OLD | NEW |
| (Empty) |
1 // Copyright 2014 PDFium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com | |
6 | |
7 #include "core/include/fdrm/fx_crypt.h" | |
8 | |
9 #ifdef __cplusplus | |
10 extern "C" { | |
11 #endif | |
12 typedef struct { | |
13 unsigned int h[5]; | |
14 unsigned char block[64]; | |
15 int blkused; | |
16 unsigned int lenhi, lenlo; | |
17 } SHA_State; | |
18 #define rol(x, y) (((x) << (y)) | (((unsigned int)x) >> (32 - y))) | |
19 static void SHA_Core_Init(unsigned int h[5]) { | |
20 h[0] = 0x67452301; | |
21 h[1] = 0xefcdab89; | |
22 h[2] = 0x98badcfe; | |
23 h[3] = 0x10325476; | |
24 h[4] = 0xc3d2e1f0; | |
25 } | |
26 static void SHATransform(unsigned int* digest, unsigned int* block) { | |
27 unsigned int w[80]; | |
28 unsigned int a, b, c, d, e; | |
29 int t; | |
30 for (t = 0; t < 16; t++) { | |
31 w[t] = block[t]; | |
32 } | |
33 for (t = 16; t < 80; t++) { | |
34 unsigned int tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; | |
35 w[t] = rol(tmp, 1); | |
36 } | |
37 a = digest[0]; | |
38 b = digest[1]; | |
39 c = digest[2]; | |
40 d = digest[3]; | |
41 e = digest[4]; | |
42 for (t = 0; t < 20; t++) { | |
43 unsigned int tmp = rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999; | |
44 e = d; | |
45 d = c; | |
46 c = rol(b, 30); | |
47 b = a; | |
48 a = tmp; | |
49 } | |
50 for (t = 20; t < 40; t++) { | |
51 unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1; | |
52 e = d; | |
53 d = c; | |
54 c = rol(b, 30); | |
55 b = a; | |
56 a = tmp; | |
57 } | |
58 for (t = 40; t < 60; t++) { | |
59 unsigned int tmp = | |
60 rol(a, 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] + 0x8f1bbcdc; | |
61 e = d; | |
62 d = c; | |
63 c = rol(b, 30); | |
64 b = a; | |
65 a = tmp; | |
66 } | |
67 for (t = 60; t < 80; t++) { | |
68 unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6; | |
69 e = d; | |
70 d = c; | |
71 c = rol(b, 30); | |
72 b = a; | |
73 a = tmp; | |
74 } | |
75 digest[0] += a; | |
76 digest[1] += b; | |
77 digest[2] += c; | |
78 digest[3] += d; | |
79 digest[4] += e; | |
80 } | |
81 void CRYPT_SHA1Start(void* context) { | |
82 SHA_State* s = (SHA_State*)context; | |
83 SHA_Core_Init(s->h); | |
84 s->blkused = 0; | |
85 s->lenhi = s->lenlo = 0; | |
86 } | |
87 void CRYPT_SHA1Update(void* context, const uint8_t* data, FX_DWORD size) { | |
88 SHA_State* s = (SHA_State*)context; | |
89 unsigned char* q = (unsigned char*)data; | |
90 unsigned int wordblock[16]; | |
91 int len = size; | |
92 unsigned int lenw = len; | |
93 int i; | |
94 s->lenlo += lenw; | |
95 s->lenhi += (s->lenlo < lenw); | |
96 if (s->blkused && s->blkused + len < 64) { | |
97 FXSYS_memcpy(s->block + s->blkused, q, len); | |
98 s->blkused += len; | |
99 } else { | |
100 while (s->blkused + len >= 64) { | |
101 FXSYS_memcpy(s->block + s->blkused, q, 64 - s->blkused); | |
102 q += 64 - s->blkused; | |
103 len -= 64 - s->blkused; | |
104 for (i = 0; i < 16; i++) { | |
105 wordblock[i] = (((unsigned int)s->block[i * 4 + 0]) << 24) | | |
106 (((unsigned int)s->block[i * 4 + 1]) << 16) | | |
107 (((unsigned int)s->block[i * 4 + 2]) << 8) | | |
108 (((unsigned int)s->block[i * 4 + 3]) << 0); | |
109 } | |
110 SHATransform(s->h, wordblock); | |
111 s->blkused = 0; | |
112 } | |
113 FXSYS_memcpy(s->block, q, len); | |
