| Index: base/memory/scoped_ptr.h
|
| diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h
|
| index 2f883e2959063a9ef42920d4029fd2527ba77cf2..38f0d32156e95342ee9a1f7e588ee09f6aa9ac18 100644
|
| --- a/base/memory/scoped_ptr.h
|
| +++ b/base/memory/scoped_ptr.h
|
| @@ -90,6 +90,8 @@
|
| // This is an implementation designed to match the anticipated future TR2
|
| // implementation of the scoped_ptr class.
|
|
|
| +// TODO(dcheng): Clean up these headers, but there are likely lots of existing
|
| +// IWYU violations.
|
| #include <stddef.h>
|
| #include <stdlib.h>
|
|
|
| @@ -119,11 +121,6 @@ struct FreeDeleter {
|
|
|
| } // namespace base
|
|
|
| -// Now that scoped_ptr is almost 100% compatible with std::unique_ptr, we're
|
| -// incrementally migrating scoped_ptr to just be a type alias for
|
| -// std::unique_ptr. The eventual goal is to delete scoped_ptr altogether.
|
| -#if defined(OS_LINUX) || defined(OS_WIN) || defined(OS_ANDROID) || \
|
| - defined(OS_MACOSX)
|
| template <typename T, typename D = std::default_delete<T>>
|
| using scoped_ptr = std::unique_ptr<T, D>;
|
|
|
| @@ -165,509 +162,7 @@ template <class T, class D>
|
| bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| return !(nullptr < p);
|
| }
|
| -#endif // defined(__GLIBCXX__) && __GLIBCX__ < 20150426
|
| -
|
| -#else
|
| -namespace base {
|
| -
|
| -namespace subtle {
|
| -class RefCountedBase;
|
| -class RefCountedThreadSafeBase;
|
| -} // namespace subtle
|
| -
|
| -namespace internal {
|
| -
|
| -template <typename T> struct IsNotRefCounted {
|
| - enum {
|
| - value = !std::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
|
| - !std::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
|
| - value
|
| - };
|
| -};
|
| -
|
| -// Minimal implementation of the core logic of scoped_ptr, suitable for
|
| -// reuse in both scoped_ptr and its specializations.
|
| -template <class T, class D>
|
| -class scoped_ptr_impl {
|
| - public:
|
| - explicit scoped_ptr_impl(T* p) : data_(p) {}
|
| -
|
| - // Initializer for deleters that have data parameters.
|
| - scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
|
| -
|
| - // Templated constructor that destructively takes the value from another
|
| - // scoped_ptr_impl.
|
| - template <typename U, typename V>
|
| - scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
|
| - : data_(other->release(), other->get_deleter()) {
|
| - // We do not support move-only deleters. We could modify our move
|
| - // emulation to have base::subtle::move() and base::subtle::forward()
|
| - // functions that are imperfect emulations of their C++11 equivalents,
|
| - // but until there's a requirement, just assume deleters are copyable.
|
| - }
|
| -
|
| - template <typename U, typename V>
|
| - void TakeState(scoped_ptr_impl<U, V>* other) {
|
| - // See comment in templated constructor above regarding lack of support
|
| - // for move-only deleters.
|
| - reset(other->release());
|
| - get_deleter() = other->get_deleter();
|
| - }
|
| -
|
| - ~scoped_ptr_impl() {
|
| - // Match libc++, which calls reset() in its destructor.
|
| - // Use nullptr as the new value for three reasons:
|
| - // 1. libc++ does it.
|
| - // 2. Avoids infinitely recursing into destructors if two classes are owned
|
| - // in a reference cycle (see ScopedPtrTest.ReferenceCycle).
|
| - // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
|
| - // to dereference |this|'s pointer should cause either a failure or a
|
| - // segfault closer to the problem. If |this| wasn't reset to nullptr,
|
| - // the access would cause the deleted memory to be read or written
|
| - // leading to other more subtle issues.
|
| - reset(nullptr);
|
| - }
|
| -
|
| - void reset(T* p) {
|
| - // Match C++11's definition of unique_ptr::reset(), which requires changing
|
| - // the pointer before invoking the deleter on the old pointer. This prevents
|
| - // |this| from being accessed after the deleter is run, which may destroy
|
| - // |this|.
|
| - T* old = data_.ptr;
|
| - data_.ptr = p;
|
| - if (old != nullptr)
|
| - static_cast<D&>(data_)(old);
|
| - }
|
| -
|
| - T* get() const { return data_.ptr; }
|
| -
|
| - D& get_deleter() { return data_; }
|
| - const D& get_deleter() const { return data_; }
|
| -
|
| - void swap(scoped_ptr_impl& p2) {
|
| - // Standard swap idiom: 'using std::swap' ensures that std::swap is
|
| - // present in the overload set, but we call swap unqualified so that
|
| - // any more-specific overloads can be used, if available.
