't intersect
|
| - from: http://paulbourke.net/geometry/lineline2d/
|
| - */
|
| +static bool checkEndPoint(double x, double y, const SkDLine& l, double* tPtr, int useX) {
|
| + if (!between(l[0].fX, x, l[1].fX) || !between(l[0].fY, y, l[1].fY)) {
|
| + return false;
|
| + }
|
| + double xLen = l[1].fX - l[0].fX;
|
| + double yLen = l[1].fY - l[0].fY;
|
| + if (useX < 0) {
|
| + useX = SkTAbs(xLen) > SkTAbs(yLen);
|
| + }
|
| + // OPTIMIZATION: do between test before divide
|
| + double t = useX ? (x - l[0].fX) / xLen : (y - l[0].fY) / yLen;
|
| + if (!between(0, t, 1)) {
|
| + return false;
|
| + }
|
| + double opp = useX ? (1 - t) * l[0].fY + t * l[1].fY : (1 - t) * l[0].fX + t * l[1].fX;
|
| + if (!AlmostEqualUlps(opp, useX ? y : x)) {
|
| + return false;
|
| + }
|
| + *tPtr = t;
|
| + return true;
|
| +}
|
|
|
| +// note that this only works if both lines are neither horizontal nor vertical
|
| int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
|
| + // see if end points intersect the opposite line
|
| + double t;
|
| + for (int iA = 0; iA < 2; ++iA) {
|
| + if (!checkEndPoint(a[iA].fX, a[iA].fY, b, &t, -1)) {
|
| + continue;
|
| + }
|
| + insert(iA, t, a[iA]);
|
| + }
|
| + for (int iB = 0; iB < 2; ++iB) {
|
| + if (!checkEndPoint(b[iB].fX, b[iB].fY, a, &t, -1)) {
|
| + continue;
|
| + }
|
| + insert(t, iB, b[iB]);
|
| + }
|
| + if (used() > 0) {
|
| + SkASSERT(fUsed <= 2);
|
| + return used(); // coincident lines are returned here
|
| + }
|
| + /* Determine the intersection point of two line segments
|
| + Return FALSE if the lines don't intersect
|
| + from: http://paulbourke.net/geometry/lineline2d/ */
|
| double axLen = a[1].fX - a[0].fX;
|
| double ayLen = a[1].fY - a[0].fY;
|
| double bxLen = b[1].fX - b[0].fX;
|
| @@ -105,64 +143,14 @@ int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
|
| && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
|
| && !sk_double_isnan(numerB)) {
|
| if (mayNotOverlap) {
|
| - return fUsed = 0;
|
| + return 0;
|
| }
|
| fT[0][0] = numerA;
|
| fT[1][0] = numerB;
|
| fPt[0] = a.xyAtT(numerA);
|
| return computePoints(a, 1);
|
| }
|
| - /* See if the axis intercepts match:
|
| - ay - ax * ayLen / axLen == by - bx * ayLen / axLen
|
| - axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
|
| - axLen * ay - ax * ayLen == axLen * by - bx * ayLen
|
| - */
|
| - if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX,
|
| - axLen * b[0].fY - ayLen * b[0].fX)) {
|
| - return fUsed = 0;
|
| - }
|
| - const double* aPtr;
|
| - const double* bPtr;
|
| - if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
|
| - aPtr = &a[0].fX;
|
| - bPtr = &b[0].fX;
|
| - } else {
|
| - aPtr = &a[0].fY;
|
| - bPtr = &b[0].fY;
|
| - }
|
| - double a0 = aPtr[0];
|
| - double a1 = aPtr[2];
|
| - double b0 = bPtr[0];
|
| - double b1 = bPtr[2];
|
| - // OPTIMIZATION: restructure to reject before the divide
|
| - // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
|
| - // (except efficient)
|
| - double aDenom = a0 - a1;
|
| - if (approximately_zero(aDenom)) {
|
| - if (!between(b0, a0, b1)) {
|
| - return fUsed = 0;
|
| - }
|
| - fT[0][0] = fT[0][1] = 0;
|
| - } else {
|
| - double at0 = (a0 - b0) / aDenom;
|
| - double at1 = (a0 - b1) / aDenom;
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return fUsed = 0;
|
| - }
|
| - fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - }
|
| - double bDenom = b0 - b1;
|
| - if (approximately_zero(bDenom)) {
|
| - fT[1][0] = fT[1][1] = 0;
|
| - } else {
|
| - int bIn = aDenom * bDenom < 0;
|
| - fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
|
| - fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
|
| - }
|
| - bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| - SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| - return computePoints(a, 1 + second);
|
| + return 0;
|
| }
|
|
|
| int SkIntersections::horizontal(const SkDLine& line, double y) {
|
| @@ -174,7 +162,7 @@ int SkIntersections::horizontal(const SkDLine& line, double y) {
|
| if (min > y || max < y) {
|
| return fUsed = 0;
|
| }
|
| - if (AlmostEqualUlps(min, max)) {
|
| + if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
|
| fT[0][0] = 0;
|
| fT[0][1] = 1;
|
| return fUsed = 2;
|
| @@ -183,42 +171,51 @@ int SkIntersections::horizontal(const SkDLine& line, double y) {
|
| return fUsed = 1;
|
| }
|
|
|
| +static bool checkEndPointH(const SkDPoint& end, double left, double right,
|
| + double y, bool flipped, double* tPtr) {
|
| + if (!between(left, end.fX, right) || !AlmostEqualUlps(y, end.fY)) {
|
| + return false;
|
| + }
|
| + double t = (end.fX - left) / (right - left);
|
| + SkASSERT(between(0, t, 1));
|
| + *tPtr = flipped ? 1 - t : t;
|
| + return true;
|
| +}
|
| +
|
| int SkIntersections::horizontal(const SkDLine& line, double left, double right,
|
| double y, bool flipped) {
|
| - int result = horizontal(line, y);
|
| - switch (result) {
|
| - case 0:
|
| - break;
|
| - case 1: {
