| Index: src/harmony-math.js
|
| diff --git a/src/harmony-math.js b/src/harmony-math.js
|
| index 7856917890b5f3f4c0369a8731c6892a8ef57346..e7afa4d6075152df991219094db514fd56fefc66 100644
|
| --- a/src/harmony-math.js
|
| +++ b/src/harmony-math.js
|
| @@ -174,21 +174,51 @@ function MathClz32(x) {
|
| }
|
|
|
|
|
| -//ES6 draft 09-27-13, section 20.2.2.9.
|
| +// ES6 draft 09-27-13, section 20.2.2.9.
|
| function MathCbrt(x) {
|
| return %Math_cbrt(TO_NUMBER_INLINE(x));
|
| }
|
|
|
|
|
| -//ES6 draft 09-27-13, section 20.2.2.14.
|
| +// ES6 draft 09-27-13, section 20.2.2.14.
|
| +// Use Taylor series to approximate.
|
| +// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
| +// == x/1! + x^2/2! + x^3/3! + ...
|
| +// The closer x is to 0, the fewer terms are required.
|
| function MathExpm1(x) {
|
| - return %Math_expm1(TO_NUMBER_INLINE(x));
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + var xabs = MathAbs(x);
|
| + if (xabs < 2E-7) {
|
| + return x * (1 + x * (1/2));
|
| + } else if (xabs < 6E-5) {
|
| + return x * (1 + x * (1/2 + x * (1/6)));
|
| + } else if (xabs < 2E-2) {
|
| + return x * (1 + x * (1/2 + x * (1/6 +
|
| + x * (1/24 + x * (1/120 + x * (1/720))))));
|
| + } else { // Use regular exp if not close enough to 0.
|
| + return MathExp(x) - 1;
|
| + }
|
| }
|
|
|
|
|
| -//ES6 draft 09-27-13, section 20.2.2.20.
|
| +// ES6 draft 09-27-13, section 20.2.2.20.
|
| +// Use Taylor series to approximate. With y = x + 1;
|
| +// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
| +// == 0 + x - x^2/2 + x^3/3 ...
|
| +// The closer x is to 0, the fewer terms are required.
|
| function MathLog1p(x) {
|
| - return %Math_log1p(TO_NUMBER_INLINE(x));
|
| + if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| + var xabs = MathAbs(x);
|
| + if (xabs < 1E-7) {
|
| + return x * (1 - x * (1/2));
|
| + } else if (xabs < 3E-5) {
|
| + return x * (1 - x * (1/2 - x * (1/3)));
|
| + } else if (xabs < 7E-3) {
|
| + return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 -
|
| + x * (1/5 - x * (1/6 - x * (1/7)))))));
|
| + } else { // Use regular log if not close enough to 0.
|
| + return MathLog(1 + x);
|
| + }
|
| }
|
|
|
|
|
|
|