Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(312)

Side by Side Diff: src/snapshot/serialize.cc

Issue 1751863002: [serializer] split up src/snapshot/serialize.* (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: fix Created 4 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/snapshot/serialize.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/deoptimizer.h"
13 #include "src/execution.h"
14 #include "src/global-handles.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/objects.h"
18 #include "src/parsing/parser.h"
19 #include "src/profiler/cpu-profiler.h"
20 #include "src/runtime/runtime.h"
21 #include "src/snapshot/natives.h"
22 #include "src/snapshot/snapshot.h"
23 #include "src/snapshot/snapshot-source-sink.h"
24 #include "src/v8.h"
25 #include "src/v8threads.h"
26 #include "src/version.h"
27
28 namespace v8 {
29 namespace internal {
30
31
32 // -----------------------------------------------------------------------------
33 // Coding of external references.
34
35
36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
37 ExternalReferenceTable* external_reference_table =
38 isolate->external_reference_table();
39 if (external_reference_table == NULL) {
40 external_reference_table = new ExternalReferenceTable(isolate);
41 isolate->set_external_reference_table(external_reference_table);
42 }
43 return external_reference_table;
44 }
45
46
47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
48 // Miscellaneous
49 Add(ExternalReference::roots_array_start(isolate).address(),
50 "Heap::roots_array_start()");
51 Add(ExternalReference::address_of_stack_limit(isolate).address(),
52 "StackGuard::address_of_jslimit()");
53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
54 "StackGuard::address_of_real_jslimit()");
55 Add(ExternalReference::new_space_start(isolate).address(),
56 "Heap::NewSpaceStart()");
57 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
58 "Heap::NewSpaceAllocationLimitAddress()");
59 Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
60 "Heap::NewSpaceAllocationTopAddress()");
61 Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
62 "mod_two_doubles");
63 // Keyed lookup cache.
64 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
65 "KeyedLookupCache::keys()");
66 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
67 "KeyedLookupCache::field_offsets()");
68 Add(ExternalReference::handle_scope_next_address(isolate).address(),
69 "HandleScope::next");
70 Add(ExternalReference::handle_scope_limit_address(isolate).address(),
71 "HandleScope::limit");
72 Add(ExternalReference::handle_scope_level_address(isolate).address(),
73 "HandleScope::level");
74 Add(ExternalReference::new_deoptimizer_function(isolate).address(),
75 "Deoptimizer::New()");
76 Add(ExternalReference::compute_output_frames_function(isolate).address(),
77 "Deoptimizer::ComputeOutputFrames()");
78 Add(ExternalReference::address_of_min_int().address(),
79 "LDoubleConstant::min_int");
80 Add(ExternalReference::address_of_one_half().address(),
81 "LDoubleConstant::one_half");
82 Add(ExternalReference::isolate_address(isolate).address(), "isolate");
83 Add(ExternalReference::interpreter_dispatch_table_address(isolate).address(),
84 "Interpreter::dispatch_table_address");
85 Add(ExternalReference::address_of_negative_infinity().address(),
86 "LDoubleConstant::negative_infinity");
87 Add(ExternalReference::power_double_double_function(isolate).address(),
88 "power_double_double_function");
89 Add(ExternalReference::power_double_int_function(isolate).address(),
90 "power_double_int_function");
91 Add(ExternalReference::math_log_double_function(isolate).address(),
92 "std::log");
93 Add(ExternalReference::store_buffer_top(isolate).address(),
94 "store_buffer_top");
95 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
96 Add(ExternalReference::get_date_field_function(isolate).address(),
97 "JSDate::GetField");
98 Add(ExternalReference::date_cache_stamp(isolate).address(),
99 "date_cache_stamp");
100 Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
101 "address_of_pending_message_obj");
102 Add(ExternalReference::get_make_code_young_function(isolate).address(),
103 "Code::MakeCodeYoung");
