| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (C) 2010, Google Inc. All rights reserved. | 2 * Copyright (C) 2010, Google Inc. All rights reserved. |
| 3 * | 3 * |
| 4 * Redistribution and use in source and binary forms, with or without | 4 * Redistribution and use in source and binary forms, with or without |
| 5 * modification, are permitted provided that the following conditions | 5 * modification, are permitted provided that the following conditions |
| 6 * are met: | 6 * are met: |
| 7 * 1. Redistributions of source code must retain the above copyright | 7 * 1. Redistributions of source code must retain the above copyright |
| 8 * notice, this list of conditions and the following disclaimer. | 8 * notice, this list of conditions and the following disclaimer. |
| 9 * 2. Redistributions in binary form must reproduce the above copyright | 9 * 2. Redistributions in binary form must reproduce the above copyright |
| 10 * notice, this list of conditions and the following disclaimer in the | 10 * notice, this list of conditions and the following disclaimer in the |
| (...skipping 20 matching lines...) Expand all Loading... |
| 31 namespace blink { | 31 namespace blink { |
| 32 | 32 |
| 33 // FIXME: As a recursive linear filter, depending on its parameters, a biquad fi
lter can have | 33 // FIXME: As a recursive linear filter, depending on its parameters, a biquad fi
lter can have |
| 34 // an infinite tailTime. In practice, Biquad filters do not usually (except for
very high resonance values) | 34 // an infinite tailTime. In practice, Biquad filters do not usually (except for
very high resonance values) |
| 35 // have a tailTime of longer than approx. 200ms. This value could possibly be ca
lculated based on the | 35 // have a tailTime of longer than approx. 200ms. This value could possibly be ca
lculated based on the |
| 36 // settings of the Biquad. | 36 // settings of the Biquad. |
| 37 static const double MaxBiquadDelayTime = 0.2; | 37 static const double MaxBiquadDelayTime = 0.2; |
| 38 | 38 |
| 39 void BiquadDSPKernel::updateCoefficientsIfNecessary(int framesToProcess) | 39 void BiquadDSPKernel::updateCoefficientsIfNecessary(int framesToProcess) |
| 40 { | 40 { |
| 41 if (biquadProcessor()->filterCoefficientsDirty()) { | 41 if (getBiquadProcessor()->filterCoefficientsDirty()) { |
| 42 float cutoffFrequency[AudioUtilities::kRenderQuantumFrames]; | 42 float cutoffFrequency[AudioUtilities::kRenderQuantumFrames]; |
| 43 float Q[AudioUtilities::kRenderQuantumFrames]; | 43 float Q[AudioUtilities::kRenderQuantumFrames]; |
| 44 float gain[AudioUtilities::kRenderQuantumFrames]; | 44 float gain[AudioUtilities::kRenderQuantumFrames]; |
| 45 float detune[AudioUtilities::kRenderQuantumFrames]; // in Cents | 45 float detune[AudioUtilities::kRenderQuantumFrames]; // in Cents |
| 46 | 46 |
| 47 RELEASE_ASSERT_WITH_SECURITY_IMPLICATION( | 47 RELEASE_ASSERT_WITH_SECURITY_IMPLICATION( |
| 48 static_cast<unsigned>(framesToProcess) <= AudioUtilities::kRenderQua
ntumFrames); | 48 static_cast<unsigned>(framesToProcess) <= AudioUtilities::kRenderQua
ntumFrames); |
| 49 | 49 |
| 50 if (biquadProcessor()->hasSampleAccurateValues()) { | 50 if (getBiquadProcessor()->hasSampleAccurateValues()) { |
| 51 biquadProcessor()->parameter1().calculateSampleAccurateValues(cutoff
Frequency, framesToProcess); | 51 getBiquadProcessor()->parameter1().calculateSampleAccurateValues(cut
offFrequency, framesToProcess); |
| 52 biquadProcessor()->parameter2().calculateSampleAccurateValues(Q, fra
mesToProcess); | 52 getBiquadProcessor()->parameter2().calculateSampleAccurateValues(Q,
framesToProcess); |
| 53 biquadProcessor()->parameter3().calculateSampleAccurateValues(gain,
framesToProcess); | 53 getBiquadProcessor()->parameter3().calculateSampleAccurateValues(gai
