Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(18)

Side by Side Diff: src/gpu/GrDistanceFieldGenFromVector.cpp

Issue 1757913002: Revert of Generate Signed Distance Field directly from vector path (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 ARM Ltd.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrDistanceFieldGenFromVector.h"
9 #include "SkPoint.h"
10 #include "SkGeometry.h"
11 #include "SkPathOps.h"
12 #include "GrPathUtils.h"
13 #include "GrConfig.h"
14
15 /**
16 * If a scanline (a row of texel) cross from the kRight_SegSide
17 * of a segment to the kLeft_SegSide, the winding score should
18 * add 1.
19 * And winding score should subtract 1 if the scanline cross
20 * from kLeft_SegSide to kRight_SegSide.
21 * Always return kNA_SegSide if the scanline does not cross over
22 * the segment. Winding score should be zero in this case.
23 * You can get the winding number for each texel of the scanline
24 * by adding the winding score from left to right.
25 * Assuming we always start from outside, so the winding number
26 * should always start from zero.
27 * ________ ________
28 * | | | |
29 * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
30 * |+1 |-1 |-1 |+1 <= Winding score
31 * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
32 * |________| |________|
33 *
34 * .......NA................NA..........
35 * 0 0
36 */
37 enum SegSide {
38 kLeft_SegSide = -1,
39 kOn_SegSide = 0,
40 kRight_SegSide = 1,
41 kNA_SegSide = 2,
42 };
43
44 struct DFData {
45 float fDistSq; // distance squared to nearest (so far) edge
46 int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segme nt
47 };
48
49 ///////////////////////////////////////////////////////////////////////////////
50
51 /*
52 * Type definition for double precision DPoint and DAffineMatrix
53 */
54
55 // Point with double precision
56 struct DPoint {
57 double fX, fY;
58
59 static DPoint Make(double x, double y) {
60 DPoint pt;
61 pt.set(x, y);
62 return pt;
63 }
64
65 double x() const { return fX; }
66 double y() const { return fY; }
67
68 void set(double x, double y) { fX = x; fY = y; }
69
70 /** Returns the euclidian distance from (0,0) to (x,y)
71 */
72 static double Length(double x, double y) {
73 return sqrt(x * x + y * y);
74 }
75
76 /** Returns the euclidian distance between a and b
77 */
78 static double Distance(const DPoint& a, const DPoint& b) {
79 return Length(a.fX - b.fX, a.fY - b.fY);
80 }
81
82 double distanceToSqd(const DPoint& pt) const {
83 double dx = fX - pt.fX;
84 double dy = fY - pt.fY;
85 return dx * dx + dy * dy;
86 }
87 };
88
89 // Matrix with double precision for affine transformation.
90 // We don't store row 3 because its always (0, 0, 1).
91 class DAffineMatrix {
92 public:
93 double operator[](int index) const {
94 SkASSERT((unsigned)index < 6);
95 return fMat[index];
96 }
97
98 double& operator[](int index) {
99 SkASSERT((unsigned)index < 6);
100 return fMat[index];
101 }
102
103 void setAffine(double m11, double m12, double m13,
104 double m21, double m22, double m23) {
105 fMat[0] = m11;
106 fMat[1] = m12;
107 fMat[2] = m13;
108 fMat[3] = m21;
109 fMat[4] = m22;
110 fMat[5] = m23;
111 }
112
113 /** Set the matrix to identity
114 */
115 void reset() {
116 fMat[0] = fMat[4] = 1.0;
117 fMat[1] = fMat[3] =
118 fMat[2] = fMat[5] = 0.0;
119 }
120
121 // alias for reset()
122 void setIdentity() { this->reset(); }
123
124 DPoint mapPoint(const SkPoint& src) const {
125 DPoint pt = DPoint::Make(src.x(), src.y());
126 return this->mapPoint(pt);
127 }
128
129 DPoint mapPoint(const DPoint& src) const {
130 return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
131 fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
132 }
133 private:
134 double fMat[6];
135 };
136
137 ///////////////////////////////////////////////////////////////////////////////
138
139 static const double kClose = (SK_Scalar1 / 16.0);
140 static const double kCloseSqd = SkScalarMul(kClose, kClose);
141 static const double kNearlyZero = (SK_Scalar1 / (1 << 15));
142
143 static inline bool between_closed_open(double a, double b, double c,
