OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "Sk4fGradientBase.h" | 8 #include "Sk4fGradientBase.h" |
9 #include "Sk4fGradientPriv.h" | |
10 | |
11 #include <functional> | |
9 | 12 |
10 namespace { | 13 namespace { |
11 | 14 |
12 // true when x is in [k1,k2) | 15 SkPMColor pack_color(SkColor c, bool premul) { |
13 bool in_range(SkScalar x, SkScalar k1, SkScalar k2) { | 16 return premul |
14 SkASSERT(k1 != k2); | 17 ? SkPreMultiplyColor(c) |
15 return (k1 < k2) | 18 : SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), Sk ColorGetB(c)); |
16 ? (x >= k1 && x < k2) | |
17 : (x >= k2 && x < k1); | |
18 } | 19 } |
19 | 20 |
21 template<SkShader::TileMode> | |
22 SkScalar tileProc(SkScalar t); | |
23 | |
24 template<> | |
25 SkScalar tileProc<SkShader::kClamp_TileMode>(SkScalar t) { | |
26 // synthetic clamp-mode edge intervals allow for a free-floating t: | |
27 // [-inf..0)[0..1)[1..+inf) | |
28 return t; | |
29 } | |
30 | |
31 template<> | |
32 SkScalar tileProc<SkShader::kRepeat_TileMode>(SkScalar t) { | |
33 // t % 1 (intervals range: [0..1)) | |
34 return t - SkScalarFloorToInt(t); | |
reed1
2016/03/10 17:49:37
SkScalarFloorToScalar ?
f(malita)
2016/03/10 18:46:10
Done.
| |
35 } | |
36 | |
37 template<> | |
38 SkScalar tileProc<SkShader::kMirror_TileMode>(SkScalar t) { | |
39 // t % 2 (synthetic mirror intervals expand the range to [0..2) | |
40 return t - SkScalarFloorToInt(t / 2) * 2; | |
reed1
2016/03/10 17:49:37
ditto
f(malita)
2016/03/10 18:46:10
Done.
| |
41 } | |
42 | |
43 class IntervalIterator { | |
44 public: | |
45 IntervalIterator(const SkColor* colors, const SkScalar* pos, int count, bool reverse) | |
46 : fColors(colors) | |
47 , fPos(pos) | |
48 , fCount(count) | |
49 , fFirstPos(reverse ? SK_Scalar1 : 0) | |
50 , fBegin(reverse ? count - 1 : 0) | |
51 , fAdvance(reverse ? -1 : 1) { | |
52 SkASSERT(colors); | |
53 SkASSERT(count > 0); | |
54 } | |
55 | |
56 void iterate(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const { | |
57 if (!fPos) { | |
58 this->iterateImplicitPos(func); | |
59 return; | |
60 } | |
61 | |
62 const int end = fBegin + fAdvance * (fCount - 1); | |
63 const SkScalar lastPos = 1 - fFirstPos; | |
64 int prev = fBegin; | |
65 SkScalar prevPos = fFirstPos; | |
66 | |
67 do { | |
68 const int curr = prev + fAdvance; | |
69 SkASSERT(curr >= 0 && curr < fCount); | |
70 | |
71 // TODO: this sanitization should be done in SkGradientShaderBase | |
72 const SkScalar currPos = (fAdvance > 0) | |
73 ? SkTPin(fPos[curr], prevPos, lastPos) | |
74 : SkTPin(fPos[curr], lastPos, prevPos); | |
75 | |
76 if (currPos != prevPos) { | |
77 SkASSERT((currPos - prevPos > 0) == (fAdvance > 0)); | |
78 func(fColors[prev], fColors[curr], prevPos, currPos); | |
79 } | |
80 | |
81 prev = curr; | |
82 prevPos = currPos; | |
83 } while (prev != end); | |
84 } | |
85 | |
86 private: | |
87 void iterateImplicitPos(std::function<void(SkColor, SkColor, SkScalar, SkSca lar)> func) const { | |
88 // When clients don't provide explicit color stop positions (fPos == nul lptr), | |
89 // the color stops are distributed evenly across the unit interval | |
90 // (implicit positioning). | |
91 const SkScalar dt = fAdvance * SK_Scalar1 / (fCount - 1); | |
92 const int end = fBegin + fAdvance * (fCount - 2); | |
93 int prev = fBegin; | |
94 SkScalar prevPos = fFirstPos; | |
95 | |
96 while (prev != end) { | |
97 const int curr = prev + fAdvance; | |