104 Add(ExternalReference::cpu_features().address(), "cpu_features");
105 Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
106 "Heap::OldSpaceAllocationTopAddress");
107 Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
108 "Heap::OldSpaceAllocationLimitAddress");
109 Add(ExternalReference::allocation_sites_list_address(isolate).address(),
110 "Heap::allocation_sites_list_address()");
111 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
112 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
113 "Code::MarkCodeAsExecuted");
114 Add(ExternalReference::is_profiling_address(isolate).address(),
115 "CpuProfiler::is_profiling");
116 Add(ExternalReference::scheduled_exception_address(isolate).address(),
117 "Isolate::scheduled_exception");
118 Add(ExternalReference::invoke_function_callback(isolate).address(),
119 "InvokeFunctionCallback");
120 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
121 "InvokeAccessorGetterCallback");
122 Add(ExternalReference::f32_trunc_wrapper_function(isolate).address(),
123 "f32_trunc_wrapper");
124 Add(ExternalReference::f32_floor_wrapper_function(isolate).address(),
125 "f32_floor_wrapper");
126 Add(ExternalReference::f32_ceil_wrapper_function(isolate).address(),
127 "f32_ceil_wrapper");
128 Add(ExternalReference::f32_nearest_int_wrapper_function(isolate).address(),
129 "f32_nearest_int_wrapper");
130 Add(ExternalReference::f64_trunc_wrapper_function(isolate).address(),
131 "f64_trunc_wrapper");
132 Add(ExternalReference::f64_floor_wrapper_function(isolate).address(),
133 "f64_floor_wrapper");
134 Add(ExternalReference::f64_ceil_wrapper_function(isolate).address(),
135 "f64_ceil_wrapper");
136 Add(ExternalReference::f64_nearest_int_wrapper_function(isolate).address(),
137 "f64_nearest_int_wrapper");
138 Add(ExternalReference::log_enter_external_function(isolate).address(),
139 "Logger::EnterExternal");
140 Add(ExternalReference::log_leave_external_function(isolate).address(),
141 "Logger::LeaveExternal");
142 Add(ExternalReference::address_of_minus_one_half().address(),
143 "double_constants.minus_one_half");
144 Add(ExternalReference::stress_deopt_count(isolate).address(),
145 "Isolate::stress_deopt_count_address()");
146 Add(ExternalReference::virtual_handler_register(isolate).address(),
147 "Isolate::virtual_handler_register()");
148 Add(ExternalReference::virtual_slot_register(isolate).address(),
149 "Isolate::virtual_slot_register()");
150 Add(ExternalReference::runtime_function_table_address(isolate).address(),
151 "Runtime::runtime_function_table_address()");
152
153 // Debug addresses
154 Add(ExternalReference::debug_after_break_target_address(isolate).address(),
155 "Debug::after_break_target_address()");
156 Add(ExternalReference::debug_is_active_address(isolate).address(),
157 "Debug::is_active_address()");
158 Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
159 "Debug::step_in_enabled_address()");
160
161 #ifndef V8_INTERPRETED_REGEXP
162 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
163 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
164 Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
165 "RegExpMacroAssembler*::CheckStackGuardState()");
166 Add(ExternalReference::re_grow_stack(isolate).address(),
167 "NativeRegExpMacroAssembler::GrowStack()");
168 Add(ExternalReference::re_word_character_map().address(),
169 "NativeRegExpMacroAssembler::word_character_map");
170 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
171 "RegExpStack::limit_address()");
172 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
173 .address(),
174 "RegExpStack::memory_address()");
175 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
176 "RegExpStack::memory_size()");
177 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
178 "OffsetsVector::static_offsets_vector");
179 #endif // V8_INTERPRETED_REGEXP
180
181 // The following populates all of the different type of external references
182 // into the ExternalReferenceTable.
183 //
184 // NOTE: This function was originally 100k of code. It has since been
185 // rewritten to be mostly table driven, as the callback macro style tends to
186 // very easily cause code bloat. Please be careful in the future when adding
187 // new references.