144 double tolerance = kNearlyZero) {
145 SkASSERT(tolerance >= 0.f);
146 return b < c ? (a >= b - tolerance && a < c - tolerance) :
147 (a >= c - tolerance && a < b - tolerance);
148 }
149
150 static inline bool between_closed(double a, double b, double c,
151 double tolerance = kNearlyZero) {
152 SkASSERT(tolerance >= 0.0);
153 return b < c ? (a >= b - tolerance && a <= c + tolerance) :
154 (a >= c - tolerance && a <= b + tolerance);
155 }
156
157 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
158 SkASSERT(tolerance >= 0.0);
159 return fabs(x) <= tolerance;
160 }
161
162 static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZe ro) {
163 SkASSERT(tolerance >= 0.0);
164 return fabs(x - y) <= tolerance;
165 }
166
167 static inline double sign_of(const double &val) {
168 return (val < 0.0) ? -1.0 : 1.0;
169 }
170
171 static bool is_colinear(const SkPoint pts[3]) {
172 return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
173 (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()));
174 }
175
176 class PathSegment {
177 public:
178 enum {
179 // These enum values are assumed in member functions below.
180 kLine = 0,
181 kQuad = 1,
182 } fType;
183
184 // line uses 2 pts, quad uses 3 pts
185 SkPoint fPts[3];
186
187 DPoint fP0T, fP2T;
188 DAffineMatrix fXformMatrix;
189 double fScalingFactor;
190 SkRect fBoundingBox;
191
192 void init();
193
194 int countPoints() {
195 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
196 return fType + 2;
197 }
198
199 const SkPoint& endPt() const {
200 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
201 return fPts[fType + 1];
202 };
203 };
204
205 typedef SkTArray<PathSegment, true> PathSegmentArray;
206
207 void PathSegment::init() {
208 const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
209 const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
210 const double p0x = p0.x();
211 const double p0y = p0.y();
212 const double p2x = p2.x();
213 const double p2y = p2.y();
214
215 fBoundingBox.set(fPts[0], this->endPt());
216
217 if (fType == PathSegment::kLine) {
218 fScalingFactor = DPoint::Distance(p0, p2);
219
220 const double cosTheta = (p2x - p0x) / fScalingFactor;
221 const double sinTheta = (p2y - p0y) / fScalingFactor;
222
223 fXformMatrix.setAffine(
224 cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
225 -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
226 );
227 } else {
228 SkASSERT(fType == PathSegment::kQuad);
229
230 // Calculate bounding box
231 const SkPoint _P1mP0 = fPts[1] - fPts[0];
232 SkPoint t = _P1mP0 - fPts[2] + fPts[1];
233 t.fX = _P1mP0.x() / t.x();
234 t.fY = _P1mP0.y() / t.y();
235 t.fX = SkScalarClampMax(t.x(), 1.0);
236 t.fY = SkScalarClampMax(t.y(), 1.0);
237 t.fX = _P1mP0.x() * t.x();
238 t.fY = _P1mP0.y() * t.y();
239 const SkPoint m = fPts[0] + t;
240 fBoundingBox.growToInclude(&m, 1);
241
242 const double p1x = fPts[1].x();
243 const double p1y = fPts[1].y();
244
245 const double p0xSqd = p0x * p0x;
246 const double p0ySqd = p0y * p0y;
247 const double p2xSqd = p2x * p2x;
248 const double p2ySqd = p2y * p2y;
249 const double p1xSqd = p1x * p1x;
250 const double p1ySqd = p1y * p1y;
251
252 const double p01xProd = p0x * p1x;
253 const double p02xProd = p0x * p2x;
254 const double b12xProd = p1x * p2x;
255 const double p01yProd = p0y * p1y;
256 const double p02yProd = p0y * p2y;
257 const double b12yProd = p1y * p2y;
258
259 const double sqrtA = p0y - (2.0 * p1y) + p2y;
260 const double a = sqrtA * sqrtA;
261 const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
262 const double sqrtB = p0x - (2.0 * p1x) + p2x;
263 const double b = sqrtB * sqrtB;
264 const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
265 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
266 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
267 + (p2xSqd * p0ySqd);
268 const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
269 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
270 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
271 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