114 s->blkused = len; | |
115 } | |
116 } | |
117 void CRYPT_SHA1Finish(void* context, uint8_t digest[20]) { | |
118 SHA_State* s = (SHA_State*)context; | |
119 int i; | |
120 int pad; | |
121 unsigned char c[64]; | |
122 unsigned int lenhi, lenlo; | |
123 if (s->blkused >= 56) { | |
124 pad = 56 + 64 - s->blkused; | |
125 } else { | |
126 pad = 56 - s->blkused; | |
127 } | |
128 lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3)); | |
129 lenlo = (s->lenlo << 3); | |
130 FXSYS_memset(c, 0, pad); | |
131 c[0] = 0x80; | |
132 CRYPT_SHA1Update(s, c, pad); | |
133 c[0] = (lenhi >> 24) & 0xFF; | |
134 c[1] = (lenhi >> 16) & 0xFF; | |
135 c[2] = (lenhi >> 8) & 0xFF; | |
136 c[3] = (lenhi >> 0) & 0xFF; | |
137 c[4] = (lenlo >> 24) & 0xFF; | |
138 c[5] = (lenlo >> 16) & 0xFF; | |
139 c[6] = (lenlo >> 8) & 0xFF; | |
140 c[7] = (lenlo >> 0) & 0xFF; | |
141 CRYPT_SHA1Update(s, c, 8); | |
142 for (i = 0; i < 5; i++) { | |
143 digest[i * 4] = (s->h[i] >> 24) & 0xFF; | |
144 digest[i * 4 + 1] = (s->h[i] >> 16) & 0xFF; | |
145 digest[i * 4 + 2] = (s->h[i] >> 8) & 0xFF; | |
146 digest[i * 4 + 3] = (s->h[i]) & 0xFF; | |
147 } | |
148 } | |
149 void CRYPT_SHA1Generate(const uint8_t* data, | |
150 FX_DWORD size, | |
151 uint8_t digest[20]) { | |
152 SHA_State s; | |
153 CRYPT_SHA1Start(&s); | |
154 CRYPT_SHA1Update(&s, data, size); | |
155 CRYPT_SHA1Finish(&s, digest); | |
156 } | |
157 typedef struct { | |
158 FX_DWORD total[2]; | |
159 FX_DWORD state[8]; | |
160 uint8_t buffer[64]; | |
161 } sha256_context; | |
162 #define GET_FX_DWORD(n, b, i) \ | |
163 { \ | |
164 (n) = ((FX_DWORD)(b)[(i)] << 24) | ((FX_DWORD)(b)[(i) + 1] << 16) | \ | |
165 ((FX_DWORD)(b)[(i) + 2] << 8) | ((FX_DWORD)(b)[(i) + 3]); \ | |
166 } | |
167 #define PUT_FX_DWORD(n, b, i) \ | |
168 { \ | |
169 (b)[(i)] = (uint8_t)((n) >> 24); \ | |
170 (b)[(i) + 1] = (uint8_t)((n) >> 16); \ | |
171 (b)[(i) + 2] = (uint8_t)((n) >> 8); \ | |
172 (b)[(i) + 3] = (uint8_t)((n)); \ | |
173 } | |
174 void CRYPT_SHA256Start(void* context) { | |
175 sha256_context* ctx = (sha256_context*)context; | |
176 ctx->total[0] = 0; | |
177 ctx->total[1] = 0; | |
178 ctx->state[0] = 0x6A09E667; | |
179 ctx->state[1] = 0xBB67AE85; | |
180 ctx->state[2] = 0x3C6EF372; | |
181 ctx->state[3] = 0xA54FF53A; | |
182 ctx->state[4] = 0x510E527F; | |
183 ctx->state[5] = 0x9B05688C; | |
184 ctx->state[6] = 0x1F83D9AB; | |
185 ctx->state[7] = 0x5BE0CD19; | |
186 } | |
187 static void sha256_process(sha256_context* ctx, const uint8_t data[64]) { | |
188 FX_DWORD temp1, temp2, W[64]; | |
189 FX_DWORD A, B, C, D, E, F, G, H; | |
190 GET_FX_DWORD(W[0], data, 0); | |
191 GET_FX_DWORD(W[1], data, 4); | |
192 GET_FX_DWORD(W[2], data, 8); | |
193 GET_FX_DWORD(W[3], data, 12); | |
194 GET_FX_DWORD(W[4], data, 16); | |
195 GET_FX_DWORD(W[5], data, 20); | |
196 GET_FX_DWORD(W[6], data, 24); | |
197 GET_FX_DWORD(W[7], data, 28); | |
198 GET_FX_DWORD(W[8], data, 32); | |
199 GET_FX_DWORD(W[9], data, 36); | |
200 GET_FX_DWORD(W[10], data, 40); | |
201 GET_FX_DWORD(W[11], data, 44); | |
202 GET_FX_DWORD(W[12], data, 48); | |
203 GET_FX_DWORD(W[13], data, 52); | |
204 GET_FX_DWORD(W[14], data, 56); | |
205 GET_FX_DWORD(W[15], data, 60); | |
206 #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) | |
207 #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) | |