98 SkASSERT(curr >= 0 && curr < fCount); | |
99 | |
100 const SkScalar currPos = prevPos + dt; | |
101 func(fColors[prev], fColors[curr], prevPos, currPos); | |
102 prev = curr; | |
103 prevPos = currPos; | |
104 } | |
105 | |
106 // emit the last interval with a pinned end position, to avoid precision issues | |
107 func(fColors[prev], fColors[prev + fAdvance], prevPos, 1 - fFirstPos); | |
108 } | |
109 | |
110 const SkColor* fColors; | |
111 const SkScalar* fPos; | |
112 const int fCount; | |
113 const SkScalar fFirstPos; | |
114 const int fBegin; | |
115 const int fAdvance; | |
116 }; | |
117 | |
20 } // anonymous namespace | 118 } // anonymous namespace |
21 | 119 |
22 SkGradientShaderBase::GradientShaderBase4fContext:: | 120 SkGradientShaderBase::GradientShaderBase4fContext:: |
23 Interval::Interval(SkPMColor c0, SkScalar p0, | 121 Interval::Interval(SkPMColor c0, SkScalar p0, |
24 SkPMColor c1, SkScalar p1, | 122 SkPMColor c1, SkScalar p1, |
25 const Sk4f& componentScale) | 123 const Sk4f& componentScale) |
26 : fP0(p0) | 124 : fP0(p0) |
27 , fP1(p1) | 125 , fP1(p1) |
28 , fZeroRamp(c0 == c1) { | 126 , fZeroRamp(c0 == c1) { |
29 SkASSERT(p0 != p1); | 127 SkASSERT(p0 != p1); |
30 | 128 |
31 const Sk4f c4f0 = SkPM4f::FromPMColor(c0).to4f() * componentScale; | 129 const Sk4f c4f0 = SkPM4f::FromPMColor(c0).to4f() * componentScale; |
32 const Sk4f c4f1 = SkPM4f::FromPMColor(c1).to4f() * componentScale; | 130 const Sk4f c4f1 = SkPM4f::FromPMColor(c1).to4f() * componentScale; |
33 const Sk4f dc4f = (c4f1 - c4f0) / (p1 - p0); | 131 const Sk4f dc4f = (c4f1 - c4f0) / (p1 - p0); |
34 | 132 |
35 c4f0.store(&fC0.fVec); | 133 c4f0.store(&fC0.fVec); |
36 dc4f.store(&fDc.fVec); | 134 dc4f.store(&fDc.fVec); |
37 } | 135 } |
38 | 136 |
39 bool SkGradientShaderBase::GradientShaderBase4fContext:: | |
40 Interval::contains(SkScalar fx) const { | |
41 return in_range(fx, fP0, fP1); | |
42 } | |
43 | |
44 SkGradientShaderBase:: | 137 SkGradientShaderBase:: |
45 GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderB ase& shader, | 138 GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderB ase& shader, |
46 const ContextRec& rec) | 139 const ContextRec& rec) |
47 : INHERITED(shader, rec) | 140 : INHERITED(shader, rec) |
48 , fFlags(this->INHERITED::getFlags()) | 141 , fFlags(this->INHERITED::getFlags()) |
49 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING | 142 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING |
50 , fDither(true) | 143 , fDither(true) |
51 #else | 144 #else |
52 , fDither(rec.fPaint->isDither()) | 145 , fDither(rec.fPaint->isDither()) |
53 #endif | 146 #endif |
54 { | 147 { |
55 const SkMatrix& inverse = this->getTotalInverse(); | 148 const SkMatrix& inverse = this->getTotalInverse(); |
56 fDstToPos.setConcat(shader.fPtsToUnit, inverse); | 149 fDstToPos.setConcat(shader.fPtsToUnit, inverse); |
57 fDstToPosProc = fDstToPos.getMapXYProc(); | 150 fDstToPosProc = fDstToPos.getMapXYProc(); |
58 fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPo s)); | 151 fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPo s)); |
59 | 152 |
60 if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) { | 153 if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) { |
61 fFlags |= kOpaqueAlpha_Flag; | 154 fFlags |= kOpaqueAlpha_Flag; |
62 } | 155 } |
63 | 156 |
64 fColorsArePremul = | 157 fColorsArePremul = |
65 (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) | 158 (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) |