272 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
273 - (2.0 * p2x * p1ySqd);
274 const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
275 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
276 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
277 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
278 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
279 + (p2xSqd * p0y));
280
281 const double cosTheta = sqrt(a / (a + b));
282 const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
283
284 const double gDef = cosTheta * g - sinTheta * f;
285 const double fDef = sinTheta * g + cosTheta * f;
286
287
288 const double x0 = gDef / (a + b);
289 const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
290
291
292 const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
293 fScalingFactor = (1.0 / lambda);
294 fScalingFactor *= fScalingFactor;
295
296 const double lambda_cosTheta = lambda * cosTheta;
297 const double lambda_sinTheta = lambda * sinTheta;
298
299 fXformMatrix.setAffine(
300 lambda_cosTheta, -lambda_sinTheta, lambda * x0,
301 lambda_sinTheta, lambda_cosTheta, lambda * y0
302 );
303 }
304
305 fP0T = fXformMatrix.mapPoint(p0);
306 fP2T = fXformMatrix.mapPoint(p2);
307 }
308
309 static void init_distances(DFData* data, int size) {
310 DFData* currData = data;
311
312 for (int i = 0; i < size; ++i) {
313 // init distance to "far away"
314 currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitud e;
315 currData->fDeltaWindingScore = 0;
316 ++currData;
317 }
318 }
319
320 static inline void add_line_to_segment(const SkPoint pts[2],
321 PathSegmentArray* segments) {
322 segments->push_back();
323 segments->back().fType = PathSegment::kLine;
324 segments->back().fPts[0] = pts[0];
325 segments->back().fPts[1] = pts[1];
326
327 segments->back().init();
328 }
329
330 static inline void add_quad_segment(const SkPoint pts[3],
331 PathSegmentArray* segments) {
332 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
333 pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
334 is_colinear(pts)) {
335 if (pts[0] != pts[2]) {
336 SkPoint line_pts[2];
337 line_pts[0] = pts[0];
338 line_pts[1] = pts[2];
339 add_line_to_segment(line_pts, segments);
340 }
341 } else {
342 segments->push_back();
343 segments->back().fType = PathSegment::kQuad;
344 segments->back().fPts[0] = pts[0];
345 segments->back().fPts[1] = pts[1];
346 segments->back().fPts[2] = pts[2];
347
348 segments->back().init();
349 }
350 }
351
352 static inline void add_cubic_segments(const SkPoint pts[4],
353 PathSegmentArray* segments) {
354 SkSTArray<15, SkPoint, true> quads;
355 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
356 int count = quads.count();
357 for (int q = 0; q < count; q += 3) {
358 add_quad_segment(&quads[q], segments);
359 }
360 }
361
362 static float calculate_nearest_point_for_quad(
363 const PathSegment& segment,
364 const DPoint &xFormPt) {
365 static const float kThird = 0.33333333333f;
366 static const float kTwentySeventh = 0.037037037f;
367
368 const float a = 0.5f - (float)xFormPt.y();
369 const float b = -0.5f * (float)xFormPt.x();
370
371 const float a3 = a * a * a;
372 const float b2 = b * b;
373
374 const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
375
376 if (c >= 0.f) {
377 const float sqrtC = sqrt(c);
378 const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
379 return result;
380 } else {
381 const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
382 const float phi = (float)acos(cosPhi);
383 float result;
384 if (xFormPt.x() > 0.f) {
385 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
386 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
387 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThi rd) + (SK_ScalarPI * 2.f * kThird));
388 }
389 } else {
390 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
391 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
392 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThir d);
393 }
394 }
395 return result;
396 }
397 }
398
399 // This structure contains some intermediate values shared by the same row.
