Chromium Code Reviews| Index: src/hydrogen-instructions.cc |
| diff --git a/src/hydrogen-instructions.cc b/src/hydrogen-instructions.cc |
| index 170f5eda6c51d8eb60b137eb6f8c275b5d7d7a85..65d51d18d9ccdd8acaa3ee0616bae2437f864524 100644 |
| --- a/src/hydrogen-instructions.cc |
| +++ b/src/hydrogen-instructions.cc |
| @@ -1033,6 +1033,7 @@ void HBoundsCheck::TryGuaranteeRangeChanging(RangeEvaluationContext* context) { |
| offset_ = context->offset(); |
| SetResponsibilityForRange(DIRECTION_UPPER); |
| context->set_upper_bound_guarantee(this); |
| + isolate()->counters()->bounds_checks_covered()->Increment(); |
| } else if (context->upper_bound_guarantee() != NULL && |
| context->upper_bound_guarantee() != this && |
| context->upper_bound_guarantee()->block() != block() && |
| @@ -1042,6 +1043,7 @@ void HBoundsCheck::TryGuaranteeRangeChanging(RangeEvaluationContext* context) { |
| offset_ = context->offset(); |
| SetResponsibilityForRange(DIRECTION_LOWER); |
| context->set_lower_bound_guarantee(this); |
| + isolate()->counters()->bounds_checks_covered()->Increment(); |
| } |
| } |
| @@ -1102,7 +1104,7 @@ void HBoundsCheck::AddInformativeDefinitions() { |
| // is a hack. Move it to some other HPhase. |
| if (FLAG_array_bounds_checks_elimination) { |
| if (index()->TryGuaranteeRange(length())) { |
| - set_skip_check(true); |
| + set_skip_check(); |
| } |
| if (DetectCompoundIndex()) { |
| HBoundsCheckBaseIndexInformation* base_index_info = |
| @@ -1948,6 +1950,450 @@ bool HPhi::IsRelationTrueInternal(NumericRelation relation, |
| } |
| +InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) { |
| + if (phi->block()->loop_information() == NULL) return NULL; |
| + if (phi->OperandCount() != 2) return NULL; |
| + int32_t candidate_increment; |
| + |
| + candidate_increment = ComputeIncrement(phi, phi->OperandAt(0)); |
| + if (candidate_increment != 0) { |
| + return new(phi->block()->graph()->zone()) |
| + InductionVariableData(phi, phi->OperandAt(1), candidate_increment); |
| + } |
| + |
| + candidate_increment = ComputeIncrement(phi, phi->OperandAt(1)); |
| + if (candidate_increment != 0) { |
| + return new(phi->block()->graph()->zone()) |
| + InductionVariableData(phi, phi->OperandAt(0), candidate_increment); |
| + } |
| + |
| + return NULL; |
| +} |
| + |
| +/* |
| + * This function tries to match the following patterns (and all the relevant |
| + * variants related to |, & and + being commutative): |
| + * base | constant_or_mask |
| + * base & constant_and_mask |
| + * (base + constant_offset) & constant_and_mask |
| + * (base - constant_offset) & constant_and_mask |
|
titzer
2013/07/18 12:22:58
I don't understand why we don't match (base + cons
Massi
2013/07/23 07:57:50
Because the old bounds check elimination phase alr
|
| + */ |
| +void InductionVariableData::DecomposeBitwise( |
| + HValue* value, |
| + BitwiseDecompositionResult* result) { |
| + HValue* base = IgnoreOsrValue(value); |
| + result->base = value; |
| + int32_t* mask_location = NULL; |
| + |
| + if (!base->representation().IsInteger32()) return; |
| + |
| + if (base->IsBitwise()) { |
| + bool allow_offset = false; |
| + |
| + HBitwise* bitwise = HBitwise::cast(base); |
| + if (bitwise->op() == Token::BIT_AND) { |
| + mask_location = &(result->and_mask); |
| + allow_offset = true; |
| + } else if (bitwise->op() == Token::BIT_OR) { |
| + mask_location = &(result->or_mask); |
| + } else { |
| + return; |
| + } |
| + if (bitwise->right()->IsInteger32Constant()) { |
|
titzer
2013/07/18 12:22:58
As per previous comments, please don't use a point
Massi
2013/07/23 07:57:50
Done.
