Index: src/IceUtils.h |
diff --git a/src/IceUtils.h b/src/IceUtils.h |
index 83b3fe9116e4638fe57292d0d600249f66d0ac00..2c7c62b44a226e6a7e435ae735dee677e684bf29 100644 |
--- a/src/IceUtils.h |
+++ b/src/IceUtils.h |
@@ -36,14 +36,14 @@ template <typename D, typename S> inline D bitCopy(const S &Source) { |
} |
/// Check whether an N-bit two's-complement representation can hold value. |
-template <typename T> static inline bool IsInt(int N, T value) { |
+template <typename T> inline bool IsInt(int N, T value) { |
assert((0 < N) && |
(static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
T limit = static_cast<T>(1) << (N - 1); |
return (-limit <= value) && (value < limit); |
} |
-template <typename T> static inline bool IsUint(int N, T value) { |
+template <typename T> inline bool IsUint(int N, T value) { |
assert((0 < N) && |
(static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
T limit = static_cast<T>(1) << N; |
@@ -52,7 +52,7 @@ template <typename T> static inline bool IsUint(int N, T value) { |
/// Check whether the magnitude of value fits in N bits, i.e., whether an |
/// (N+1)-bit sign-magnitude representation can hold value. |
-template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { |
+template <typename T> inline bool IsAbsoluteUint(int N, T Value) { |
assert((0 < N) && |
(static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); |
if (Value < 0) |
@@ -62,14 +62,14 @@ template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { |
/// Return true if the addition X + Y will cause integer overflow for integers |
/// of type T. |
-template <typename T> static inline bool WouldOverflowAdd(T X, T Y) { |
+template <typename T> inline bool WouldOverflowAdd(T X, T Y) { |
return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || |
(X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); |
} |
/// Adds x to y and stores the result in sum. Returns true if the addition |
/// overflowed. |
-static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { |
+inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { |
static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); |
#if __has_builtin(__builtin_uadd_overflow) |
return __builtin_uadd_overflow(x, y, sum); |
@@ -80,20 +80,20 @@ static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { |
} |
/// Return true if X is already aligned by N, where N is a power of 2. |
-template <typename T> static inline bool IsAligned(T X, intptr_t N) { |
+template <typename T> inline bool IsAligned(T X, intptr_t N) { |
assert(llvm::isPowerOf2_64(N)); |
return (X & (N - 1)) == 0; |
} |
/// Return Value adjusted to the next highest multiple of Alignment. |
-static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { |
+inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { |
assert(llvm::isPowerOf2_32(Alignment)); |
return (Value + Alignment - 1) & -Alignment; |
} |
/// Return amount which must be added to adjust Pos to the next highest |
/// multiple of Align. |
-static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
+inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
assert(llvm::isPowerOf2_64(Align)); |
uint64_t Mod = Pos & (Align - 1); |
if (Mod == 0) |
@@ -103,26 +103,53 @@ static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
/// Rotate the value bit pattern to the left by shift bits. |
/// Precondition: 0 <= shift < 32 |
-static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { |
+inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { |
if (shift == 0) |
return value; |
return (value << shift) | (value >> (32 - shift)); |
} |
/// Rotate the value bit pattern to the right by shift bits. |
-static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { |
+inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { |
if (shift == 0) |
return value; |
return (value >> shift) | (value << (32 - shift)); |
} |
/// Returns true if Val is +0.0. It requires T to be a floating point type. |
-template <typename T> static bool isPositiveZero(T Val) { |
+template <typename T> bool isPositiveZero(T Val) { |
static_assert(std::is_floating_point<T>::value, |
"Input type must be floating point"); |
return Val == 0 && !std::signbit(Val); |
} |
+/// Resize a vector (or other suitable container) to a particular size, and also |
+/// reserve possibly a larger size to avoid repeatedly recopying as the |
+/// container grows. It uses a strategy of doubling capacity up to a certain |
+/// point, after which it bumps the capacity by a fixed amount. |
+template <typename Container> |
+inline void reserveAndResize(Container &V, uint32_t Size, |
+ uint32_t ChunkSizeBits = 10) { |
+#if __has_builtin(__builtin_clz) |
+ // Don't call reserve() if Size==0. |
+ if (Size > 0) { |
+ uint32_t Mask; |
+ if (Size <= (1 << ChunkSizeBits)) { |
+ // For smaller sizes, reserve the smallest power of 2 greater than or |
+ // equal to Size. |
+ Mask = |
+ ((1 << (CHAR_BIT * sizeof(uint32_t) - __builtin_clz(Size))) - 1) - 1; |
+ } else { |
+ // For larger sizes, round up to the smallest multiple of 1<<ChunkSizeBits |
+ // greater than or equal to Size. |
+ Mask = (1 << ChunkSizeBits) - 1; |
+ } |
+ V.reserve((Size + Mask) & ~Mask); |
+ } |
+#endif |
+ V.resize(Size); |
+} |
+ |
/// An RAII class to ensure that a boolean flag is restored to its previous |
/// value upon function exit. |
/// |