| Index: src/IceUtils.h | 
| diff --git a/src/IceUtils.h b/src/IceUtils.h | 
| index 83b3fe9116e4638fe57292d0d600249f66d0ac00..2c7c62b44a226e6a7e435ae735dee677e684bf29 100644 | 
| --- a/src/IceUtils.h | 
| +++ b/src/IceUtils.h | 
| @@ -36,14 +36,14 @@ template <typename D, typename S> inline D bitCopy(const S &Source) { | 
| } | 
|  | 
| /// Check whether an N-bit two's-complement representation can hold value. | 
| -template <typename T> static inline bool IsInt(int N, T value) { | 
| +template <typename T> inline bool IsInt(int N, T value) { | 
| assert((0 < N) && | 
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); | 
| T limit = static_cast<T>(1) << (N - 1); | 
| return (-limit <= value) && (value < limit); | 
| } | 
|  | 
| -template <typename T> static inline bool IsUint(int N, T value) { | 
| +template <typename T> inline bool IsUint(int N, T value) { | 
| assert((0 < N) && | 
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); | 
| T limit = static_cast<T>(1) << N; | 
| @@ -52,7 +52,7 @@ template <typename T> static inline bool IsUint(int N, T value) { | 
|  | 
| /// Check whether the magnitude of value fits in N bits, i.e., whether an | 
| /// (N+1)-bit sign-magnitude representation can hold value. | 
| -template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { | 
| +template <typename T> inline bool IsAbsoluteUint(int N, T Value) { | 
| assert((0 < N) && | 
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); | 
| if (Value < 0) | 
| @@ -62,14 +62,14 @@ template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { | 
|  | 
| /// Return true if the addition X + Y will cause integer overflow for integers | 
| /// of type T. | 
| -template <typename T> static inline bool WouldOverflowAdd(T X, T Y) { | 
| +template <typename T> inline bool WouldOverflowAdd(T X, T Y) { | 
| return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || | 
| (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); | 
| } | 
|  | 
| /// Adds x to y and stores the result in sum. Returns true if the addition | 
| /// overflowed. | 
| -static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { | 
| +inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { | 
| static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); | 
| #if __has_builtin(__builtin_uadd_overflow) | 
| return __builtin_uadd_overflow(x, y, sum); | 
| @@ -80,20 +80,20 @@ static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { | 
| } | 
|  | 
| /// Return true if X is already aligned by N, where N is a power of 2. | 
| -template <typename T> static inline bool IsAligned(T X, intptr_t N) { | 
| +template <typename T> inline bool IsAligned(T X, intptr_t N) { | 
| assert(llvm::isPowerOf2_64(N)); | 
| return (X & (N - 1)) == 0; | 
| } | 
|  | 
| /// Return Value adjusted to the next highest multiple of Alignment. | 
| -static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { | 
| +inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { | 
| assert(llvm::isPowerOf2_32(Alignment)); | 
| return (Value + Alignment - 1) & -Alignment; | 
| } | 
|  | 
| /// Return amount which must be added to adjust Pos to the next highest | 
| /// multiple of Align. | 
| -static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { | 
| +inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { | 
| assert(llvm::isPowerOf2_64(Align)); | 
| uint64_t Mod = Pos & (Align - 1); | 
| if (Mod == 0) | 
| @@ -103,26 +103,53 @@ static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { | 
|  | 
| /// Rotate the value bit pattern to the left by shift bits. | 
| /// Precondition: 0 <= shift < 32 | 
| -static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { | 
| +inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { | 
| if (shift == 0) | 
| return value; | 
| return (value << shift) | (value >> (32 - shift)); | 
| } | 
|  | 
| /// Rotate the value bit pattern to the right by shift bits. | 
| -static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { | 
| +inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { | 
| if (shift == 0) | 
| return value; | 
| return (value >> shift) | (value << (32 - shift)); | 
| } | 
|  | 
| /// Returns true if Val is +0.0. It requires T to be a floating point type. | 
| -template <typename T> static bool isPositiveZero(T Val) { | 
| +template <typename T> bool isPositiveZero(T Val) { | 
| static_assert(std::is_floating_point<T>::value, | 
| "Input type must be floating point"); | 
| return Val == 0 && !std::signbit(Val); | 
| } | 
|  | 
| +/// Resize a vector (or other suitable container) to a particular size, and also | 
| +/// reserve possibly a larger size to avoid repeatedly recopying as the | 
| +/// container grows.  It uses a strategy of doubling capacity up to a certain | 
| +/// point, after which it bumps the capacity by a fixed amount. | 
| +template <typename Container> | 
| +inline void reserveAndResize(Container &V, uint32_t Size, | 
| +                             uint32_t ChunkSizeBits = 10) { | 
| +#if __has_builtin(__builtin_clz) | 
| +  // Don't call reserve() if Size==0. | 
| +  if (Size > 0) { | 
| +    uint32_t Mask; | 
| +    if (Size <= (1 << ChunkSizeBits)) { | 
| +      // For smaller sizes, reserve the smallest power of 2 greater than or | 
| +      // equal to Size. | 
| +      Mask = | 
| +          ((1 << (CHAR_BIT * sizeof(uint32_t) - __builtin_clz(Size))) - 1) - 1; | 
| +    } else { | 
| +      // For larger sizes, round up to the smallest multiple of 1<<ChunkSizeBits | 
| +      // greater than or equal to Size. | 
| +      Mask = (1 << ChunkSizeBits) - 1; | 
| +    } | 
| +    V.reserve((Size + Mask) & ~Mask); | 
| +  } | 
| +#endif | 
| +  V.resize(Size); | 
| +} | 
| + | 
| /// An RAII class to ensure that a boolean flag is restored to its previous | 
| /// value upon function exit. | 
| /// | 
|  |