188
189 struct RefTableEntry {
190 uint16_t id;
191 const char* name;
192 };
193
194 static const RefTableEntry c_builtins[] = {
195 #define DEF_ENTRY_C(name, ignored) \
196 { Builtins::c_##name, "Builtins::" #name } \
197 ,
198 BUILTIN_LIST_C(DEF_ENTRY_C)
199 #undef DEF_ENTRY_C
200 };
201
202 for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
203 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
204 isolate);
205 Add(ref.address(), c_builtins[i].name);
206 }
207
208 static const RefTableEntry builtins[] = {
209 #define DEF_ENTRY_C(name, ignored) \
210 { Builtins::k##name, "Builtins::" #name } \
211 ,
212 #define DEF_ENTRY_A(name, i1, i2, i3) \
213 { Builtins::k##name, "Builtins::" #name } \
214 ,
215 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
216 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
217 #undef DEF_ENTRY_C
218 #undef DEF_ENTRY_A
219 };
220
221 for (unsigned i = 0; i < arraysize(builtins); ++i) {
222 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
223 Add(ref.address(), builtins[i].name);
224 }
225
226 static const RefTableEntry runtime_functions[] = {
227 #define RUNTIME_ENTRY(name, i1, i2) \
228 { Runtime::k##name, "Runtime::" #name } \
229 ,
230 FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
231 #undef RUNTIME_ENTRY
232 };
233
234 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
235 ExternalReference ref(
236 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
237 Add(ref.address(), runtime_functions[i].name);
238 }
239
240 // Stat counters
241 struct StatsRefTableEntry {
242 StatsCounter* (Counters::*counter)();
243 const char* name;
244 };
245
246 static const StatsRefTableEntry stats_ref_table[] = {
247 #define COUNTER_ENTRY(name, caption) \
248 { &Counters::name, "Counters::" #name } \
249 ,
250 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
251 #undef COUNTER_ENTRY
252 };
253
254 Counters* counters = isolate->counters();
255 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
256 // To make sure the indices are not dependent on whether counters are
257 // enabled, use a dummy address as filler.
258 Address address = NotAvailable();
259 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
260 if (counter->Enabled()) {
261 address = reinterpret_cast<Address>(counter->GetInternalPointer());
262 }
263 Add(address, stats_ref_table[i].name);
264 }
265
266 // Top addresses
267 static const char* address_names[] = {
268 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
269 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
270 #undef BUILD_NAME_LITERAL
271 };
272
273 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
274 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
275 address_names[i]);
276 }
277
278 // Accessors
279 struct AccessorRefTable {
280 Address address;
281 const char* name;
282 };
283
284 static const AccessorRefTable accessors[] = {
285 #define ACCESSOR_INFO_DECLARATION(name) \
286 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
287 ,
288 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
289 #undef ACCESSOR_INFO_DECLARATION
290 #define ACCESSOR_SETTER_DECLARATION(name) \
291 { FUNCTION_ADDR(&Accessors::name), "Accessors::" #name } \
292 ,
293 ACCESSOR_SETTER_LIST(ACCESSOR_SETTER_DECLARATION)
294 #undef ACCESSOR_INFO_DECLARATION
295 };
296
297 for (unsigned i = 0; i < arraysize(accessors); ++i) {
298 Add(accessors[i].address, accessors[i].name);
299 }
300
301 StubCache* stub_cache = isolate->stub_cache();
302
303 // Stub cache tables
304 Add(stub_cache->key_reference(StubCache::kPrimary).address(),
305 "StubCache::primary_->key");
306 Add(stub_cache->value_reference(StubCache::kPrimary).address(),
307 "StubCache::primary_->value");
308 Add(stub_cache->map_reference(StubCache::kPrimary).address(),
309 "StubCache::primary_->map");
310 Add(stub_cache->key_reference(StubCache::kSecondary).address(),
311 "StubCache::secondary_->key");
312 Add(stub_cache->value_reference(StubCache::kSecondary).address(),
313 "StubCache::secondary_->value");
314 Add(stub_cache->map_reference(StubCache::kSecondary).address(),
315 "StubCache::secondary_->map");
316
317 // Runtime entries
318 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
319 "HandleScope::DeleteExtensions");
320 Add(ExternalReference::incremental_marking_record_write_function(isolate)
321 .address(),
322 "IncrementalMarking::RecordWrite");
323 Add(ExternalReference::incremental_marking_record_write_code_entry_function(
324 isolate)
325 .address(),
326 "IncrementalMarking::RecordWriteOfCodeEntryFromCode");
327 Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
328 "StoreBuffer::StoreBufferOverflow");
329
330 // Add a small set of deopt entry addresses to encoder without generating the
331 // deopt table code, which isn't possible at deserialization time.