n, framesToProcess); |
| 54 biquadProcessor()->parameter4().calculateSampleAccurateValues(detune
, framesToProcess); | 54 getBiquadProcessor()->parameter4().calculateSampleAccurateValues(det
une, framesToProcess); |
| 55 updateCoefficients(framesToProcess, cutoffFrequency, Q, gain, detune
); | 55 updateCoefficients(framesToProcess, cutoffFrequency, Q, gain, detune
); |
| 56 } else { | 56 } else { |
| 57 cutoffFrequency[0] = biquadProcessor()->parameter1().smoothedValue()
; | 57 cutoffFrequency[0] = getBiquadProcessor()->parameter1().smoothedValu
e(); |
| 58 Q[0] = biquadProcessor()->parameter2().smoothedValue(); | 58 Q[0] = getBiquadProcessor()->parameter2().smoothedValue(); |
| 59 gain[0] = biquadProcessor()->parameter3().smoothedValue(); | 59 gain[0] = getBiquadProcessor()->parameter3().smoothedValue(); |
| 60 detune[0] = biquadProcessor()->parameter4().smoothedValue(); | 60 detune[0] = getBiquadProcessor()->parameter4().smoothedValue(); |
| 61 updateCoefficients(1, cutoffFrequency, Q, gain, detune); | 61 updateCoefficients(1, cutoffFrequency, Q, gain, detune); |
| 62 } | 62 } |
| 63 } | 63 } |
| 64 } | 64 } |
| 65 | 65 |
| 66 void BiquadDSPKernel::updateCoefficients(int numberOfFrames, const float* cutoff
Frequency, const float* Q, const float* gain, const float* detune) | 66 void BiquadDSPKernel::updateCoefficients(int numberOfFrames, const float* cutoff
Frequency, const float* Q, const float* gain, const float* detune) |
| 67 { | 67 { |
| 68 // Convert from Hertz to normalized frequency 0 -> 1. | 68 // Convert from Hertz to normalized frequency 0 -> 1. |
| 69 double nyquist = this->nyquist(); | 69 double nyquist = this->nyquist(); |
| 70 | 70 |
| 71 m_biquad.setHasSampleAccurateValues(numberOfFrames > 1); | 71 m_biquad.setHasSampleAccurateValues(numberOfFrames > 1); |
| 72 | 72 |
| 73 for (int k = 0; k < numberOfFrames; ++k) { | 73 for (int k = 0; k < numberOfFrames; ++k) { |
| 74 double normalizedFrequency = cutoffFrequency[k] / nyquist; | 74 double normalizedFrequency = cutoffFrequency[k] / nyquist; |
| 75 | 75 |
| 76 // Offset frequency by detune. | 76 // Offset frequency by detune. |
| 77 if (detune[k]) | 77 if (detune[k]) |
| 78 normalizedFrequency *= pow(2, detune[k] / 1200); | 78 normalizedFrequency *= pow(2, detune[k] / 1200); |
| 79 | 79 |
| 80 // Configure the biquad with the new filter parameters for the appropria
te type of filter. | 80 // Configure the biquad with the new filter parameters for the appropria
te type of filter. |
| 81 switch (biquadProcessor()->type()) { | 81 switch (getBiquadProcessor()->type()) { |
| 82 case BiquadProcessor::LowPass: | 82 case BiquadProcessor::LowPass: |
| 83 m_biquad.setLowpassParams(k, normalizedFrequency, Q[k]); | 83 m_biquad.setLowpassParams(k, normalizedFrequency, Q[k]); |
| 84 break; | 84 break; |
| 85 | 85 |
| 86 case BiquadProcessor::HighPass: | 86 case BiquadProcessor::HighPass: |
| 87 m_biquad.setHighpassParams(k, normalizedFrequency, Q[k]); | 87 m_biquad.setHighpassParams(k, normalizedFrequency, Q[k]); |
| 88 break; | 88 break; |
| 89 | 89 |
| 90 case BiquadProcessor::BandPass: | 90 case BiquadProcessor::BandPass: |
| 91 m_biquad.setBandpassParams(k, normalizedFrequency, Q[k]); | 91 m_biquad.setBandpassParams(k, normalizedFrequency, Q[k]); |
| (...skipping 19 matching lines...) Expand all Loading... |
| 111 m_biquad.setAllpassParams(k, normalizedFrequency, Q[k]); | 111 m_biquad.setAllpassParams(k, normalizedFrequency, Q[k]); |
| 112 break; | 112 break; |
| 113 } | 113 } |
| 114 } | 114 } |
| 115 } | 115 } |
| 116 | 116 |
| 117 void BiquadDSPKernel::process(const float* source, float* destination, size_t fr
amesToProcess) | 117 void BiquadDSPKernel::process(const float* source, float* destination, size_t fr
amesToProcess) |