|
| - using std::swap;
|
| - swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
|
| - swap(data_.ptr, p2.data_.ptr);
|
| - }
|
| -
|
| - T* release() {
|
| - T* old_ptr = data_.ptr;
|
| - data_.ptr = nullptr;
|
| - return old_ptr;
|
| - }
|
| -
|
| - private:
|
| - // Needed to allow type-converting constructor.
|
| - template <typename U, typename V> friend class scoped_ptr_impl;
|
| -
|
| - // Use the empty base class optimization to allow us to have a D
|
| - // member, while avoiding any space overhead for it when D is an
|
| - // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
| - // discussion of this technique.
|
| - struct Data : public D {
|
| - explicit Data(T* ptr_in) : ptr(ptr_in) {}
|
| - Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
| - T* ptr;
|
| - };
|
| -
|
| - Data data_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
|
| -};
|
| -
|
| -} // namespace internal
|
| -
|
| -} // namespace base
|
| -
|
| -// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
| -// automatically deletes the pointer it holds (if any).
|
| -// That is, scoped_ptr<T> owns the T object that it points to.
|
| -// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
|
| -// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
| -// dereference it, you get the thread safety guarantees of T.
|
| -//
|
| -// The size of scoped_ptr is small. On most compilers, when using the
|
| -// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
|
| -// will increase the size proportional to whatever state they need to have. See
|
| -// comments inside scoped_ptr_impl<> for details.
|
| -//
|
| -// Current implementation targets having a strict subset of C++11's
|
| -// unique_ptr<> features. Known deficiencies include not supporting move-only
|
| -// deleteres, function pointers as deleters, and deleters with reference
|
| -// types.
|
| -template <class T, class D = std::default_delete<T>>
|
| -class scoped_ptr {
|
| - DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
|
| -
|
| - static_assert(!std::is_array<T>::value,
|
| - "scoped_ptr doesn't support array with size");
|
| - static_assert(base::internal::IsNotRefCounted<T>::value,
|
| - "T is a refcounted type and needs a scoped_refptr");
|
| -
|
| - public:
|
| - // The element and deleter types.
|
| - using element_type = T;
|
| - using deleter_type = D;
|
| -
|
| - // Constructor. Defaults to initializing with nullptr.
|
| - scoped_ptr() : impl_(nullptr) {}
|
| -
|
| - // Constructor. Takes ownership of p.
|
| - explicit scoped_ptr(element_type* p) : impl_(p) {}
|
| -
|
| - // Constructor. Allows initialization of a stateful deleter.
|
| - scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
|
| -
|
| - // Constructor. Allows construction from a nullptr.
|
| - scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
|
| -
|
| - // Move constructor.
|
| - //
|
| - // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
|
| - // not just the conversion constructor) in order to warn on pessimizing moves.
|
| - // The requirements for the move constructor are specified in C++11
|
| - // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
|
| - // we don't support reference (or move-only) deleters, the post conditions are
|
| - // trivially true: we always copy construct the deleter from other's deleter.
|
| - scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
|
| -
|
| - // Conversion constructor. Allows construction from a scoped_ptr rvalue for a
|
| - // convertible type and deleter.
|
| - //
|
| - // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
|
| - // participate in overload resolution if all the following are true:
|
| - // - U is implicitly convertible to T: this is important for 2 reasons:
|
| - // 1. So type traits don't incorrectly return true, e.g.
|
| - // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
|
| - // should be false.
|
| - // 2. To make sure code like this compiles:
|
| - // void F(scoped_ptr<int>);
|
| - // void F(scoped_ptr<Base>);
|
| - // // Ambiguous since both conversion constructors match.
|
| - // F(scoped_ptr<Derived>());
|
| - // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
|
| - // scoped_ptr<T>.
|
| - // - D is a reference type and E is the same type, or D is not a reference
|
| - // type and E is implicitly convertible to D: again, we don't support
|
| - // reference deleters, so we only worry about the latter requirement.
|
| - template <typename U,
|
| - typename E,
|
| - typename std::enable_if<!std::is_array<U>::value &&
|
| - std::is_convertible<U*, T*>::value &&
|
| - std::is_convertible<E, D>::value>::type* =
|
| - nullptr>
|
| - scoped_ptr(scoped_ptr<U, E>&& other)
|
| - : impl_(&other.impl_) {}
|
| -
|
| - // operator=.
|
| - //
|
| - // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
|
| - // require a move assignment operator to trigger the pessimizing move warning:
|
| - // in this case, the warning triggers when moving a temporary. For consistency
|
| - // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
|
| - // defines several requirements around this: like the move constructor, the
|
| - // requirements are simplified by the fact that we don't support move-only or
|
| - // reference deleters.