332 HandleScope scope(isolate);
333 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
334 Address address = Deoptimizer::GetDeoptimizationEntry(
335 isolate,
336 entry,
337 Deoptimizer::LAZY,
338 Deoptimizer::CALCULATE_ENTRY_ADDRESS);
339 Add(address, "lazy_deopt");
340 }
341 }
342
343
344 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
345 map_ = isolate->external_reference_map();
346 if (map_ != NULL) return;
347 map_ = new HashMap(HashMap::PointersMatch);
348 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
349 for (int i = 0; i < table->size(); ++i) {
350 Address addr = table->address(i);
351 if (addr == ExternalReferenceTable::NotAvailable()) continue;
352 // We expect no duplicate external references entries in the table.
353 DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
354 map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
355 }
356 isolate->set_external_reference_map(map_);
357 }
358
359
360 uint32_t ExternalReferenceEncoder::Encode(Address address) const {
361 DCHECK_NOT_NULL(address);
362 HashMap::Entry* entry =
363 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
364 DCHECK_NOT_NULL(entry);
365 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
366 }
367
368
369 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
370 Address address) const {
371 HashMap::Entry* entry =
372 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
373 if (entry == NULL) return "<unknown>";
374 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
375 return ExternalReferenceTable::instance(isolate)->name(i);
376 }
377
378
379 class CodeAddressMap: public CodeEventLogger {
380 public:
381 explicit CodeAddressMap(Isolate* isolate)
382 : isolate_(isolate) {
383 isolate->logger()->addCodeEventListener(this);
384 }
385
386 ~CodeAddressMap() override {
387 isolate_->logger()->removeCodeEventListener(this);
388 }
389
390 void CodeMoveEvent(AbstractCode* from, Address to) override {
391 address_to_name_map_.Move(from->address(), to);
392 }
393
394 void CodeDisableOptEvent(AbstractCode* code,
395 SharedFunctionInfo* shared) override {}
396
397 const char* Lookup(Address address) {
398 return address_to_name_map_.Lookup(address);
399 }
400
401 private:
402 class NameMap {
403 public:
404 NameMap() : impl_(HashMap::PointersMatch) {}
405
406 ~NameMap() {
407 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
408 DeleteArray(static_cast<const char*>(p->value));
409 }
410 }
411
412 void Insert(Address code_address, const char* name, int name_size) {
413 HashMap::Entry* entry = FindOrCreateEntry(code_address);
414 if (entry->value == NULL) {
415 entry->value = CopyName(name, name_size);
416 }
417 }
418
419 const char* Lookup(Address code_address) {
420 HashMap::Entry* entry = FindEntry(code_address);
421 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
422 }
423
424 void Remove(Address code_address) {
425 HashMap::Entry* entry = FindEntry(code_address);
426 if (entry != NULL) {
427 DeleteArray(static_cast<char*>(entry->value));
428 RemoveEntry(entry);
429 }
430 }
431
432 void Move(Address from, Address to) {
433 if (from == to) return;
434 HashMap::Entry* from_entry = FindEntry(from);
435 DCHECK(from_entry != NULL);
436 void* value = from_entry->value;
437 RemoveEntry(from_entry);
438 HashMap::Entry* to_entry = FindOrCreateEntry(to);
439 DCHECK(to_entry->value == NULL);
440 to_entry->value = value;
441 }
442
443 private:
444 static char* CopyName(const char* name, int name_size) {
445 char* result = NewArray<char>(name_size + 1);
446 for (int i = 0; i < name_size; ++i) {
447 char c = name[i];
448 if (c == '\0') c = ' ';
449 result[i] = c;
450 }
451 result[name_size] = '\0';
452 return result;
453 }
454
455 HashMap::Entry* FindOrCreateEntry(Address code_address) {
456 return impl_.LookupOrInsert(code_address,