400 // It is used to calculate segment side of a quadratic bezier.
401 struct RowData {
402 // The intersection type of a scanline and y = x * x parabola in canonical s pace.
403 enum IntersectionType {
404 kNoIntersection,
405 kVerticalLine,
406 kTangentLine,
407 kTwoPointsIntersect
408 } fIntersectionType;
409
410 // The direction of the quadratic segment in the canonical space.
411 // 1: The quadratic segment going from negative x-axis to positive x-axis.
412 // -1: The quadratic segment going from positive x-axis to negative x-axis.
413 int fQuadXDirection;
414
415 // The y-value(equal to x*x) of intersection point for the kVerticalLine int ersection type.
416 double fYAtIntersection;
417
418 // The x-value for two intersection points.
419 double fXAtIntersection1;
420 double fXAtIntersection2;
421 };
422
423 void precomputation_for_row(
424 RowData *rowData,
425 const PathSegment& segment,
426 const SkPoint& pointLeft,
427 const SkPoint& pointRight
428 ) {
429 if (segment.fType != PathSegment::kQuad) {
430 return;
431 }
432
433 const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
434 const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
435
436 rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()) ;
437
438 const double x1 = xFormPtLeft.x();
439 const double y1 = xFormPtLeft.y();
440 const double x2 = xFormPtRight.x();
441 const double y2 = xFormPtRight.y();
442
443 if (nearly_equal(x1, x2)) {
444 rowData->fIntersectionType = RowData::kVerticalLine;
445 rowData->fYAtIntersection = x1 * x1;
446 return;
447 }
448
449 // Line y = mx + b
450 const double m = (y2 - y1) / (x2 - x1);
451 const double b = -m * x1 + y1;
452
453 const double c = m * m + 4.0 * b;
454
455 if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
456 rowData->fIntersectionType = RowData::kTangentLine;
457 rowData->fXAtIntersection1 = m / 2.0;
458 rowData->fXAtIntersection2 = m / 2.0;
459 } else if (c < 0.0) {
460 rowData->fIntersectionType = RowData::kNoIntersection;
461 return;
462 } else {
463 rowData->fIntersectionType = RowData::kTwoPointsIntersect;
464 const double d = sqrt(c);
465 rowData->fXAtIntersection1 = (m + d) / 2.0;
466 rowData->fXAtIntersection2 = (m - d) / 2.0;
467 }
468 }
469
470 SegSide calculate_side_of_quad(
471 const PathSegment& segment,
472 const SkPoint& point,
473 const DPoint& xFormPt,
474 const RowData& rowData) {
475 SegSide side = kNA_SegSide;
476
477 if (RowData::kVerticalLine == rowData.fIntersectionType) {
478 side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
479 }
480 else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType ||
481 RowData::kTangentLine == rowData.fIntersectionType) {
482 const double p1 = rowData.fXAtIntersection1;
483 const double p2 = rowData.fXAtIntersection2;
484
485 int signP1 = (int)sign_of(p1 - xFormPt.x());
486 if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) {
487 side = (SegSide)((-signP1) * rowData.fQuadXDirection);
488 }
489 if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) {
490 int signP2 = (int)sign_of(p2 - xFormPt.x());
491 if (side == kNA_SegSide || signP2 == 1) {
492 side = (SegSide)(signP2 * rowData.fQuadXDirection);
493 }
494 }
495
496 // The scanline is the tangent line of current quadratic segment.
497 if (RowData::kTangentLine == rowData.fIntersectionType) {
498 // The path start at the tangent point.
499 if (nearly_equal(p1, segment.fP0T.x())) {
500 side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection);
501 }
502
503 // The path end at the tangent point.