208 #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) | |
209 #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) | |
210 #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) | |
211 #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) | |
212 #define F0(x, y, z) ((x & y) | (z & (x | y))) | |
213 #define F1(x, y, z) (z ^ (x & (y ^ z))) | |
214 #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16]) | |
215 #define P(a, b, c, d, e, f, g, h, x, K) \ | |
216 { \ | |
217 temp1 = h + S3(e) + F1(e, f, g) + K + x; \ | |
218 temp2 = S2(a) + F0(a, b, c); \ | |
219 d += temp1; \ | |
220 h = temp1 + temp2; \ | |
221 } | |
222 A = ctx->state[0]; | |
223 B = ctx->state[1]; | |
224 C = ctx->state[2]; | |
225 D = ctx->state[3]; | |
226 E = ctx->state[4]; | |
227 F = ctx->state[5]; | |
228 G = ctx->state[6]; | |
229 H = ctx->state[7]; | |
230 P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); | |
231 P(H, A, B, C, D, E, F, G, W[1], 0x71374491); | |
232 P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); | |
233 P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); | |
234 P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); | |
235 P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); | |
236 P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); | |
237 P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); | |
238 P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); | |
239 P(H, A, B, C, D, E, F, G, W[9], 0x12835B01); | |
240 P(G, H, A, B, C, D, E, F, W[10], 0x243185BE); | |
241 P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); | |
242 P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); | |
243 P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); | |
244 P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); | |
245 P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); | |
246 P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); | |
247 P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); | |
248 P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); | |
249 P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); | |
250 P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); | |
251 P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); | |
252 P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); | |
253 P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); | |
254 P(A, B, C, D, E, F, G, H, R(24), 0x983E5152); | |
255 P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); | |
256 P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); | |
257 P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); | |
258 P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); | |
259 P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); | |
260 P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); | |
261 P(B, C, D, E, F, G, H, A, R(31), 0x14292967); | |
262 P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); | |
263 P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); | |
264 P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); | |
265 P(F, G, H, A, B, C, D, E, R(35), 0x53380D13); | |
266 P(E, F, G, H, A, B, C, D, R(36), 0x650A7354); | |
267 P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); | |