457 ComputePointerHash(code_address));
458 }
459
460 HashMap::Entry* FindEntry(Address code_address) {
461 return impl_.Lookup(code_address, ComputePointerHash(code_address));
462 }
463
464 void RemoveEntry(HashMap::Entry* entry) {
465 impl_.Remove(entry->key, entry->hash);
466 }
467
468 HashMap impl_;
469
470 DISALLOW_COPY_AND_ASSIGN(NameMap);
471 };
472
473 void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
474 const char* name, int length) override {
475 address_to_name_map_.Insert(code->address(), name, length);
476 }
477
478 NameMap address_to_name_map_;
479 Isolate* isolate_;
480 };
481
482
483 void Deserializer::DecodeReservation(
484 Vector<const SerializedData::Reservation> res) {
485 DCHECK_EQ(0, reservations_[NEW_SPACE].length());
486 STATIC_ASSERT(NEW_SPACE == 0);
487 int current_space = NEW_SPACE;
488 for (auto& r : res) {
489 reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
490 if (r.is_last()) current_space++;
491 }
492 DCHECK_EQ(kNumberOfSpaces, current_space);
493 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
494 }
495
496
497 void Deserializer::FlushICacheForNewIsolate() {
498 DCHECK(!deserializing_user_code_);
499 // The entire isolate is newly deserialized. Simply flush all code pages.
500 PageIterator it(isolate_->heap()->code_space());
501 while (it.has_next()) {
502 Page* p = it.next();
503 Assembler::FlushICache(isolate_, p->area_start(),
504 p->area_end() - p->area_start());
505 }
506 }
507
508
509 void Deserializer::FlushICacheForNewCodeObjects() {
510 DCHECK(deserializing_user_code_);
511 for (Code* code : new_code_objects_) {
512 Assembler::FlushICache(isolate_, code->instruction_start(),
513 code->instruction_size());
514 }
515 }
516
517
518 bool Deserializer::ReserveSpace() {
519 #ifdef DEBUG
520 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
521 CHECK(reservations_[i].length() > 0);
522 }
523 #endif // DEBUG
524 if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
525 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
526 high_water_[i] = reservations_[i][0].start;
527 }
528 return true;
529 }
530
531
532 void Deserializer::Initialize(Isolate* isolate) {
533 DCHECK_NULL(isolate_);
534 DCHECK_NOT_NULL(isolate);
535 isolate_ = isolate;
536 DCHECK_NULL(external_reference_table_);
537 external_reference_table_ = ExternalReferenceTable::instance(isolate);
538 CHECK_EQ(magic_number_,
539 SerializedData::ComputeMagicNumber(external_reference_table_));
540 }
541
542
543 void Deserializer::Deserialize(Isolate* isolate) {
544 Initialize(isolate);
545 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
546 // No active threads.
547 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
548 // No active handles.
549 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
550
551 {
552 DisallowHeapAllocation no_gc;
553 isolate_->heap()->IterateSmiRoots(this);
554 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
555 isolate_->heap()->RepairFreeListsAfterDeserialization();
556 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
557 DeserializeDeferredObjects();
558 FlushICacheForNewIsolate();
559 }
560
561 isolate_->heap()->set_native_contexts_list(
562 isolate_->heap()->undefined_value());
563 // The allocation site list is build during root iteration, but if no sites
564 // were encountered then it needs to be initialized to undefined.
565 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
566 isolate_->heap()->set_allocation_sites_list(
567 isolate_->heap()->undefined_value());
568 }
569
570 // Update data pointers to the external strings containing natives sources.
571 Natives::UpdateSourceCache(isolate_->heap());
572 ExtraNatives::UpdateSourceCache(isolate_->heap());
573
574 // Issue code events for newly deserialized code objects.