|
| + *mask_location = bitwise->right()->GetInteger32Constant(); |
| + base = bitwise->left(); |
| + } else if (bitwise->left()->IsInteger32Constant()) { |
| + *mask_location = bitwise->left()->GetInteger32Constant(); |
| + base = bitwise->right(); |
| + } else { |
| + return; |
| + } |
| + |
| + result->context = bitwise->context(); |
| + |
| + if (allow_offset) { |
| + if (base->IsAdd()) { |
| + HAdd* add = HAdd::cast(base); |
| + if (add->right()->IsInteger32Constant()) { |
| + base = add->left(); |
| + } else if (add->left()->IsInteger32Constant()) { |
| + base = add->right(); |
| + } |
| + } else if (base->IsSub()) { |
| + HSub* sub = HSub::cast(base); |
| + if (sub->right()->IsInteger32Constant()) { |
| + base = sub->left(); |
| + } |
| + } |
| + } |
| + |
| + result->base = base; |
| + } |
| +} |
| + |
| + |
| +void InductionVariableData::AddCheck(HBoundsCheck* check, |
| + int32_t upper_limit) { |
| + ASSERT(limit_validity() != NULL); |
| + if (limit_validity() != check->block() && |
| + !limit_validity()->Dominates(check->block())) return; |
| + if (!phi()->block()->current_loop()->IsNestedInThisLoop( |
| + check->block()->current_loop())) return; |
| + |
| + ChecksRelatedToLength* length_checks = checks(); |
| + while (length_checks != NULL) { |
| + if (length_checks->length() == check->length()) break; |
| + length_checks = length_checks->next(); |
| + } |
| + if (length_checks == NULL) { |
| + length_checks = new(check->block()->zone()) |
| + ChecksRelatedToLength(check->length(), checks()); |
| + checks_ = length_checks; |
| + } |
| + |
| + length_checks->AddCheck(check, upper_limit); |
| +} |
| + |
| +void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() { |
| + if (checks() != NULL) { |
| + InductionVariableCheck* c = checks(); |
| + HBasicBlock* current_block = c->check()->block(); |
| + while (c != NULL && c->check()->block() == current_block) { |
| + c->set_upper_limit(current_upper_limit_); |
| + c = c->next(); |
| + } |
| + } |
| +} |
| + |
| + |
| +void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock( |
| + Token::Value token, |
| + int32_t mask, |
| + HValue* index_base, |
| + HValue* context) { |
| + ASSERT(first_check_in_block() != NULL); |
| + HValue* previous_index = first_check_in_block()->index(); |
| + ASSERT(context != NULL); |
| + |
| + set_added_constant(new(index_base->block()->graph()->zone()) HConstant( |
| + mask, index_base->representation())); |
| + if (added_index() != NULL) { |
| + added_constant()->InsertBefore(added_index()); |
| + } else { |
| + added_constant()->InsertBefore(first_check_in_block()); |
| + } |
| + |
| + if (added_index() == NULL) { |
| + first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index()); |
| + HInstruction* new_index = HBitwise::New( |
| + index_base->block()->graph()->zone(), |
| + token, context, index_base, added_constant()); |
| + ASSERT(new_index->IsBitwise()); |
| + new_index->ClearAllSideEffects(); |
| + new_index->AssumeRepresentation(Representation::Integer32()); |
| + set_added_index(HBitwise::cast(new_index)); |
| + added_index()->InsertBefore(first_check_in_block()); |
| + } |
| + ASSERT(added_index()->op() == token); |
| + |
| + added_index()->SetOperandAt(1, index_base); |
| + added_index()->SetOperandAt(2, added_constant()); |
| + first_check_in_block()->SetOperandAt(0, added_index()); |
| + if (previous_index->UseCount() == 0) { |