268 P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); | |
269 P(B, C, D, E, F, G, H, A, R(39), 0x92722C85); | |
270 P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); | |
271 P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); | |
272 P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); | |
273 P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); | |
274 P(E, F, G, H, A, B, C, D, R(44), 0xD192E819); | |
275 P(D, E, F, G, H, A, B, C, R(45), 0xD6990624); | |
276 P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); | |
277 P(B, C, D, E, F, G, H, A, R(47), 0x106AA070); | |
278 P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); | |
279 P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); | |
280 P(G, H, A, B, C, D, E, F, R(50), 0x2748774C); | |
281 P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); | |
282 P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); | |
283 P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); | |
284 P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); | |
285 P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); | |
286 P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); | |
287 P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); | |
288 P(G, H, A, B, C, D, E, F, R(58), 0x84C87814); | |
289 P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); | |
290 P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); | |
291 P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); | |
292 P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); | |
293 P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); | |
294 ctx->state[0] += A; | |
295 ctx->state[1] += B; | |
296 ctx->state[2] += C; | |
297 ctx->state[3] += D; | |
298 ctx->state[4] += E; | |
299 ctx->state[5] += F; | |
300 ctx->state[6] += G; | |
301 ctx->state[7] += H; | |
302 } | |
303 void CRYPT_SHA256Update(void* context, const uint8_t* input, FX_DWORD length) { | |
304 sha256_context* ctx = (sha256_context*)context; | |
305 FX_DWORD left, fill; | |
306 if (!length) { | |
307 return; | |
308 } | |
309 left = ctx->total[0] & 0x3F; | |
310 fill = 64 - left; | |
311 ctx->total[0] += length; | |
312 ctx->total[0] &= 0xFFFFFFFF; | |
313 if (ctx->total[0] < length) { | |
314 ctx->total[1]++; | |
315 } | |
316 if (left && length >= fill) { | |
317 FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, fill); | |
318 sha256_process(ctx, ctx->buffer); | |
319 length -= fill; | |
320 input += fill; | |
321 left = 0; | |
322 } | |
323 while (length >= 64) { | |
324 sha256_process(ctx, input); | |
325 length -= 64; | |
326 input += 64; | |
327 } | |
328 if (length) { | |
329 FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, length); | |
330 } | |
331 } | |
332 static const uint8_t sha256_padding[64] = { | |
333 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
334 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
335 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |
336 void CRYPT_SHA256Finish(void* context, uint8_t digest[32]) { | |
337 sha256_context* ctx = (sha256_context*)context; | |
338 FX_DWORD last, padn; | |
339 FX_DWORD high, low; | |
340 uint8_t msglen[8]; | |
341 high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); | |
342 low = (ctx->total[0] << 3); | |
343 PUT_FX_DWORD(high, msglen, 0); | |
