Index: src/pathops/SkDLineIntersection.cpp |
diff --git a/src/pathops/SkDLineIntersection.cpp b/src/pathops/SkDLineIntersection.cpp |
index 13c0dbbef42b82d33409f571af6d976f179f57aa..3b88b8870238ba63111d72084907d4de541dea93 100644 |
--- a/src/pathops/SkDLineIntersection.cpp |
+++ b/src/pathops/SkDLineIntersection.cpp |
@@ -75,13 +75,51 @@ int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) { |
return computePoints(a, used); |
} |
-/* |
- Determine the intersection point of two line segments |
- Return FALSE if the lines don't intersect |
- from: http://paulbourke.net/geometry/lineline2d/ |
- */ |
+static bool checkEndPoint(double x, double y, const SkDLine& l, double* tPtr, int useX) { |
+ if (!between(l[0].fX, x, l[1].fX) || !between(l[0].fY, y, l[1].fY)) { |
+ return false; |
+ } |
+ double xLen = l[1].fX - l[0].fX; |
+ double yLen = l[1].fY - l[0].fY; |
+ if (useX < 0) { |
+ useX = SkTAbs(xLen) > SkTAbs(yLen); |
+ } |
+ // OPTIMIZATION: do between test before divide |
+ double t = useX ? (x - l[0].fX) / xLen : (y - l[0].fY) / yLen; |
+ if (!between(0, t, 1)) { |
+ return false; |
+ } |
+ double opp = useX ? (1 - t) * l[0].fY + t * l[1].fY : (1 - t) * l[0].fX + t * l[1].fX; |
+ if (!AlmostEqualUlps(opp, useX ? y : x)) { |
+ return false; |
+ } |
+ *tPtr = t; |
+ return true; |
+} |
+// note that this only works if both lines are neither horizontal nor vertical |
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { |
+ // see if end points intersect the opposite line |
+ double t; |
+ for (int iA = 0; iA < 2; ++iA) { |
+ if (!checkEndPoint(a[iA].fX, a[iA].fY, b, &t, -1)) { |
+ continue; |
+ } |
+ insert(iA, t, a[iA]); |
+ } |
+ for (int iB = 0; iB < 2; ++iB) { |
+ if (!checkEndPoint(b[iB].fX, b[iB].fY, a, &t, -1)) { |
+ continue; |
+ } |
+ insert(t, iB, b[iB]); |
+ } |
+ if (used() > 0) { |
+ SkASSERT(fUsed <= 2); |
+ return used(); // coincident lines are returned here |
+ } |
+ /* Determine the intersection point of two line segments |
+ Return FALSE if the lines don't intersect |
+ from: http://paulbourke.net/geometry/lineline2d/ */ |
double axLen = a[1].fX - a[0].fX; |
double ayLen = a[1].fY - a[0].fY; |
double bxLen = b[1].fX - b[0].fX; |
@@ -105,64 +143,14 @@ int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { |
&& !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA) |
&& !sk_double_isnan(numerB)) { |
if (mayNotOverlap) { |
- return fUsed = 0; |
+ return 0; |
} |
fT[0][0] = numerA; |
fT[1][0] = numerB; |
fPt[0] = a.xyAtT(numerA); |
return computePoints(a, 1); |
} |
- /* See if the axis intercepts match: |
- ay - ax * ayLen / axLen == by - bx * ayLen / axLen |
- axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) |
- axLen * ay - ax * ayLen == axLen * by - bx * ayLen |
- */ |
- if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX, |
- axLen * b[0].fY - ayLen * b[0].fX)) { |
- return fUsed = 0; |
- } |
- const double* aPtr; |
- const double* bPtr; |
- if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) { |
- aPtr = &a[0].fX; |
- bPtr = &b[0].fX; |
- } else { |
- aPtr = &a[0].fY; |
- bPtr = &b[0].fY; |
- } |
- double a0 = aPtr[0]; |
- double a1 = aPtr[2]; |
- double b0 = bPtr[0]; |
- double b1 = bPtr[2]; |
- // OPTIMIZATION: restructure to reject before the divide |
- // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1)) |
- // (except efficient) |
- double aDenom = a0 - a1; |
- if (approximately_zero(aDenom)) { |
- if (!between(b0, a0, b1)) { |
- return fUsed = 0; |
- } |
- fT[0][0] = fT[0][1] = 0; |
- } else { |
- double at0 = (a0 - b0) / aDenom; |
- double at1 = (a0 - b1) / aDenom; |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return fUsed = 0; |
- } |
- fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- } |
- double bDenom = b0 - b1; |
- if (approximately_zero(bDenom)) { |
- fT[1][0] = fT[1][1] = 0; |
- } else { |
- int bIn = aDenom * bDenom < 0; |
- fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0); |
- fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0); |
- } |
- bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; |
- SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); |
- return computePoints(a, 1 + second); |
+ return 0; |
} |
int SkIntersections::horizontal(const SkDLine& line, double y) { |
@@ -174,7 +162,7 @@ int SkIntersections::horizontal(const SkDLine& line, double y) { |
if (min > y || max < y) { |
return fUsed = 0; |
} |
- if (AlmostEqualUlps(min, max)) { |
+ if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) { |
fT[0][0] = 0; |
fT[0][1] = 1; |
return fUsed = 2; |
@@ -183,42 +171,51 @@ int SkIntersections::horizontal(const SkDLine& line, double y) { |
return fUsed = 1; |
} |
+static bool checkEndPointH(const SkDPoint& end, double left, double right, |
+ double y, bool flipped, double* tPtr) { |
+ if (!between(left, end.fX, right) || !AlmostEqualUlps(y, end.fY)) { |
+ return false; |
+ } |
+ double t = (end.fX - left) / (right - left); |
+ SkASSERT(between(0, t, 1)); |
+ *tPtr = flipped ? 1 - t : t; |