|
| - scoped_ptr& operator=(scoped_ptr&& rhs) {
|
| - impl_.TakeState(&rhs.impl_);
|
| - return *this;
|
| - }
|
| -
|
| - // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
| - // type and deleter.
|
| - //
|
| - // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
|
| - // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
|
| - // requirement for this operator, but like the conversion constructor, the
|
| - // requirements are greatly simplified by not supporting move-only or
|
| - // reference deleters.
|
| - template <typename U,
|
| - typename E,
|
| - typename std::enable_if<!std::is_array<U>::value &&
|
| - std::is_convertible<U*, T*>::value &&
|
| - // Note that this really should be
|
| - // std::is_assignable, but <type_traits>
|
| - // appears to be missing this on some
|
| - // platforms. This is close enough (though
|
| - // it's not the same).
|
| - std::is_convertible<D, E>::value>::type* =
|
| - nullptr>
|
| - scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
|
| - impl_.TakeState(&rhs.impl_);
|
| - return *this;
|
| - }
|
| -
|
| - // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| - // object, if any.
|
| - scoped_ptr& operator=(std::nullptr_t) {
|
| - reset();
|
| - return *this;
|
| - }
|
| -
|
| - // Reset. Deletes the currently owned object, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - void reset(element_type* p = nullptr) { impl_.reset(p); }
|
| -
|
| - // Accessors to get the owned object.
|
| - // operator* and operator-> will DCHECK() if there is no current object.
|
| - element_type& operator*() const {
|
| - DCHECK(impl_.get() != nullptr);
|
| - return *impl_.get();
|
| - }
|
| - element_type* operator->() const {
|
| - DCHECK(impl_.get() != nullptr);
|
| - return impl_.get();
|
| - }
|
| - element_type* get() const { return impl_.get(); }
|
| -
|
| - // Access to the deleter.
|
| - deleter_type& get_deleter() { return impl_.get_deleter(); }
|
| - const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
| -
|
| - // Implement "Safe Bool Idiom"
|
| - // https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Safe_bool
|
| - //
|
| - // Allow scoped_ptr<element_type> to be used in boolean expressions such as
|
| - // if (scoped_ptr_instance)
|
| - // But do not become convertible to a real bool (which is dangerous).
|
| - // Implementation requires:
|
| - // typedef Testable
|
| - // operator Testable() const
|
| - // operator==
|
| - // operator!=
|
| - //
|
| - // == and != operators must be declared explicitly or dissallowed, as
|
| - // otherwise "ptr1 == ptr2" will compile but do the wrong thing (i.e., convert
|
| - // to Testable and then do the comparison).
|
| - //
|
| - // C++11 provides for "explicit operator bool()", however it is currently
|
| - // banned due to MSVS2013. https://chromium-cpp.appspot.com/#core-blacklist
|
| - private:
|
| - typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
|
| - scoped_ptr::*Testable;
|
| - public:
|
| - operator Testable() const {
|
| - return impl_.get() ? &scoped_ptr::impl_ : nullptr;
|
| - }
|
| -
|
| - // Swap two scoped pointers.
|
| - void swap(scoped_ptr& p2) {
|
| - impl_.swap(p2.impl_);
|
| - }
|
| -
|
| - // Release a pointer.
|
| - // The return value is the current pointer held by this object. If this object
|
| - // holds a nullptr, the return value is nullptr. After this operation, this
|
| - // object will hold a nullptr, and will not own the object any more.
|
| - element_type* release() WARN_UNUSED_RESULT {
|
| - return impl_.release();
|
| - }
|
| -
|
| - private:
|
| - // Needed to reach into |impl_| in the constructor.
|
| - template <typename U, typename V> friend class scoped_ptr;
|
| - base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
| -
|
| - // Forbidden for API compatibility with std::unique_ptr.
|
| - explicit scoped_ptr(int disallow_construction_from_null);
|
| -};
|
| -
|
| -template <class T, class D>
|
| -class scoped_ptr<T[], D> {
|
| - DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
|
| -
|
| - public:
|
| - // The element and deleter types.
|
| - using element_type = T;
|
| - using deleter_type = D;
|
| -
|
| - // Constructor. Defaults to initializing with nullptr.
|
| - scoped_ptr() : impl_(nullptr) {}
|
| -
|
| - // Constructor. Stores the given array. Note that the argument's type
|
| - // must exactly match T*. In particular:
|
| - // - it cannot be a pointer to a type derived from T, because it is
|
| - // inherently unsafe in the general case to access an array through a
|
| - // pointer whose dynamic type does not match its static type (eg., if
|
| - // T and the derived types had different sizes access would be
|
| - // incorrectly calculated). Deletion is also always undefined
|
| - // (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
| - // - it cannot be const-qualified differently from T per unique_ptr spec
|
| - // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
| - // to work around this may use const_cast<const T*>().