344 PUT_FX_DWORD(low, msglen, 4); | |
345 last = ctx->total[0] & 0x3F; | |
346 padn = (last < 56) ? (56 - last) : (120 - last); | |
347 CRYPT_SHA256Update(ctx, sha256_padding, padn); | |
348 CRYPT_SHA256Update(ctx, msglen, 8); | |
349 PUT_FX_DWORD(ctx->state[0], digest, 0); | |
350 PUT_FX_DWORD(ctx->state[1], digest, 4); | |
351 PUT_FX_DWORD(ctx->state[2], digest, 8); | |
352 PUT_FX_DWORD(ctx->state[3], digest, 12); | |
353 PUT_FX_DWORD(ctx->state[4], digest, 16); | |
354 PUT_FX_DWORD(ctx->state[5], digest, 20); | |
355 PUT_FX_DWORD(ctx->state[6], digest, 24); | |
356 PUT_FX_DWORD(ctx->state[7], digest, 28); | |
357 } | |
358 void CRYPT_SHA256Generate(const uint8_t* data, | |
359 FX_DWORD size, | |
360 uint8_t digest[32]) { | |
361 sha256_context ctx; | |
362 CRYPT_SHA256Start(&ctx); | |
363 CRYPT_SHA256Update(&ctx, data, size); | |
364 CRYPT_SHA256Finish(&ctx, digest); | |
365 } | |
366 typedef struct { | |
367 uint64_t total[2]; | |
368 uint64_t state[8]; | |
369 uint8_t buffer[128]; | |
370 } sha384_context; | |
371 uint64_t FX_ato64i(const FX_CHAR* str) { | |
372 FXSYS_assert(str); | |
373 uint64_t ret = 0; | |
374 int len = (int)FXSYS_strlen(str); | |
375 len = len > 16 ? 16 : len; | |
376 for (int i = 0; i < len; ++i) { | |
377 if (i) { | |
378 ret <<= 4; | |
379 } | |
380 if (str[i] >= '0' && str[i] <= '9') { | |
381 ret |= (str[i] - '0') & 0xFF; | |
382 } else if (str[i] >= 'a' && str[i] <= 'f') { | |
383 ret |= (str[i] - 'a' + 10) & 0xFF; | |
384 } else if (str[i] >= 'A' && str[i] <= 'F') { | |
385 ret |= (str[i] - 'A' + 10) & 0xFF; | |
386 } else { | |
387 FXSYS_assert(FALSE); | |
388 } | |
389 } | |
390 return ret; | |
391 } | |
392 void CRYPT_SHA384Start(void* context) { | |
393 if (!context) { | |
394 return; | |
395 } | |
396 sha384_context* ctx = (sha384_context*)context; | |
397 FXSYS_memset(ctx, 0, sizeof(sha384_context)); | |
398 ctx->state[0] = FX_ato64i("cbbb9d5dc1059ed8"); | |
399 ctx->state[1] = FX_ato64i("629a292a367cd507"); | |
400 ctx->state[2] = FX_ato64i("9159015a3070dd17"); | |
401 ctx->state[3] = FX_ato64i("152fecd8f70e5939"); | |
402 ctx->state[4] = FX_ato64i("67332667ffc00b31"); | |
403 ctx->state[5] = FX_ato64i("8eb44a8768581511"); | |
404 ctx->state[6] = FX_ato64i("db0c2e0d64f98fa7"); | |
405 ctx->state[7] = FX_ato64i("47b5481dbefa4fa4"); | |
406 } | |
407 #define SHA384_F0(x, y, z) ((x & y) | (z & (x | y))) | |
408 #define SHA384_F1(x, y, z) (z ^ (x & (y ^ z))) | |
409 #define SHA384_SHR(x, n) (x >> n) | |
410 #define SHA384_ROTR(x, n) (SHA384_SHR(x, n) | x << (64 - n)) | |
411 #define SHA384_S0(x) (SHA384_ROTR(x, 1) ^ SHA384_ROTR(x, 8) ^ SHA384_SHR(x, 7)) | |
412 #define SHA384_S1(x) \ | |
413 (SHA384_ROTR(x, 19) ^ SHA384_ROTR(x, 61) ^ SHA384_SHR(x, 6)) | |
414 #define SHA384_S2(x) \ | |
415 (SHA384_ROTR(x, 28) ^ SHA384_ROTR(x, 34) ^ SHA384_ROTR(x, 39)) | |
416 #define SHA384_S3(x) \ | |
417 (SHA384_ROTR(x, 14) ^ SHA384_ROTR(x, 18) ^ SHA384_ROTR(x, 41)) | |
418 #define SHA384_P(a, b, c, d, e, f, g, h, x, K) \ | |
419 { \ | |
420 temp1 = h + SHA384_S3(e) + SHA384_F1(e, f, g) + K + x; \ | |
421 temp2 = SHA384_S2(a) + SHA384_F0(a, b, c); \ | |
422 d += temp1; \ | |
423 h = temp1 + temp2; \ | |
424 } | |
425 static const uint8_t sha384_padding[128] = { | |
426 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