66 || shader.fColorsAreOpaque; | 159 || shader.fColorsAreOpaque; |
67 } | 160 } |
161 | |
162 void SkGradientShaderBase:: | |
163 GradientShaderBase4fContext::buildIntervals(const SkGradientShaderBase& shader, | |
164 const ContextRec& rec, bool reverse) { | |
165 // The main job here is to build a specialized interval list: a different | |
166 // representation of the color stops data, optimized for efficient scan line | |
167 // access during shading. | |
168 // | |
169 // [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1}) | |
170 // | |
171 // The list may be inverted when requested (such that e.g. points are sorted | |
172 // in increasing x order when dx < 0). | |
173 // | |
174 // Note: the current representation duplicates pos data; we could refactor t o | |
175 // avoid this if interval storage size becomes a concern. | |
176 // | |
177 // Aside from reordering, we also perform two more pre-processing steps at | |
178 // this stage: | |
179 // | |
180 // 1) scale the color components depending on paint alpha and the requeste d | |
181 // interpolation space (note: the interval color storage is SkPM4f, but | |
182 // that doesn't necessarily mean the colors are premultiplied; that | |
183 // property is tracked in fColorsArePremul) | |
184 // | |
185 // 2) inject synthetic intervals to support tiling. | |
186 // | |
187 // * for kRepeat, no extra intervals are needed - the iterator just | |
188 // wraps around at the end: | |
189 // | |
190 // ->[P0,P1)->..[Pn-1,Pn)-> | |
191 // | |
192 // * for kClamp, we add two "infinite" intervals before/after: | |
193 // | |
194 // [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf) | |
195 // | |
196 // (the iterator should never run off the end in this mode) | |
197 // | |
198 // * for kMirror, we extend the range to [0..2] and add a flipped | |
199 // interval series - then the iterator operates just as in the | |
200 // kRepeat case: | |
201 // | |
202 // ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)-> | |
203 // | |
204 // TODO: investigate collapsing intervals << 1px. | |
205 | |
206 SkASSERT(shader.fColorCount > 0); | |
207 SkASSERT(shader.fOrigColors); | |
208 | |
209 const float paintAlpha = rec.fPaint->getAlpha() * (1.0f / 255); | |
210 const Sk4f componentScale = fColorsArePremul | |
211 ? Sk4f(paintAlpha) | |
212 : Sk4f(1.0f, 1.0f, 1.0f, paintAlpha); | |
213 const int first_index = reverse ? shader.fColorCount - 1 : 0; | |
214 const int last_index = shader.fColorCount - 1 - first_index; | |
215 const SkScalar first_pos = reverse ? SK_Scalar1 : 0; | |
216 const SkScalar last_pos = SK_Scalar1 - first_pos; | |
217 | |
218 if (shader.fTileMode == SkShader::kClamp_TileMode) { | |
219 // synthetic edge interval: -/+inf .. P0 | |
220 const SkPMColor clamp_color = pack_color(shader.fOrigColors[first_index] , | |
221 fColorsArePremul); | |
222 const SkScalar clamp_pos = reverse ? SK_ScalarMax : SK_ScalarMin; | |
223 fIntervals.emplace_back(clamp_color, clamp_pos, | |
224 clamp_color, first_pos, | |
225 componentScale); | |
226 } else if (shader.fTileMode == SkShader::kMirror_TileMode && reverse) { | |
227 // synthetic mirror intervals injected before main intervals: (2 .. 1] | |
228 addMirrorIntervals(shader, componentScale, false); | |
229 } | |
230 | |
231 const IntervalIterator iter(shader.fOrigColors, | |
232 shader.fOrigPos, | |
233 shader.fColorCount, | |
234 reverse); | |