| + previous_index->DeleteAndReplaceWith(NULL); |
| + } |
| +} |
| + |
| +void InductionVariableData::ChecksRelatedToLength::AddCheck( |
| + HBoundsCheck* check, |
| + int32_t upper_limit) { |
| + BitwiseDecompositionResult decomposition; |
| + InductionVariableData::DecomposeBitwise(check->index(), &decomposition); |
| + |
| + if (first_check_in_block() == NULL || |
| + first_check_in_block()->block() != check->block()) { |
| + CloseCurrentBlock(); |
| + |
| + first_check_in_block_ = check; |
| + set_added_index(NULL); |
| + set_added_constant(NULL); |
| + current_and_mask_in_block_ = decomposition.and_mask; |
| + current_or_mask_in_block_ = decomposition.or_mask; |
| + current_upper_limit_ = upper_limit; |
| + |
| + InductionVariableCheck* new_check = new(check->block()->graph()->zone()) |
| + InductionVariableCheck(check, checks_, upper_limit); |
| + checks_ = new_check; |
| + return; |
| + } |
| + |
| + if (upper_limit > current_upper_limit()) { |
| + current_upper_limit_ = upper_limit; |
| + } |
| + |
| + if (decomposition.and_mask != 0 && |
| + current_or_mask_in_block() == 0) { |
| + if (current_and_mask_in_block() == 0 || |
| + decomposition.and_mask > current_and_mask_in_block()) { |
| + UseNewIndexInCurrentBlock(Token::BIT_AND, |
| + decomposition.and_mask, |
| + decomposition.base, |
| + decomposition.context); |
| + current_and_mask_in_block_ = decomposition.and_mask; |
| + } |
| + check->set_skip_check(); |
| + } |
| + if (current_and_mask_in_block() == 0) { |
| + if (decomposition.or_mask > current_or_mask_in_block()) { |
| + UseNewIndexInCurrentBlock(Token::BIT_OR, |
| + decomposition.or_mask, |
| + decomposition.base, |
| + decomposition.context); |
| + current_or_mask_in_block_ = decomposition.or_mask; |
| + } |
| + check->set_skip_check(); |
| + } |
| + |
| + if (!check->skip_check()) { |
| + InductionVariableCheck* new_check = new(check->block()->graph()->zone()) |
| + InductionVariableCheck(check, checks_, upper_limit); |
| + checks_ = new_check; |
| + } |
| +} |
| + |
| + |
| +/* |
| + * This method detects if phi is an induction variable, with phi_operand as |
| + * its "incremented" value (the other operand would be the "base" value). |
| + * |
| + * It cheks is phi_operand has the form "phi + constant". |
| + * If yes, the constant is the increment that the induction variable gets at |
| + * every loop iteration. |
| + * Otherwise it returns 0. |
| + */ |
| +int32_t InductionVariableData::ComputeIncrement(HPhi* phi, |
| + HValue* phi_operand) { |
| + if (!phi_operand->representation().IsInteger32()) return 0; |
| + |
| + if (phi_operand->IsAdd()) { |
| + HAdd* operation = HAdd::cast(phi_operand); |
| + if (operation->left() == phi && |
| + operation->right()->IsInteger32Constant()) { |
| + return operation->right()->GetInteger32Constant(); |
| + } else if (operation->right() == phi && |
| + operation->left()->IsInteger32Constant()) { |
| + return operation->left()->GetInteger32Constant(); |
| + } |
| + } else if (phi_operand->IsSub()) { |
| + HSub* operation = HSub::cast(phi_operand); |
| + if (operation->left() == phi && |
| + operation->right()->IsInteger32Constant()) { |
| + return -operation->right()->GetInteger32Constant(); |
| + } |
| + } |
| + |
| + return 0; |
| +} |
| + |
| + |
| +/* |
| + * Swaps the information in "update" with the one contained in "this". |