427 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
428 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
430 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
432 }; | |
433 #define SHA384_R(t) \ | |
434 (W[t] = SHA384_S1(W[t - 2]) + W[t - 7] + SHA384_S0(W[t - 15]) + W[t - 16]) | |
435 static const FX_CHAR* constants[] = { | |
436 "428a2f98d728ae22", "7137449123ef65cd", "b5c0fbcfec4d3b2f", | |
437 "e9b5dba58189dbbc", "3956c25bf348b538", "59f111f1b605d019", | |
438 "923f82a4af194f9b", "ab1c5ed5da6d8118", "d807aa98a3030242", | |
439 "12835b0145706fbe", "243185be4ee4b28c", "550c7dc3d5ffb4e2", | |
440 "72be5d74f27b896f", "80deb1fe3b1696b1", "9bdc06a725c71235", | |
441 "c19bf174cf692694", "e49b69c19ef14ad2", "efbe4786384f25e3", | |
442 "0fc19dc68b8cd5b5", "240ca1cc77ac9c65", "2de92c6f592b0275", | |
443 "4a7484aa6ea6e483", "5cb0a9dcbd41fbd4", "76f988da831153b5", | |
444 "983e5152ee66dfab", "a831c66d2db43210", "b00327c898fb213f", | |
445 "bf597fc7beef0ee4", "c6e00bf33da88fc2", "d5a79147930aa725", | |
446 "06ca6351e003826f", "142929670a0e6e70", "27b70a8546d22ffc", | |
447 "2e1b21385c26c926", "4d2c6dfc5ac42aed", "53380d139d95b3df", | |
448 "650a73548baf63de", "766a0abb3c77b2a8", "81c2c92e47edaee6", | |
449 "92722c851482353b", "a2bfe8a14cf10364", "a81a664bbc423001", | |
450 "c24b8b70d0f89791", "c76c51a30654be30", "d192e819d6ef5218", | |
451 "d69906245565a910", "f40e35855771202a", "106aa07032bbd1b8", | |
452 "19a4c116b8d2d0c8", "1e376c085141ab53", "2748774cdf8eeb99", | |
453 "34b0bcb5e19b48a8", "391c0cb3c5c95a63", "4ed8aa4ae3418acb", | |
454 "5b9cca4f7763e373", "682e6ff3d6b2b8a3", "748f82ee5defb2fc", | |
455 "78a5636f43172f60", "84c87814a1f0ab72", "8cc702081a6439ec", | |
456 "90befffa23631e28", "a4506cebde82bde9", "bef9a3f7b2c67915", | |
457 "c67178f2e372532b", "ca273eceea26619c", "d186b8c721c0c207", | |
458 "eada7dd6cde0eb1e", "f57d4f7fee6ed178", "06f067aa72176fba", | |
459 "0a637dc5a2c898a6", "113f9804bef90dae", "1b710b35131c471b", | |
460 "28db77f523047d84", "32caab7b40c72493", "3c9ebe0a15c9bebc", | |
461 "431d67c49c100d4c", "4cc5d4becb3e42b6", "597f299cfc657e2a", | |
462 "5fcb6fab3ad6faec", "6c44198c4a475817", | |
463 }; | |
464 #define GET_FX_64WORD(n, b, i) \ | |
465 { \ | |
466 (n) = ((uint64_t)(b)[(i)] << 56) | ((uint64_t)(b)[(i) + 1] << 48) | \ | |
467 ((uint64_t)(b)[(i) + 2] << 40) | ((uint64_t)(b)[(i) + 3] << 32) | \ | |
468 ((uint64_t)(b)[(i) + 4] << 24) | ((uint64_t)(b)[(i) + 5] << 16) | \ | |
469 ((uint64_t)(b)[(i) + 6] << 8) | ((uint64_t)(b)[(i) + 7]); \ | |
470 } | |
471 #define PUT_FX_64DWORD(n, b, i) \ | |
472 { \ | |
473 (b)[(i)] = (uint8_t)((n) >> 56); \ | |
474 (b)[(i) + 1] = (uint8_t)((n) >> 48); \ | |
475 (b)[(i) + 2] = (uint8_t)((n) >> 40); \ | |
476 (b)[(i) + 3] = (uint8_t)((n) >> 32); \ | |
477 (b)[(i) + 4] = (uint8_t)((n) >> 24); \ | |
478 (b)[(i) + 5] = (uint8_t)((n) >> 16); \ | |
479 (b)[(i) + 6] = (uint8_t)((n) >> 8); \ | |
480 (b)[(i) + 7] = (uint8_t)((n)); \ | |
481 } | |
482 static void sha384_process(sha384_context* ctx, const uint8_t data[128]) { | |
483 uint64_t temp1, temp2; | |
484 uint64_t A, B, C, D, E, F, G, H; | |
485 uint64_t W[80]; | |
486 GET_FX_64WORD(W[0], data, 0); | |
487 GET_FX_64WORD(W[1], data, 8); | |
488 GET_FX_64WORD(W[2], data, 16); | |
489 GET_FX_64WORD(W[3], data, 24); | |