575 LOG_CODE_EVENT(isolate_, LogCodeObjects());
576 LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
577 }
578
579
580 MaybeHandle<Object> Deserializer::DeserializePartial(
581 Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
582 Initialize(isolate);
583 if (!ReserveSpace()) {
584 V8::FatalProcessOutOfMemory("deserialize context");
585 return MaybeHandle<Object>();
586 }
587
588 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
589 attached_objects[kGlobalProxyReference] = global_proxy;
590 SetAttachedObjects(attached_objects);
591
592 DisallowHeapAllocation no_gc;
593 // Keep track of the code space start and end pointers in case new
594 // code objects were unserialized
595 OldSpace* code_space = isolate_->heap()->code_space();
596 Address start_address = code_space->top();
597 Object* root;
598 VisitPointer(&root);
599 DeserializeDeferredObjects();
600
601 // There's no code deserialized here. If this assert fires then that's
602 // changed and logging should be added to notify the profiler et al of the
603 // new code, which also has to be flushed from instruction cache.
604 CHECK_EQ(start_address, code_space->top());
605 return Handle<Object>(root, isolate);
606 }
607
608
609 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
610 Isolate* isolate) {
611 Initialize(isolate);
612 if (!ReserveSpace()) {
613 return Handle<SharedFunctionInfo>();
614 } else {
615 deserializing_user_code_ = true;
616 HandleScope scope(isolate);
617 Handle<SharedFunctionInfo> result;
618 {
619 DisallowHeapAllocation no_gc;
620 Object* root;
621 VisitPointer(&root);
622 DeserializeDeferredObjects();
623 FlushICacheForNewCodeObjects();
624 result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
625 }
626 CommitPostProcessedObjects(isolate);
627 return scope.CloseAndEscape(result);
628 }
629 }
630
631
632 Deserializer::~Deserializer() {
633 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
634 // DCHECK(source_.AtEOF());
635 attached_objects_.Dispose();
636 }
637
638
639 // This is called on the roots. It is the driver of the deserialization
640 // process. It is also called on the body of each function.
641 void Deserializer::VisitPointers(Object** start, Object** end) {
642 // The space must be new space. Any other space would cause ReadChunk to try
643 // to update the remembered using NULL as the address.
644 ReadData(start, end, NEW_SPACE, NULL);
645 }
646
647 void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
648 static const byte expected = kSynchronize;
649 CHECK_EQ(expected, source_.Get());
650 }
651
652 void Deserializer::DeserializeDeferredObjects() {
653 for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
654 switch (code) {
655 case kAlignmentPrefix:
656 case kAlignmentPrefix + 1:
657 case kAlignmentPrefix + 2:
658 SetAlignment(code);
659 break;
660 default: {
661 int space = code & kSpaceMask;
662 DCHECK(space <= kNumberOfSpaces);
663 DCHECK(code - space == kNewObject);
664 HeapObject* object = GetBackReferencedObject(space);
665 int size = source_.GetInt() << kPointerSizeLog2;
666 Address obj_address = object->address();
667 Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
668 Object** end = reinterpret_cast<Object**>(obj_address + size);
669 bool filled = ReadData(start, end, space, obj_address);
670 CHECK(filled);
671 DCHECK(CanBeDeferred(object));
672 PostProcessNewObject(object, space);
673 }
674 }
675 }
676 }
677
678
679 // Used to insert a deserialized internalized string into the string table.
680 class StringTableInsertionKey : public HashTableKey {
681 public:
682 explicit StringTableInsertionKey(String* string)
683 : string_(string), hash_(HashForObject(string)) {
684 DCHECK(string->IsInternalizedString());
685 }
686
687 bool IsMatch(Object* string) override {
688 // We know that all entries in a hash table had their hash keys created.
689 // Use that knowledge to have fast failure.
690 if (hash_ != HashForObject(string)) return false;
691 // We want to compare the content of two internalized strings here.