235 iter.iterate([this, &componentScale] (SkColor c0, SkColor c1, SkScalar p0, S kScalar p1) { | |
236 SkASSERT(fIntervals.empty() || fIntervals.back().fP1 == p0); | |
237 | |
238 fIntervals.emplace_back(pack_color(c0, fColorsArePremul), | |
239 p0, | |
240 pack_color(c1, fColorsArePremul), | |
241 p1, | |
242 componentScale); | |
243 }); | |
244 | |
245 if (shader.fTileMode == SkShader::kClamp_TileMode) { | |
246 // synthetic edge interval: Pn .. +/-inf | |
247 const SkPMColor clamp_color = | |
248 pack_color(shader.fOrigColors[last_index], fColorsArePremul); | |
249 const SkScalar clamp_pos = reverse ? SK_ScalarMin : SK_ScalarMax; | |
250 fIntervals.emplace_back(clamp_color, last_pos, | |
251 clamp_color, clamp_pos, | |
252 componentScale); | |
253 } else if (shader.fTileMode == SkShader::kMirror_TileMode && !reverse) { | |
254 // synthetic mirror intervals injected after main intervals: [1 .. 2) | |
255 addMirrorIntervals(shader, componentScale, true); | |
256 } | |
257 } | |
258 | |
259 void SkGradientShaderBase:: | |
260 GradientShaderBase4fContext::addMirrorIntervals(const SkGradientShaderBase& shad er, | |
261 const Sk4f& componentScale, bool rev erse) { | |
262 const IntervalIterator iter(shader.fOrigColors, | |
263 shader.fOrigPos, | |
264 shader.fColorCount, | |
265 reverse); | |
266 iter.iterate([this, &componentScale] (SkColor c0, SkColor c1, SkScalar p0, S kScalar p1) { | |
267 SkASSERT(fIntervals.empty() || fIntervals.back().fP1 == 2 - p0); | |
268 | |
269 fIntervals.emplace_back(pack_color(c0, fColorsArePremul), | |
270 2 - p0, | |
271 pack_color(c1, fColorsArePremul), | |
272 2 - p1, | |
273 componentScale); | |
274 }); | |
275 } | |
276 | |
277 void SkGradientShaderBase:: | |
278 GradientShaderBase4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) { | |
279 if (fColorsArePremul) { | |
280 this->shadePremulSpan<SkPMColor, false>(x, y, dst, count); | |
281 } else { | |
282 this->shadePremulSpan<SkPMColor, true>(x, y, dst, count); | |
283 } | |
284 } | |
285 | |
286 void SkGradientShaderBase:: | |
287 GradientShaderBase4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) { | |
288 if (fColorsArePremul) { | |
289 this->shadePremulSpan<SkPM4f, false>(x, y, dst, count); | |
290 } else { | |
291 this->shadePremulSpan<SkPM4f, true>(x, y, dst, count); | |
292 } | |
293 } | |
294 | |
295 template<typename DstType, bool do_premul> | |
296 void SkGradientShaderBase:: | |
297 GradientShaderBase4fContext::shadePremulSpan(int x, int y, | |
298 DstType dst[], | |
299 int count) const { | |
300 const SkGradientShaderBase& shader = | |
301 static_cast<const SkGradientShaderBase&>(fShader); | |
302 | |
303 switch (shader.fTileMode) { | |
304 case kClamp_TileMode: | |
305 this->shadeSpanInternal<DstType, | |
306 do_premul, | |
307 kClamp_TileMode>(x, y, dst, count); | |
308 break; | |
309 case kRepeat_TileMode: | |
310 this->shadeSpanInternal<DstType, | |
311 do_premul, | |
312 kRepeat_TileMode>(x, y, dst, count); | |
313 break; | |
314 case kMirror_TileMode: | |
315 this->shadeSpanInternal<DstType, | |
316 do_premul, | |
317 kMirror_TileMode>(x, y, dst, count); | |
318 break; | |
319 } | |
320 } | |
321 | |
322 template<typename DstType, bool do_premul, SkShader::TileMode tileMode> | |
323 void SkGradientShaderBase:: | |
324 GradientShaderBase4fContext::shadeSpanInternal(int x, int y, | |
325 DstType dst[], | |
326 int count) const { | |
327 static const int kBufSize = 128; | |