490 GET_FX_64WORD(W[4], data, 32); | |
491 GET_FX_64WORD(W[5], data, 40); | |
492 GET_FX_64WORD(W[6], data, 48); | |
493 GET_FX_64WORD(W[7], data, 56); | |
494 GET_FX_64WORD(W[8], data, 64); | |
495 GET_FX_64WORD(W[9], data, 72); | |
496 GET_FX_64WORD(W[10], data, 80); | |
497 GET_FX_64WORD(W[11], data, 88); | |
498 GET_FX_64WORD(W[12], data, 96); | |
499 GET_FX_64WORD(W[13], data, 104); | |
500 GET_FX_64WORD(W[14], data, 112); | |
501 GET_FX_64WORD(W[15], data, 120); | |
502 A = ctx->state[0]; | |
503 B = ctx->state[1]; | |
504 C = ctx->state[2]; | |
505 D = ctx->state[3]; | |
506 E = ctx->state[4]; | |
507 F = ctx->state[5]; | |
508 G = ctx->state[6]; | |
509 H = ctx->state[7]; | |
510 for (int i = 0; i < 10; ++i) { | |
511 uint64_t temp[8]; | |
512 if (i < 2) { | |
513 temp[0] = W[i * 8]; | |
514 temp[1] = W[i * 8 + 1]; | |
515 temp[2] = W[i * 8 + 2]; | |
516 temp[3] = W[i * 8 + 3]; | |
517 temp[4] = W[i * 8 + 4]; | |
518 temp[5] = W[i * 8 + 5]; | |
519 temp[6] = W[i * 8 + 6]; | |
520 temp[7] = W[i * 8 + 7]; | |
521 } else { | |
522 temp[0] = SHA384_R(i * 8); | |
523 temp[1] = SHA384_R(i * 8 + 1); | |
524 temp[2] = SHA384_R(i * 8 + 2); | |
525 temp[3] = SHA384_R(i * 8 + 3); | |
526 temp[4] = SHA384_R(i * 8 + 4); | |
527 temp[5] = SHA384_R(i * 8 + 5); | |
528 temp[6] = SHA384_R(i * 8 + 6); | |
529 temp[7] = SHA384_R(i * 8 + 7); | |
530 } | |
531 SHA384_P(A, B, C, D, E, F, G, H, temp[0], FX_ato64i(constants[i * 8])); | |
532 SHA384_P(H, A, B, C, D, E, F, G, temp[1], FX_ato64i(constants[i * 8 + 1])); | |
533 SHA384_P(G, H, A, B, C, D, E, F, temp[2], FX_ato64i(constants[i * 8 + 2])); | |
534 SHA384_P(F, G, H, A, B, C, D, E, temp[3], FX_ato64i(constants[i * 8 + 3])); | |
535 SHA384_P(E, F, G, H, A, B, C, D, temp[4], FX_ato64i(constants[i * 8 + 4])); | |
536 SHA384_P(D, E, F, G, H, A, B, C, temp[5], FX_ato64i(constants[i * 8 + 5])); | |
537 SHA384_P(C, D, E, F, G, H, A, B, temp[6], FX_ato64i(constants[i * 8 + 6])); | |
538 SHA384_P(B, C, D, E, F, G, H, A, temp[7], FX_ato64i(constants[i * 8 + 7])); | |
539 } | |
540 ctx->state[0] += A; | |
541 ctx->state[1] += B; | |
542 ctx->state[2] += C; | |
543 ctx->state[3] += D; | |
544 ctx->state[4] += E; | |
545 ctx->state[5] += F; | |
546 ctx->state[6] += G; | |
547 ctx->state[7] += H; | |
548 } | |
549 void CRYPT_SHA384Update(void* context, const uint8_t* input, FX_DWORD length) { | |
550 sha384_context* ctx = (sha384_context*)context; | |
551 FX_DWORD left, fill; | |
552 if (!length) { | |
553 return; | |
554 } | |
555 left = (FX_DWORD)ctx->total[0] & 0x7F; | |
556 fill = 128 - left; | |
557 ctx->total[0] += length; | |
558 if (ctx->total[0] < length) { | |
559 ctx->total[1]++; | |
560 } | |
561 if (left && length >= fill) { | |
562 FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, fill); | |
563 sha384_process(ctx, ctx->buffer); | |
564 length -= fill; | |
565 input += fill; | |
566 left = 0; | |
567 } | |
568 while (length >= 128) { | |
569 sha384_process(ctx, input); | |
570 length -= 128; | |
571 input += 128; | |
572 } | |
573 if (length) { | |
574 FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, length); | |
575 } | |
576 } | |
577 void CRYPT_SHA384Finish(void* context, uint8_t digest[48]) { | |
578 sha384_context* ctx = (sha384_context*)context; | |
579 FX_DWORD last, padn; | |