|
| - double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
|
| - if (!precisely_between(left, xIntercept, right)) {
|
| - return fUsed = 0;
|
| - }
|
| - fT[1][0] = (xIntercept - left) / (right - left);
|
| - break;
|
| + // see if end points intersect the opposite line
|
| + double t;
|
| + if (checkEndPoint(left, y, line, &t, true)) {
|
| + insert(t, flipped, left, y);
|
| + }
|
| + if (left != right) {
|
| + if (checkEndPoint(right, y, line, &t, true)) {
|
| + insert(t, !flipped, right, y);
|
| }
|
| - case 2:
|
| - double a0 = line[0].fX;
|
| - double a1 = line[1].fX;
|
| - double b0 = flipped ? right : left;
|
| - double b1 = flipped ? left : right;
|
| - // FIXME: share common code below
|
| - double at0 = (a0 - b0) / (a0 - a1);
|
| - double at1 = (a0 - b1) / (a0 - a1);
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return fUsed = 0;
|
| + for (int index = 0; index < 2; ++index) {
|
| + if (!checkEndPointH(line[index], left, right, y, flipped, &t)) {
|
| + continue;
|
| }
|
| - fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| - fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0);
|
| - fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0);
|
| - bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| - SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| - return computePoints(line, 1 + second);
|
| + insert(index, t, line[index]);
|
| + }
|
| + }
|
| + if (used() > 0) {
|
| + SkASSERT(fUsed <= 2);
|
| + return used(); // coincident lines are returned here
|
| + }
|
| + int result = horizontal(line, y);
|
| + if (!result) {
|
| + return 0;
|
| + }
|
| + SkASSERT(result == 1);
|
| + double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
|
| + if (!precisely_between(left, xIntercept, right)) {
|
| + return fUsed = 0;
|
| }
|
| + fT[1][0] = (xIntercept - left) / (right - left);
|
| if (flipped) {
|
| - // OPTIMIZATION: instead of swapping, pass original line, use [1].fX - [0].fX
|
| + // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
|
| for (int index = 0; index < result; ++index) {
|
| fT[1][index] = 1 - fT[1][index];
|
| }
|
| @@ -244,40 +241,49 @@ int SkIntersections::vertical(const SkDLine& line, double x) {
|
| return fUsed = 1;
|
| }
|
|
|
| +static bool checkEndPointV(const SkDPoint& end, double top, double bottom,
|
| + double x, bool flipped, double* tPtr) {
|
| + if (!between(top, end.fY, bottom) || !AlmostEqualUlps(x, end.fX)) {
|
| + return false;
|
| + }
|
| + double t = (end.fY - top) / (bottom - top);
|
| + SkASSERT(between(0, t, 1));
|
| + *tPtr = flipped ? 1 - t : t;
|
| + return true;
|
| +}
|
| +
|
| int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
|
| - double x, bool flipped) {
|
| - int result = vertical(line, x);
|
| - switch (result) {
|
| - case 0:
|
| - break;
|
| - case 1: {
|
| - double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
|
| - if (!precisely_between(top, yIntercept, bottom)) {
|
| - return fUsed = 0;
|
| - }
|
| - fT[1][0] = (yIntercept - top) / (bottom - top);
|
| - break;
|
| + double x, bool flipped) {
|
| + // see if end points intersect the opposite line
|
| + double t;
|
| + if (checkEndPoint(x, top, line, &t, false)) {
|
| + insert(t, flipped, x, top);
|
| + }
|
| + if (top != bottom) {
|
| + if (checkEndPoint(x, bottom,line, &t, false)) {
|
| + insert(t, !flipped, x, bottom);
|
| }
|
| - case 2:
|
| - double a0 = line[0].fY;
|
| - double a1 = line[1].fY;
|
| - double b0 = flipped ? bottom : top;
|
| - double b1 = flipped ? top : bottom;
|
| - // FIXME: share common code above
|
| - double at0 = (a0 - b0) / (a0 - a1);
|
| - double at1 = (a0 - b1) / (a0 - a1);
|
| - if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| - return fUsed = 0;
|
| + for (int index = 0; index < 2; ++index) {
|
| + if (!checkEndPointV(line[index], top, bottom, x, flipped, &t)) {
|
| + continue;
|
| }
|
| - fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| - fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| - int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| - fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0);
|
| - fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0);
|
| - bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| - SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| - return computePoints(line, 1 + second);
|
| + insert( index, t, line[index]);
|
| + }
|
| + }
|
| + if (used() > 0) {
|
| + SkASSERT(fUsed <= 2);
|
| + return used(); // coincident lines are returned here
|
| + }
|
| + int result = vertical(line, x);
|
| + if (!result) {
|
| + return 0;
|
| + }
|
| + SkASSERT(result == 1);
|
| + double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
|
| + if (!precisely_between(top, yIntercept, bottom)) {
|
| + return fUsed = 0;
|
| }
|
| + fT[1][0] = (yIntercept - top) / (bottom - top);
|
| if (flipped) {
|
| // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
|
| for (int index = 0; index < result; ++index) {
|
|
|