504 if (nearly_equal(p1, segment.fP2T.x())) {
505 side = (SegSide)(side * signP1 * rowData.fQuadXDirection);
506 }
507 }
508 }
509
510 return side;
511 }
512
513 static float distance_to_segment(const SkPoint& point,
514 const PathSegment& segment,
515 const RowData& rowData,
516 SegSide* side) {
517 SkASSERT(side);
518
519 const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
520
521 if (segment.fType == PathSegment::kLine) {
522 float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
523
524 if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
525 result = (float)(xformPt.y() * xformPt.y());
526 } else if (xformPt.x() < segment.fP0T.x()) {
527 result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y ());
528 } else {
529 result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - s egment.fP2T.x())
530 + xformPt.y() * xformPt.y());
531 }
532
533 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
534 segment.fBoundingBox.bottom())) {
535 *side = (SegSide)(int)sign_of(-xformPt.y());
536 } else {
537 *side = kNA_SegSide;
538 }
539 return result;
540 } else {
541 SkASSERT(segment.fType == PathSegment::kQuad);
542
543 const float nearestPoint = calculate_nearest_point_for_quad(segment, xfo rmPt);
544
545 float dist;
546
547 if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
548 DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
549 dist = (float)xformPt.distanceToSqd(x);
550 } else {
551 const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
552 const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
553
554 if (distToB0T < distToB2T) {
555 dist = distToB0T;
556 } else {
557 dist = distToB2T;
558 }
559 }
560
561 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
562 segment.fBoundingBox.bottom())) {
563 *side = calculate_side_of_quad(segment, point, xformPt, rowData);
564 } else {
565 *side = kNA_SegSide;
566 }
567
568 return (float)(dist * segment.fScalingFactor);
569 }
570 }
571
572 static void calculate_distance_field_data(PathSegmentArray* segments,
573 DFData* dataPtr,
574 int width, int height) {
575 int count = segments->count();
576 for (int a = 0; a < count; ++a) {
577 PathSegment& segment = (*segments)[a];
578 const SkRect& segBB = segment.fBoundingBox.makeOutset(
579 SK_DistanceFieldPad, SK_DistanceFieldPad);
580 int startColumn = (int)segBB.left();
581 int endColumn = SkScalarCeilToInt(segBB.right());
582
583 int startRow = (int)segBB.top();
584 int endRow = SkScalarCeilToInt(segBB.bottom());
585
586 SkASSERT((startColumn >= 0) && "StartColumn < 0!");
587 SkASSERT((endColumn <= width) && "endColumn > width!");
588 SkASSERT((startRow >= 0) && "StartRow < 0!");
589 SkASSERT((endRow <= height) && "EndRow > height!");
590
591 for (int row = startRow; row < endRow; ++row) {
592 SegSide prevSide = kNA_SegSide;
593 const float pY = row + 0.5f;
594 RowData rowData;
595
596 const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
597 const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
598
599 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
600
601 for (int col = startColumn; col < endColumn; ++col) {
602 int idx = (row * width) + col;
603
604 const float pX = col + 0.5f;
605 const SkPoint point = SkPoint::Make(pX, pY);
606
607 const float distSq = dataPtr[idx].fDistSq;
608 int dilation = distSq < 1.5 * 1.5 ? 1 :
609 distSq < 2.5 * 2.5 ? 2 :
610 distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
611 if (dilation > SK_DistanceFieldPad) {
612 dilation = SK_DistanceFieldPad;
613 }
614
615 // Optimisation for not calculating some points.
616 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.rou ndOut()
617 .makeOutset(dilation, dilation).contains(col, row)) {
618 continue;
619 }
620
621 SegSide side = kNA_SegSide;
622 int deltaWindingScore = 0;
623 float currDistSq = distance_to_segment(point, segment, rowData , &side);
624 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
625 deltaWindingScore = -1;
626 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
627 deltaWindingScore = 1;
628 }
629
630 prevSide = side;
631
632 if (currDistSq < distSq) {
633 dataPtr[idx].fDistSq = currDistSq;
634 }
635
636 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
637 }
638 }
639 }
640 }
641
642 template <int distanceMagnitude>
643 static unsigned char pack_distance_field_val(float dist) {
644 // The distance field is constructed as unsigned char values, so that the ze ro value is at 128,
645 // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
646 // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
647 dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 1 28.0f);
648
649 // Scale into the positive range for unsigned distance.
650 dist += distanceMagnitude;
651
652 // Scale into unsigned char range.
653 // Round to place negative and positive values as equally as possible around 128
654 // (which represents zero).