580 uint8_t msglen[16]; | |
581 FXSYS_memset(msglen, 0, 16); | |
582 uint64_t high, low; | |
583 high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); | |
584 low = (ctx->total[0] << 3); | |
585 PUT_FX_64DWORD(high, msglen, 0); | |
586 PUT_FX_64DWORD(low, msglen, 8); | |
587 last = (FX_DWORD)ctx->total[0] & 0x7F; | |
588 padn = (last < 112) ? (112 - last) : (240 - last); | |
589 CRYPT_SHA384Update(ctx, sha384_padding, padn); | |
590 CRYPT_SHA384Update(ctx, msglen, 16); | |
591 PUT_FX_64DWORD(ctx->state[0], digest, 0); | |
592 PUT_FX_64DWORD(ctx->state[1], digest, 8); | |
593 PUT_FX_64DWORD(ctx->state[2], digest, 16); | |
594 PUT_FX_64DWORD(ctx->state[3], digest, 24); | |
595 PUT_FX_64DWORD(ctx->state[4], digest, 32); | |
596 PUT_FX_64DWORD(ctx->state[5], digest, 40); | |
597 } | |
598 void CRYPT_SHA384Generate(const uint8_t* data, | |
599 FX_DWORD size, | |
600 uint8_t digest[64]) { | |
601 sha384_context context; | |
602 CRYPT_SHA384Start(&context); | |
603 CRYPT_SHA384Update(&context, data, size); | |
604 CRYPT_SHA384Finish(&context, digest); | |
605 } | |
606 void CRYPT_SHA512Start(void* context) { | |
607 if (!context) { | |
608 return; | |
609 } | |
610 sha384_context* ctx = (sha384_context*)context; | |
611 FXSYS_memset(ctx, 0, sizeof(sha384_context)); | |
612 ctx->state[0] = FX_ato64i("6a09e667f3bcc908"); | |
613 ctx->state[1] = FX_ato64i("bb67ae8584caa73b"); | |
614 ctx->state[2] = FX_ato64i("3c6ef372fe94f82b"); | |
615 ctx->state[3] = FX_ato64i("a54ff53a5f1d36f1"); | |
616 ctx->state[4] = FX_ato64i("510e527fade682d1"); | |
617 ctx->state[5] = FX_ato64i("9b05688c2b3e6c1f"); | |
618 ctx->state[6] = FX_ato64i("1f83d9abfb41bd6b"); | |
619 ctx->state[7] = FX_ato64i("5be0cd19137e2179"); | |
620 } | |
621 void CRYPT_SHA512Update(void* context, const uint8_t* data, FX_DWORD size) { | |
622 CRYPT_SHA384Update(context, data, size); | |
623 } | |
624 void CRYPT_SHA512Finish(void* context, uint8_t digest[64]) { | |
625 sha384_context* ctx = (sha384_context*)context; | |
626 FX_DWORD last, padn; | |
627 uint8_t msglen[16]; | |
628 FXSYS_memset(msglen, 0, 16); | |
629 uint64_t high, low; | |
630 high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); | |
631 low = (ctx->total[0] << 3); | |
632 PUT_FX_64DWORD(high, msglen, 0); | |
633 PUT_FX_64DWORD(low, msglen, 8); | |
634 last = (FX_DWORD)ctx->total[0] & 0x7F; | |
635 padn = (last < 112) ? (112 - last) : (240 - last); | |
636 CRYPT_SHA512Update(ctx, sha384_padding, padn); | |
637 CRYPT_SHA512Update(ctx, msglen, 16); | |
638 PUT_FX_64DWORD(ctx->state[0], digest, 0); | |
639 PUT_FX_64DWORD(ctx->state[1], digest, 8); | |
640 PUT_FX_64DWORD(ctx->state[2], digest, 16); | |
641 PUT_FX_64DWORD(ctx->state[3], digest, 24); | |
642 PUT_FX_64DWORD(ctx->state[4], digest, 32); | |
643 PUT_FX_64DWORD(ctx->state[5], digest, 40); | |
644 PUT_FX_64DWORD(ctx->state[6], digest, 48); | |
645 PUT_FX_64DWORD(ctx->state[7], digest, 56); | |
646 } | |
647 void CRYPT_SHA512Generate(const uint8_t* data, | |
648 FX_DWORD size, | |
649 uint8_t digest[64]) { | |
650 sha384_context context; | |
651 CRYPT_SHA512Start(&context); | |
652 CRYPT_SHA512Update(&context, data, size); | |
653 CRYPT_SHA512Finish(&context, digest); | |
654 } | |
655 #ifdef __cplusplus | |
656 }; | |
657 #endif | |
OLD | NEW |