Index: src/harmony-math.js |
diff --git a/src/harmony-math.js b/src/harmony-math.js |
index 7856917890b5f3f4c0369a8731c6892a8ef57346..e7afa4d6075152df991219094db514fd56fefc66 100644 |
--- a/src/harmony-math.js |
+++ b/src/harmony-math.js |
@@ -174,21 +174,51 @@ function MathClz32(x) { |
} |
-//ES6 draft 09-27-13, section 20.2.2.9. |
+// ES6 draft 09-27-13, section 20.2.2.9. |
function MathCbrt(x) { |
return %Math_cbrt(TO_NUMBER_INLINE(x)); |
} |
-//ES6 draft 09-27-13, section 20.2.2.14. |
+// ES6 draft 09-27-13, section 20.2.2.14. |
+// Use Taylor series to approximate. |
+// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... |
+// == x/1! + x^2/2! + x^3/3! + ... |
+// The closer x is to 0, the fewer terms are required. |
function MathExpm1(x) { |
- return %Math_expm1(TO_NUMBER_INLINE(x)); |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ var xabs = MathAbs(x); |
+ if (xabs < 2E-7) { |
+ return x * (1 + x * (1/2)); |
+ } else if (xabs < 6E-5) { |
+ return x * (1 + x * (1/2 + x * (1/6))); |
+ } else if (xabs < 2E-2) { |
+ return x * (1 + x * (1/2 + x * (1/6 + |
+ x * (1/24 + x * (1/120 + x * (1/720)))))); |
+ } else { // Use regular exp if not close enough to 0. |
+ return MathExp(x) - 1; |
+ } |
} |
-//ES6 draft 09-27-13, section 20.2.2.20. |
+// ES6 draft 09-27-13, section 20.2.2.20. |
+// Use Taylor series to approximate. With y = x + 1; |
+// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... |
+// == 0 + x - x^2/2 + x^3/3 ... |
+// The closer x is to 0, the fewer terms are required. |
function MathLog1p(x) { |
- return %Math_log1p(TO_NUMBER_INLINE(x)); |
+ if (!IS_NUMBER(x)) x = NonNumberToNumber(x); |
+ var xabs = MathAbs(x); |
+ if (xabs < 1E-7) { |
+ return x * (1 - x * (1/2)); |
+ } else if (xabs < 3E-5) { |
+ return x * (1 - x * (1/2 - x * (1/3))); |
+ } else if (xabs < 7E-3) { |
+ return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 - |
+ x * (1/5 - x * (1/6 - x * (1/7))))))); |
+ } else { // Use regular log if not close enough to 0. |
+ return MathLog(1 + x); |
+ } |
} |