| Index: src/IceUtils.h
|
| diff --git a/src/IceUtils.h b/src/IceUtils.h
|
| index 83b3fe9116e4638fe57292d0d600249f66d0ac00..2c7c62b44a226e6a7e435ae735dee677e684bf29 100644
|
| --- a/src/IceUtils.h
|
| +++ b/src/IceUtils.h
|
| @@ -36,14 +36,14 @@ template <typename D, typename S> inline D bitCopy(const S &Source) {
|
| }
|
|
|
| /// Check whether an N-bit two's-complement representation can hold value.
|
| -template <typename T> static inline bool IsInt(int N, T value) {
|
| +template <typename T> inline bool IsInt(int N, T value) {
|
| assert((0 < N) &&
|
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value))));
|
| T limit = static_cast<T>(1) << (N - 1);
|
| return (-limit <= value) && (value < limit);
|
| }
|
|
|
| -template <typename T> static inline bool IsUint(int N, T value) {
|
| +template <typename T> inline bool IsUint(int N, T value) {
|
| assert((0 < N) &&
|
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value))));
|
| T limit = static_cast<T>(1) << N;
|
| @@ -52,7 +52,7 @@ template <typename T> static inline bool IsUint(int N, T value) {
|
|
|
| /// Check whether the magnitude of value fits in N bits, i.e., whether an
|
| /// (N+1)-bit sign-magnitude representation can hold value.
|
| -template <typename T> static inline bool IsAbsoluteUint(int N, T Value) {
|
| +template <typename T> inline bool IsAbsoluteUint(int N, T Value) {
|
| assert((0 < N) &&
|
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value))));
|
| if (Value < 0)
|
| @@ -62,14 +62,14 @@ template <typename T> static inline bool IsAbsoluteUint(int N, T Value) {
|
|
|
| /// Return true if the addition X + Y will cause integer overflow for integers
|
| /// of type T.
|
| -template <typename T> static inline bool WouldOverflowAdd(T X, T Y) {
|
| +template <typename T> inline bool WouldOverflowAdd(T X, T Y) {
|
| return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) ||
|
| (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y)));
|
| }
|
|
|
| /// Adds x to y and stores the result in sum. Returns true if the addition
|
| /// overflowed.
|
| -static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) {
|
| +inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) {
|
| static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type");
|
| #if __has_builtin(__builtin_uadd_overflow)
|
| return __builtin_uadd_overflow(x, y, sum);
|
| @@ -80,20 +80,20 @@ static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) {
|
| }
|
|
|
| /// Return true if X is already aligned by N, where N is a power of 2.
|
| -template <typename T> static inline bool IsAligned(T X, intptr_t N) {
|
| +template <typename T> inline bool IsAligned(T X, intptr_t N) {
|
| assert(llvm::isPowerOf2_64(N));
|
| return (X & (N - 1)) == 0;
|
| }
|
|
|
| /// Return Value adjusted to the next highest multiple of Alignment.
|
| -static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) {
|
| +inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) {
|
| assert(llvm::isPowerOf2_32(Alignment));
|
| return (Value + Alignment - 1) & -Alignment;
|
| }
|
|
|
| /// Return amount which must be added to adjust Pos to the next highest
|
| /// multiple of Align.
|
| -static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) {
|
| +inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) {
|
| assert(llvm::isPowerOf2_64(Align));
|
| uint64_t Mod = Pos & (Align - 1);
|
| if (Mod == 0)
|
| @@ -103,26 +103,53 @@ static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) {
|
|
|
| /// Rotate the value bit pattern to the left by shift bits.
|
| /// Precondition: 0 <= shift < 32
|
| -static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) {
|
| +inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) {
|
| if (shift == 0)
|
| return value;
|
| return (value << shift) | (value >> (32 - shift));
|
| }
|
|
|
| /// Rotate the value bit pattern to the right by shift bits.
|
| -static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) {
|
| +inline uint32_t rotateRight32(uint32_t value, uint32_t shift) {
|
| if (shift == 0)
|
| return value;
|
| return (value >> shift) | (value << (32 - shift));
|
| }
|
|
|
| /// Returns true if Val is +0.0. It requires T to be a floating point type.
|
| -template <typename T> static bool isPositiveZero(T Val) {
|
| +template <typename T> bool isPositiveZero(T Val) {
|
| static_assert(std::is_floating_point<T>::value,
|
| "Input type must be floating point");
|
| return Val == 0 && !std::signbit(Val);
|
| }
|
|
|
| +/// Resize a vector (or other suitable container) to a particular size, and also
|
| +/// reserve possibly a larger size to avoid repeatedly recopying as the
|
| +/// container grows. It uses a strategy of doubling capacity up to a certain
|
| +/// point, after which it bumps the capacity by a fixed amount.
|
| +template <typename Container>
|
| +inline void reserveAndResize(Container &V, uint32_t Size,
|
| + uint32_t ChunkSizeBits = 10) {
|
| +#if __has_builtin(__builtin_clz)
|
| + // Don't call reserve() if Size==0.
|
| + if (Size > 0) {
|
| + uint32_t Mask;
|
| + if (Size <= (1 << ChunkSizeBits)) {
|
| + // For smaller sizes, reserve the smallest power of 2 greater than or
|
| + // equal to Size.
|
| + Mask =
|
| + ((1 << (CHAR_BIT * sizeof(uint32_t) - __builtin_clz(Size))) - 1) - 1;
|
| + } else {
|
| + // For larger sizes, round up to the smallest multiple of 1<<ChunkSizeBits
|
| + // greater than or equal to Size.
|
| + Mask = (1 << ChunkSizeBits) - 1;
|
| + }
|
| + V.reserve((Size + Mask) & ~Mask);
|
| + }
|
| +#endif
|
| + V.resize(Size);
|
| +}
|
| +
|
| /// An RAII class to ensure that a boolean flag is restored to its previous
|
| /// value upon function exit.
|
| ///
|
|
|