| + * The swapping is important because this method is used while doing a |
| + * dominator tree traversal, and "update" will retain the old data that |
| + * will be restored while backtracking. |
| + */ |
| +void InductionVariableData::UpdateAdditionalLimit( |
| + InductionVariableLimitUpdate* update) { |
| + ASSERT(update->updated_variable == this); |
| + if (update->limit_is_upper) { |
| + swap(&additional_upper_limit_, &update->limit); |
| + swap(&additional_upper_limit_is_included_, &update->limit_is_included); |
| + } else { |
| + swap(&additional_lower_limit_, &update->limit); |
| + swap(&additional_lower_limit_is_included_, &update->limit_is_included); |
| + } |
| +} |
| + |
| + |
| +int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask, |
| + int32_t or_mask) { |
| + // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway. |
| + const int32_t MAX_LIMIT = 1 << 30; |
| + |
| + int32_t result = MAX_LIMIT; |
| + |
| + if (limit() != NULL && |
| + limit()->IsInteger32Constant()) { |
| + int32_t limit_value = limit()->GetInteger32Constant(); |
| + if (!limit_included()) { |
| + limit_value--; |
| + } |
| + if (limit_value < result) result = limit_value; |
| + } |
| + |
| + if (additional_upper_limit() != NULL && |
| + additional_upper_limit()->IsInteger32Constant()) { |
| + int32_t limit_value = additional_upper_limit()->GetInteger32Constant(); |
| + if (!additional_upper_limit_is_included()) { |
| + limit_value--; |
| + } |
| + if (limit_value < result) result = limit_value; |
| + } |
| + |
| + if (and_mask > 0 && and_mask < MAX_LIMIT) { |
| + if (and_mask < result) result = and_mask; |
| + return result; |
| + } |
| + |
| + // Add the effect of the or_mask. |
| + result |= or_mask; |
| + |
| + if (result >= MAX_LIMIT) { |
|
titzer
2013/07/18 12:22:58
Can use a ternary here.
Massi
2013/07/23 07:57:50
Done.
|
| + result = kNoLimit; |
| + } |
| + return result; |
| +} |
| + |
| + |
| +HValue* InductionVariableData::IgnoreOsrValue(HValue* v) { |
| + if (!v->IsPhi()) return v; |
| + HPhi* phi = HPhi::cast(v); |
| + if (phi->OperandCount() != 2) return v; |
| + if (phi->OperandAt(0)->block()->is_osr_entry()) { |
| + return phi->OperandAt(1); |
| + } else if (phi->OperandAt(1)->block()->is_osr_entry()) { |
| + return phi->OperandAt(0); |
| + } else { |
| + return v; |
| + } |
| +} |
| + |
| + |
| +InductionVariableData* InductionVariableData::GetInductionVariableData( |
| + HValue* v) { |
| + v = IgnoreOsrValue(v); |
| + if (v->IsPhi()) { |
| + return HPhi::cast(v)->induction_variable_data(); |
| + } |
| + return NULL; |
| +} |
| + |
| + |
| +/* |
| + * Check if a conditional branch to "current_branch" with token "token" is |
| + * the branch that keeps the induction loop running (and, conversely, will |
| + * terminate it if the "other_branch" is taken). |
| + * |
| + * Three conditions must be met: |
| + * - "current_branch" must be in the induction loop. |
| + * - "other_branch" must be out of the induction loop. |
| + * - "token" and the induction increment must be "compatible": the token should |
| + * be a condition that keeps the execution inside the loop until the limit is |
| + * reached. |
| + */ |
| +bool InductionVariableData::CheckIfBranchIsLoopGuard( |
| + Token::Value token, |
| + HBasicBlock* current_branch, |
| + HBasicBlock* other_branch) { |
| + if (!phi()->block()->current_loop()->IsNestedInThisLoop( |
| + current_branch->current_loop())) { |