| 118 { | 118 { |
| 119 ASSERT(source); | 119 ASSERT(source); |
| 120 ASSERT(destination); | 120 ASSERT(destination); |
| 121 ASSERT(biquadProcessor()); | 121 ASSERT(getBiquadProcessor()); |
| 122 | 122 |
| 123 // Recompute filter coefficients if any of the parameters have changed. | 123 // Recompute filter coefficients if any of the parameters have changed. |
| 124 // FIXME: as an optimization, implement a way that a Biquad object can simpl
y copy its internal filter coefficients from another Biquad object. | 124 // FIXME: as an optimization, implement a way that a Biquad object can simpl
y copy its internal filter coefficients from another Biquad object. |
| 125 // Then re-factor this code to only run for the first BiquadDSPKernel of eac
h BiquadProcessor. | 125 // Then re-factor this code to only run for the first BiquadDSPKernel of eac
h BiquadProcessor. |
| 126 | 126 |
| 127 | 127 |
| 128 // The audio thread can't block on this lock; skip updating the coefficients
for this block if | 128 // The audio thread can't block on this lock; skip updating the coefficients
for this block if |
| 129 // necessary. We'll get them the next time around. | 129 // necessary. We'll get them the next time around. |
| 130 { | 130 { |
| 131 MutexTryLocker tryLocker(m_processLock); | 131 MutexTryLocker tryLocker(m_processLock); |
| (...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 165 // | 165 // |
| 166 // The BiquadDSPKernel object here (along with it's Biquad object) is fo
r querying the | 166 // The BiquadDSPKernel object here (along with it's Biquad object) is fo
r querying the |
| 167 // frequency response and is NOT the same as the one in process() which
is used for | 167 // frequency response and is NOT the same as the one in process() which
is used for |
| 168 // performing the actual filtering. This one is is created in | 168 // performing the actual filtering. This one is is created in |
| 169 // BiquadProcessor::getFrequencyResponse for this purpose. Both, however
, point to the same | 169 // BiquadProcessor::getFrequencyResponse for this purpose. Both, however
, point to the same |
| 170 // BiquadProcessor object. | 170 // BiquadProcessor object. |
| 171 // | 171 // |
| 172 // FIXME: Simplify this: crbug.com/390266 | 172 // FIXME: Simplify this: crbug.com/390266 |
| 173 MutexLocker processLocker(m_processLock); | 173 MutexLocker processLocker(m_processLock); |
| 174 | 174 |
| 175 cutoffFrequency = biquadProcessor()->parameter1().value(); | 175 cutoffFrequency = getBiquadProcessor()->parameter1().value(); |
| 176 Q = biquadProcessor()->parameter2().value(); | 176 Q = getBiquadProcessor()->parameter2().value(); |
| 177 gain = biquadProcessor()->parameter3().value(); | 177 gain = getBiquadProcessor()->parameter3().value(); |
| 178 detune = biquadProcessor()->parameter4().value(); | 178 detune = getBiquadProcessor()->parameter4().value(); |
| 179 } | 179 } |
| 180 | 180 |
| 181 updateCoefficients(1, &cutoffFrequency, &Q, &gain, &detune); | 181 updateCoefficients(1, &cutoffFrequency, &Q, &gain, &detune); |
| 182 | 182 |
| 183 m_biquad.getFrequencyResponse(nFrequencies, frequency.data(), magResponse, p
haseResponse); | 183 m_biquad.getFrequencyResponse(nFrequencies, frequency.data(), magResponse, p
haseResponse); |
| 184 } | 184 } |
| 185 | 185 |
| 186 double BiquadDSPKernel::tailTime() const | 186 double BiquadDSPKernel::tailTime() const |
| 187 { | 187 { |
| 188 return MaxBiquadDelayTime; | 188 return MaxBiquadDelayTime; |
| 189 } | 189 } |
| 190 | 190 |
| 191 double BiquadDSPKernel::latencyTime() const | 191 double BiquadDSPKernel::latencyTime() const |
| 192 { | 192 { |
| 193 return 0; | 193 return 0; |
| 194 } | 194 } |
| 195 | 195 |
| 196 } // namespace blink | 196 } // namespace blink |
| 197 | 197 |
| OLD | NEW |