+ return true; |
+} |
+ |
int SkIntersections::horizontal(const SkDLine& line, double left, double right, |
double y, bool flipped) { |
- int result = horizontal(line, y); |
- switch (result) { |
- case 0: |
- break; |
- case 1: { |
- double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX); |
- if (!precisely_between(left, xIntercept, right)) { |
- return fUsed = 0; |
- } |
- fT[1][0] = (xIntercept - left) / (right - left); |
- break; |
+ // see if end points intersect the opposite line |
+ double t; |
+ if (checkEndPoint(left, y, line, &t, true)) { |
+ insert(t, flipped, left, y); |
+ } |
+ if (left != right) { |
+ if (checkEndPoint(right, y, line, &t, true)) { |
+ insert(t, !flipped, right, y); |
} |
- case 2: |
- double a0 = line[0].fX; |
- double a1 = line[1].fX; |
- double b0 = flipped ? right : left; |
- double b1 = flipped ? left : right; |
- // FIXME: share common code below |
- double at0 = (a0 - b0) / (a0 - a1); |
- double at1 = (a0 - b1) / (a0 - a1); |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return fUsed = 0; |
+ for (int index = 0; index < 2; ++index) { |
+ if (!checkEndPointH(line[index], left, right, y, flipped, &t)) { |
+ continue; |
} |
- fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- int bIn = (a0 - a1) * (b0 - b1) < 0; |
- fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0); |
- fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0); |
- bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; |
- SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); |
- return computePoints(line, 1 + second); |
+ insert(index, t, line[index]); |
+ } |
+ } |
+ if (used() > 0) { |
+ SkASSERT(fUsed <= 2); |
+ return used(); // coincident lines are returned here |
+ } |
+ int result = horizontal(line, y); |
+ if (!result) { |
+ return 0; |
+ } |
+ SkASSERT(result == 1); |
+ double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX); |
+ if (!precisely_between(left, xIntercept, right)) { |
+ return fUsed = 0; |
} |
+ fT[1][0] = (xIntercept - left) / (right - left); |
if (flipped) { |
- // OPTIMIZATION: instead of swapping, pass original line, use [1].fX - [0].fX |
+ // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX |
for (int index = 0; index < result; ++index) { |
fT[1][index] = 1 - fT[1][index]; |
} |
@@ -244,40 +241,49 @@ int SkIntersections::vertical(const SkDLine& line, double x) { |
return fUsed = 1; |
} |
+static bool checkEndPointV(const SkDPoint& end, double top, double bottom, |
+ double x, bool flipped, double* tPtr) { |
+ if (!between(top, end.fY, bottom) || !AlmostEqualUlps(x, end.fX)) { |
+ return false; |
+ } |
+ double t = (end.fY - top) / (bottom - top); |
+ SkASSERT(between(0, t, 1)); |
+ *tPtr = flipped ? 1 - t : t; |
+ return true; |
+} |
+ |
int SkIntersections::vertical(const SkDLine& line, double top, double bottom, |
- double x, bool flipped) { |
- int result = vertical(line, x); |
- switch (result) { |
- case 0: |
- break; |
- case 1: { |
- double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY); |
- if (!precisely_between(top, yIntercept, bottom)) { |
- return fUsed = 0; |
- } |
- fT[1][0] = (yIntercept - top) / (bottom - top); |
- break; |
+ double x, bool flipped) { |
+ // see if end points intersect the opposite line |
+ double t; |
+ if (checkEndPoint(x, top, line, &t, false)) { |
+ insert(t, flipped, x, top); |
+ } |
+ if (top != bottom) { |
+ if (checkEndPoint(x, bottom,line, &t, false)) { |
+ insert(t, !flipped, x, bottom); |
} |
- case 2: |
- double a0 = line[0].fY; |
- double a1 = line[1].fY; |
- double b0 = flipped ? bottom : top; |
- double b1 = flipped ? top : bottom; |
- // FIXME: share common code above |
- double at0 = (a0 - b0) / (a0 - a1); |
- double at1 = (a0 - b1) / (a0 - a1); |
- if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
- return fUsed = 0; |
+ for (int index = 0; index < 2; ++index) { |
+ if (!checkEndPointV(line[index], top, bottom, x, flipped, &t)) { |
+ continue; |
} |
- fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); |
- fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); |
- int bIn = (a0 - a1) * (b0 - b1) < 0; |
- fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0); |
- fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0); |
- bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; |
- SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); |
- return computePoints(line, 1 + second); |
+ insert( index, t, line[index]); |
+ } |
+ } |
+ if (used() > 0) { |
+ SkASSERT(fUsed <= 2); |
+ return used(); // coincident lines are returned here |
+ } |
+ int result = vertical(line, x); |
+ if (!result) { |
+ return 0; |
+ } |
+ SkASSERT(result == 1); |
+ double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY); |
+ if (!precisely_between(top, yIntercept, bottom)) { |
+ return fUsed = 0; |
} |
+ fT[1][0] = (yIntercept - top) / (bottom - top); |
if (flipped) { |
// OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY |
for (int index = 0; index < result; ++index) { |