Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2006 The Android Open Source Project | 2 * Copyright 2006 The Android Open Source Project |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkGeometry.h" | 8 #include "SkGeometry.h" |
| 9 #include "SkMatrix.h" | 9 #include "SkMatrix.h" |
| 10 | 10 |
| (...skipping 1144 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1155 if (dir == kCCW_SkRotationDirection) { | 1155 if (dir == kCCW_SkRotationDirection) { |
| 1156 matrix.preScale(SK_Scalar1, -SK_Scalar1); | 1156 matrix.preScale(SK_Scalar1, -SK_Scalar1); |
| 1157 } | 1157 } |
| 1158 if (userMatrix) { | 1158 if (userMatrix) { |
| 1159 matrix.postConcat(*userMatrix); | 1159 matrix.postConcat(*userMatrix); |
| 1160 } | 1160 } |
| 1161 matrix.mapPoints(quadPoints, pointCount); | 1161 matrix.mapPoints(quadPoints, pointCount); |
| 1162 return pointCount; | 1162 return pointCount; |
| 1163 } | 1163 } |
| 1164 | 1164 |
| 1165 | |
| 1165 /////////////////////////////////////////////////////////////////////////////// | 1166 /////////////////////////////////////////////////////////////////////////////// |
| 1166 | 1167 // |
| 1168 // NURB representation for conics. Helpful explanations at: | |
| 1169 // | |
| 1170 // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.5740&rep=rep1&typ e=ps | |
|
reed1
2014/02/21 17:00:04
nit: 80-col
humper
2014/02/21 17:07:21
Done, and fixed a bunch of other 80 col issues in
| |
| 1171 // and | |
| 1172 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html | |
| 1173 // | |
| 1167 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) | 1174 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) |
| 1168 // ------------------------------------------ | 1175 // ------------------------------------------ |
| 1169 // ((1 - t)^2 + t^2 + 2 (1 - t) t w) | 1176 // ((1 - t)^2 + t^2 + 2 (1 - t) t w) |
| 1170 // | 1177 // |
| 1171 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} | 1178 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} |
| 1172 // ------------------------------------------------ | 1179 // ------------------------------------------------ |
| 1173 // {t^2 (2 - 2 w), t (-2 + 2 w), 1} | 1180 // {t^2 (2 - 2 w), t (-2 + 2 w), 1} |
| 1174 // | 1181 // |
| 1175 | 1182 |
| 1176 // Take the parametric specification for the conic (either X or Y) and return | |
| 1177 // in coeff[] the coefficients for the simple quadratic polynomial | |
| 1178 // coeff[0] for t^2 | |
| 1179 // coeff[1] for t | |
| 1180 // coeff[2] for constant term | |
| 1181 // | |
| 1182 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) { | 1183 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) { |
| 1183 SkASSERT(src); | 1184 SkASSERT(src); |
| 1184 SkASSERT(t >= 0 && t <= SK_Scalar1); | 1185 SkASSERT(t >= 0 && t <= SK_Scalar1); |
| 1185 | 1186 |
| 1186 SkScalar src2w = SkScalarMul(src[2], w); | 1187 SkScalar src2w = SkScalarMul(src[2], w); |
| 1187 SkScalar C = src[0]; | 1188 SkScalar C = src[0]; |
| 1188 SkScalar A = src[4] - 2 * src2w + C; | 1189 SkScalar A = src[4] - 2 * src2w + C; |
| 1189 SkScalar B = 2 * (src2w - C); | 1190 SkScalar B = 2 * (src2w - C); |
| 1190 SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 1191 SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
| 1191 | 1192 |
| 1192 B = 2 * (w - SK_Scalar1); | 1193 B = 2 * (w - SK_Scalar1); |
| 1193 C = SK_Scalar1; | 1194 C = SK_Scalar1; |
| 1194 A = -B; | 1195 A = -B; |
| 1195 SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 1196 SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
| 1196 | 1197 |
| 1197 return SkScalarDiv(numer, denom); | 1198 return SkScalarDiv(numer, denom); |
| 1198 } | 1199 } |
| 1199 | 1200 |
| 1201 | |
| 1202 // Take the parametric specification for the conic (either X or Y) and return | |
|
reed1
2014/02/21 17:00:04
This comment does not go with deriv_coeff, but per
humper
2014/02/21 17:07:21
Done.
| |
| 1203 // in coeff[] the coefficients for the simple quadratic polynomial | |
| 1204 // | |
| 1200 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) | 1205 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) |
| 1201 // | 1206 // |
| 1202 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) | 1207 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) |
| 1203 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) | 1208 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) |
| 1204 // t^0 : -2 P0 w + 2 P1 w | 1209 // t^0 : -2 P0 w + 2 P1 w |
| 1205 // | 1210 // |
| 1206 // We disregard magnitude, so we can freely ignore the denominator of F', and | 1211 // We disregard magnitude, so we can freely ignore the denominator of F', and |
| 1207 // divide the numerator by 2 | 1212 // divide the numerator by 2 |
| 1208 // | 1213 // |
| 1209 // coeff[0] for t^2 | 1214 // coeff[0] for t^2 |
| (...skipping 225 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1435 } | 1440 } |
| 1436 if (this->findYExtrema(&t)) { | 1441 if (this->findYExtrema(&t)) { |
| 1437 this->evalAt(t, &pts[count++]); | 1442 this->evalAt(t, &pts[count++]); |
| 1438 } | 1443 } |
| 1439 bounds->set(pts, count); | 1444 bounds->set(pts, count); |
| 1440 } | 1445 } |
| 1441 | 1446 |
| 1442 void SkConic::computeFastBounds(SkRect* bounds) const { | 1447 void SkConic::computeFastBounds(SkRect* bounds) const { |
| 1443 bounds->set(fPts, 3); | 1448 bounds->set(fPts, 3); |
| 1444 } | 1449 } |
| 1450 | |
| 1451 // Find the parameter value where the conic takes on its maximum curvature. | |
|
reed1
2014/02/21 17:00:04
Lets hoist this comment out to the header.
humper
2014/02/21 17:07:21
Done.
| |
| 1452 // Returns true if the max curvature is inside the 0..1 parameter range, | |
| 1453 // otherwise returns false and leaves its t parameter unchanged. | |
| 1454 bool SkConic::findMaxCurvature(SkScalar* t) const { | |
| 1455 // TODO: Implement me | |
| 1456 return false; | |
| 1457 } | |
| OLD | NEW |