328 SkScalar ts[kBufSize]; | |
329 TSampler<DstType, tileMode> sampler(*this); | |
330 | |
331 SkASSERT(count > 0); | |
332 do { | |
333 const int n = SkTMin(kBufSize, count); | |
334 this->mapTs(x, y, ts, n); | |
335 for (int i = 0; i < n; ++i) { | |
336 const Sk4f c = sampler.sample(ts[i]); | |
337 store<DstType, do_premul>(c, dst++); | |
338 } | |
339 x += n; | |
340 count -= n; | |
341 } while (count > 0); | |
342 } | |
343 | |
344 template<typename DstType, SkShader::TileMode tileMode> | |
345 class SkGradientShaderBase::GradientShaderBase4fContext::TSampler { | |
346 public: | |
347 TSampler(const GradientShaderBase4fContext& ctx) | |
348 : fFirstInterval(ctx.fIntervals.begin()) | |
349 , fLastInterval(ctx.fIntervals.end() - 1) | |
350 , fInterval(nullptr) { | |
351 SkASSERT(fLastInterval >= fFirstInterval); | |
352 } | |
353 | |
354 Sk4f sample(SkScalar t) { | |
355 const SkScalar tiled_t = tileProc<tileMode>(t); | |
356 | |
357 if (!fInterval) { | |
358 // Very first sample => locate the initial interval. | |
359 // TODO: maybe do this in ctor to remove a branch? | |
360 fInterval = this->findFirstInterval(tiled_t); | |
361 this->loadIntervalData(fInterval); | |
362 } else if (tiled_t < fInterval->fP0 || tiled_t >= fInterval->fP1) { | |
363 fInterval = this->findNextInterval(t, tiled_t); | |
364 this->loadIntervalData(fInterval); | |
365 } | |
366 | |
367 fPrevT = t; | |
368 return lerp(tiled_t); | |
369 } | |
370 | |
371 private: | |
372 Sk4f lerp(SkScalar t) { | |
373 SkASSERT(t >= fInterval->fP0 && t < fInterval->fP1); | |
374 return fCc + fDc * (t - fInterval->fP0); | |
375 } | |
376 | |
377 const Interval* findFirstInterval(SkScalar t) const { | |
378 // Binary search. | |
379 const Interval* i0 = fFirstInterval; | |
380 const Interval* i1 = fLastInterval; | |
381 | |
382 while (i0 != i1) { | |
383 SkASSERT(i0 < i1); | |
384 SkASSERT(t >= i0->fP0 && t < i1->fP1); | |
385 | |
386 const Interval* i = i0 + ((i1 - i0) >> 1); | |
387 | |
388 if (t >= i->fP1) { | |
389 i0 = i + 1; | |
390 } else { | |
391 i1 = i; | |
392 } | |
393 } | |
394 | |
395 SkASSERT(t >= i0->fP0 && t <= i0->fP1); | |
396 return i0; | |
397 } | |
398 | |
399 const Interval* findNextInterval(SkScalar t, SkScalar tiled_t) const { | |
400 SkASSERT(tiled_t < fInterval->fP0 || tiled_t >= fInterval->fP1); | |
401 SkASSERT(tiled_t >= fFirstInterval->fP0 && tiled_t < fLastInterval->fP1) ; | |
402 | |
403 const Interval* i = fInterval; | |
404 | |
405 // Use the t vs. prev_t signal to figure which direction we should searc h for | |
406 // the next interval, then perform a linear search. | |
407 if (t >= fPrevT) { | |
408 do { | |
409 i += 1; | |
410 if (i > fLastInterval) { | |
411 i = fFirstInterval; | |
412 } | |
413 } while (tiled_t < i->fP0 || tiled_t >= i->fP1); | |
414 } else { | |
415 do { | |
416 i -= 1; | |
417 if (i < fFirstInterval) { | |
418 i = fLastInterval; | |
419 } | |
420 } while (tiled_t < i->fP0 || tiled_t >= i->fP1); | |
421 } | |
422 | |
423 return i; | |
424 } | |
425 | |
426 void loadIntervalData(const Interval* i) { | |
427 fCc = dst_swizzle<DstType>(i->fC0) * dst_component_scale<DstType>(); | |
428 fDc = dst_swizzle<DstType>(i->fDc) * dst_component_scale<DstType>(); | |
429 } | |
430 | |
431 const Interval* fFirstInterval; | |
432 const Interval* fLastInterval; | |
433 const Interval* fInterval; | |
434 SkScalar fPrevT; | |
435 Sk4f fCc; | |
436 Sk4f fDc; | |
437 }; | |
OLD | NEW |