|
| - explicit scoped_ptr(element_type* array) : impl_(array) {}
|
| -
|
| - // Constructor. Allows construction from a nullptr.
|
| - scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
|
| -
|
| - // Constructor. Allows construction from a scoped_ptr rvalue.
|
| - scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
|
| -
|
| - // operator=. Allows assignment from a scoped_ptr rvalue.
|
| - scoped_ptr& operator=(scoped_ptr&& rhs) {
|
| - impl_.TakeState(&rhs.impl_);
|
| - return *this;
|
| - }
|
| -
|
| - // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| - // array, if any.
|
| - scoped_ptr& operator=(std::nullptr_t) {
|
| - reset();
|
| - return *this;
|
| - }
|
| -
|
| - // Reset. Deletes the currently owned array, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - void reset(element_type* array = nullptr) { impl_.reset(array); }
|
| -
|
| - // Accessors to get the owned array.
|
| - element_type& operator[](size_t i) const {
|
| - DCHECK(impl_.get() != nullptr);
|
| - return impl_.get()[i];
|
| - }
|
| - element_type* get() const { return impl_.get(); }
|
| -
|
| - // Access to the deleter.
|
| - deleter_type& get_deleter() { return impl_.get_deleter(); }
|
| - const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
| -
|
| - // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
| - // implicitly convertible to a real bool (which is dangerous).
|
| - private:
|
| - typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
|
| - scoped_ptr::*Testable;
|
| -
|
| - public:
|
| - operator Testable() const {
|
| - return impl_.get() ? &scoped_ptr::impl_ : nullptr;
|
| - }
|
| -
|
| - // Swap two scoped pointers.
|
| - void swap(scoped_ptr& p2) {
|
| - impl_.swap(p2.impl_);
|
| - }
|
| -
|
| - // Release a pointer.
|
| - // The return value is the current pointer held by this object. If this object
|
| - // holds a nullptr, the return value is nullptr. After this operation, this
|
| - // object will hold a nullptr, and will not own the object any more.
|
| - element_type* release() WARN_UNUSED_RESULT {
|
| - return impl_.release();
|
| - }
|
| -
|
| - private:
|
| - // Force element_type to be a complete type.
|
| - enum { type_must_be_complete = sizeof(element_type) };
|
| -
|
| - // Actually hold the data.
|
| - base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
| -
|
| - // Disable initialization from any type other than element_type*, by
|
| - // providing a constructor that matches such an initialization, but is
|
| - // private and has no definition. This is disabled because it is not safe to
|
| - // call delete[] on an array whose static type does not match its dynamic
|
| - // type.
|
| - template <typename U> explicit scoped_ptr(U* array);
|
| - explicit scoped_ptr(int disallow_construction_from_null);
|
| -
|
| - // Disable reset() from any type other than element_type*, for the same
|
| - // reasons as the constructor above.
|
| - template <typename U> void reset(U* array);
|
| - void reset(int disallow_reset_from_null);
|
| -};
|
| -
|
| -// Free functions
|
| -template <class T, class D>
|
| -void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
|
| - p1.swap(p2);
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return p1.get() == p2.get();
|
| -}
|
| -template <class T, class D>
|
| -bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return p.get() == nullptr;
|
| -}
|
| -template <class T, class D>
|
| -bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return p.get() == nullptr;
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return !(p1 == p2);
|
| -}
|
| -template <class T, class D>
|
| -bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return !(p == nullptr);
|
| -}
|
| -template <class T, class D>
|
| -bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return !(p == nullptr);
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return p1.get() < p2.get();
|
| -}
|
| -template <class T, class D>
|
| -bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return p.get() < nullptr;
|
| -}
|
| -template <class T, class D>
|
| -bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return nullptr < p.get();
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return p2 < p1;
|
| -}
|
| -template <class T, class D>
|
| -bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return nullptr < p;
|
| -}
|
| -template <class T, class D>
|
| -bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return p < nullptr;
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return !(p1 > p2);
|
| -}
|
| -template <class T, class D>
|
| -bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return !(p > nullptr);
|
| -}
|
| -template <class T, class D>
|
| -bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return !(nullptr > p);
|
| -}
|
| -
|
| -template <class T1, class D1, class T2, class D2>
|
| -bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
|
| - return !(p1 < p2);
|
| -}
|
| -template <class T, class D>
|
| -bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
|
| - return !(p < nullptr);
|
| -}
|
| -template <class T, class D>
|
| -bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
|
| - return !(nullptr < p);
|
| -}
|
| -
|
| -template <typename T>
|
| -std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
|
| - return out << p.get();
|
| -}
|
| -#endif // defined(OS_LINUX)
|
| +#endif // defined(__GLIBCXX__) && __GLIBCXX__ < 20150123
|
|
|
| // A function to convert T* into scoped_ptr<T>
|
| // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
|
|
|