| + return false; |
| + } |
| + |
| + if (phi()->block()->current_loop()->IsNestedInThisLoop( |
| + other_branch->current_loop())) { |
| + return false; |
| + } |
| + |
| + if (increment() > 0 && (token == Token::LT || token == Token::LTE)) { |
| + return true; |
| + } |
| + if (increment() < 0 && (token == Token::GT || token == Token::GTE)) { |
| + return true; |
| + } |
| + if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) { |
| + return true; |
| + } |
| + |
| + return false; |
| +} |
| + |
| + |
| +void InductionVariableData::ComputeLimitFromPredecessorBlock( |
| + HBasicBlock* block, |
| + LimitFromPredecessorBlock* result) { |
| + if (block->predecessors()->length() != 1) return; |
| + HBasicBlock* predecessor = block->predecessors()->at(0); |
| + HInstruction* end = predecessor->last(); |
| + |
| + if (!end->IsCompareIDAndBranch()) return; |
| + HCompareIDAndBranch* branch = HCompareIDAndBranch::cast(end); |
| + |
| + Token::Value token = branch->token(); |
| + if (!Token::IsArithmeticCompareOp(token)) return; |
| + |
| + HBasicBlock* other_target; |
| + if (block == branch->SuccessorAt(0)) { |
| + other_target = branch->SuccessorAt(1); |
| + } else { |
| + other_target = branch->SuccessorAt(0); |
| + token = Token::NegateCompareOp(token); |
| + ASSERT(block == branch->SuccessorAt(1)); |
| + } |
| + |
| + InductionVariableData* data; |
| + |
| + data = GetInductionVariableData(branch->left()); |
| + HValue* limit = branch->right(); |
| + if (data == NULL) { |
| + data = GetInductionVariableData(branch->right()); |
| + token = Token::ReverseCompareOp(token); |
| + limit = branch->left(); |
| + } |
| + |
| + if (data != NULL) { |
| + result->variable = data; |
| + result->token = token; |
| + result->limit = limit; |
| + result->other_target = other_target; |
| + } |
| +} |
| + |
| +/* |
| + * Compute the limit that is imposed on an induction variable when entering |
| + * "block" (if any). |
| + * If the limit is the "proper" induction limit (the one that makes the loop |
| + * terminate when the induction variable reaches it) it is stored directly in |
| + * the induction variable data. |
| + * Otherwise the limit is written in "additional_limit" and the method |
| + * returns true. |
| + */ |
| +bool InductionVariableData::ComputeInductionVariableLimit( |
| + HBasicBlock* block, |
| + InductionVariableLimitUpdate* additional_limit) { |
| + LimitFromPredecessorBlock limit; |
| + ComputeLimitFromPredecessorBlock(block, &limit); |
| + if (!limit.LimitIsValid()) return false; |
| + |
| + if (limit.variable->CheckIfBranchIsLoopGuard(limit.token, |
| + block, |
| + limit.other_target)) { |
| + limit.variable->limit_ = limit.limit; |
| + limit.variable->limit_included_ = limit.LimitIsIncluded(); |
| + limit.variable->limit_validity_ = block; |
| + limit.variable->induction_exit_block_ = block->predecessors()->at(0); |
| + limit.variable->induction_exit_target_ = limit.other_target; |
| + return false; |
| + } else { |
| + additional_limit->updated_variable = limit.variable; |
| + additional_limit->limit = limit.limit; |
| + additional_limit->limit_is_upper = limit.LimitIsUpper(); |
| + additional_limit->limit_is_included = limit.LimitIsIncluded(); |
| + return true; |
| + } |
| +} |
| + |
| + |
| Range* HMathMinMax::InferRange(Zone* zone) { |
| if (representation().IsInteger32()) { |
| Range* a = left()->range(); |