655 return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 25 6.0f);
656 }
657
658 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
659 const SkPath& path, const SkMatrix& drawMat rix,
660 int width, int height, size_t rowBytes) {
661 SkASSERT(distanceField);
662
663 SkPath simplifiedPath;
664 Simplify(path, &simplifiedPath);
665
666 SkASSERT(SkPath::kEvenOdd_FillType == simplifiedPath.getFillType() ||
667 SkPath::kInverseEvenOdd_FillType == simplifiedPath.getFillType());
668
669 SkMatrix m = drawMatrix;
670 m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
671
672 // create temp data
673 size_t dataSize = width * height * sizeof(DFData);
674 SkAutoSMalloc<1024> dfStorage(dataSize);
675 DFData* dataPtr = (DFData*) dfStorage.get();
676
677 // create initial distance data
678 init_distances(dataPtr, width * height);
679
680 SkPath::Iter iter(simplifiedPath, true);
681 SkSTArray<15, PathSegment, true> segments;
682
683 for (;;) {
684 SkPoint pts[4];
685 SkPath::Verb verb = iter.next(pts);
686 switch (verb) {
687 case SkPath::kMove_Verb:
688 // m.mapPoints(pts, 1);
689 break;
690 case SkPath::kLine_Verb: {
691 m.mapPoints(pts, 2);
692 add_line_to_segment(pts, &segments);
693 break;
694 }
695 case SkPath::kQuad_Verb:
696 m.mapPoints(pts, 3);
697 add_quad_segment(pts, &segments);
698 break;
699 case SkPath::kConic_Verb: {
700 m.mapPoints(pts, 3);
701 SkScalar weight = iter.conicWeight();
702 SkAutoConicToQuads converter;
703 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5 f);
704 for (int i = 0; i < converter.countQuads(); ++i) {
705 add_quad_segment(quadPts + 2*i, &segments);
706 }
707 break;
708 }
709 case SkPath::kCubic_Verb: {
710 m.mapPoints(pts, 4);
711 add_cubic_segments(pts, &segments);
712 break;
713 };
714 default:
715 break;
716 }
717 if (verb == SkPath::kDone_Verb) {
718 break;
719 }
720 }
721
722 calculate_distance_field_data(&segments, dataPtr, width, height);
723
724 for (int row = 0; row < height; ++row) {
725 int windingNumber = 0; // Winding number start from zero for each scanli ne
726 for (int col = 0; col < width; ++col) {
727 int idx = (row * width) + col;
728 windingNumber += dataPtr[idx].fDeltaWindingScore;
729
730 enum DFSign {
731 kInside = -1,
732 kOutside = 1
733 } dfSign;
734
735 if (simplifiedPath.getFillType() == SkPath::kWinding_FillType) {
736 dfSign = windingNumber ? kInside : kOutside;
737 } else if (simplifiedPath.getFillType() == SkPath::kInverseWinding_F illType) {
738 dfSign = windingNumber ? kOutside : kInside;
739 } else if (simplifiedPath.getFillType() == SkPath::kEvenOdd_FillType ) {
740 dfSign = (windingNumber % 2) ? kInside : kOutside;
741 } else {
742 SkASSERT(simplifiedPath.getFillType() == SkPath::kInverseEvenOdd _FillType);
743 dfSign = (windingNumber % 2) ? kOutside : kInside;
744 }
745
746 // The winding number at the end of a scanline should be zero.
747 if ((col == width - 1) && (windingNumber != 0)) {
748 SkASSERT(0 && "Winding number should be zero at the end of a sca n line.");
749 return false;
750 }
751
752 const float miniDist = sqrt(dataPtr[idx].fDistSq);
753 const float dist = dfSign * miniDist;
754
755 unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMag nitude>(dist);
756
757 distanceField[(row * rowBytes) + col] = pixelVal;
758 }
759 }
760 return true;
761 }
OLDNEW
« no previous file with comments | « src/gpu/GrDistanceFieldGenFromVector.h ('k') | src/gpu/batches/GrAADistanceFieldPathRenderer.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698