692 return string_->SlowEquals(String::cast(string));
693 }
694
695 uint32_t Hash() override { return hash_; }
696
697 uint32_t HashForObject(Object* key) override {
698 return String::cast(key)->Hash();
699 }
700
701 MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
702 return handle(string_, isolate);
703 }
704
705 private:
706 String* string_;
707 uint32_t hash_;
708 DisallowHeapAllocation no_gc;
709 };
710
711
712 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
713 if (deserializing_user_code()) {
714 if (obj->IsString()) {
715 String* string = String::cast(obj);
716 // Uninitialize hash field as the hash seed may have changed.
717 string->set_hash_field(String::kEmptyHashField);
718 if (string->IsInternalizedString()) {
719 // Canonicalize the internalized string. If it already exists in the
720 // string table, set it to forward to the existing one.
721 StringTableInsertionKey key(string);
722 String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
723 if (canonical == NULL) {
724 new_internalized_strings_.Add(handle(string));
725 return string;
726 } else {
727 string->SetForwardedInternalizedString(canonical);
728 return canonical;
729 }
730 }
731 } else if (obj->IsScript()) {
732 new_scripts_.Add(handle(Script::cast(obj)));
733 } else {
734 DCHECK(CanBeDeferred(obj));
735 }
736 }
737 if (obj->IsAllocationSite()) {
738 DCHECK(obj->IsAllocationSite());
739 // Allocation sites are present in the snapshot, and must be linked into
740 // a list at deserialization time.
741 AllocationSite* site = AllocationSite::cast(obj);
742 // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
743 // as a (weak) root. If this root is relocated correctly, this becomes
744 // unnecessary.
745 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
746 site->set_weak_next(isolate_->heap()->undefined_value());
747 } else {
748 site->set_weak_next(isolate_->heap()->allocation_sites_list());
749 }
750 isolate_->heap()->set_allocation_sites_list(site);
751 } else if (obj->IsCode()) {
752 // We flush all code pages after deserializing the startup snapshot. In that
753 // case, we only need to remember code objects in the large object space.
754 // When deserializing user code, remember each individual code object.
755 if (deserializing_user_code() || space == LO_SPACE) {
756 new_code_objects_.Add(Code::cast(obj));
757 }
758 }
759 // Check alignment.
760 DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
761 return obj;
762 }
763
764
765 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
766 StringTable::EnsureCapacityForDeserialization(
767 isolate, new_internalized_strings_.length());
768 for (Handle<String> string : new_internalized_strings_) {
769 StringTableInsertionKey key(*string);
770 DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
771 StringTable::LookupKey(isolate, &key);
772 }
773
774 Heap* heap = isolate->heap();
775 Factory* factory = isolate->factory();
776 for (Handle<Script> script : new_scripts_) {
777 // Assign a new script id to avoid collision.
778 script->set_id(isolate_->heap()->NextScriptId());
779 // Add script to list.
780 Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
781 heap->SetRootScriptList(*list);
782 }
783 }
784
785
786 HeapObject* Deserializer::GetBackReferencedObject(int space) {
787 HeapObject* obj;
788 BackReference back_reference(source_.GetInt());
789 if (space == LO_SPACE) {
790 CHECK(back_reference.chunk_index() == 0);
791 uint32_t index = back_reference.large_object_index();
792 obj = deserialized_large_objects_[index];
793 } else {
794 DCHECK(space < kNumberOfPreallocatedSpaces);
795 uint32_t chunk_index = back_reference.chunk_index();
796 DCHECK_LE(chunk_index, current_chunk_[space]);
797 uint32_t chunk_offset = back_reference.chunk_offset();
798 Address address = reservations_[space][chunk_index].start + chunk_offset;
799 if (next_alignment_ != kWordAligned) {
800 int padding = Heap::GetFillToAlign(address, next_alignment_);
801 next_alignment_ = kWordAligned;
802 DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
803 address += padding;
804 }
805 obj = HeapObject::FromAddress(address);
806 }
807 if (deserializing_user_code() && obj->IsInternalizedString()) {
808 obj = String::cast(obj)->GetForwardedInternalizedString();
809 }
810 hot_objects_.Add(obj);
811 return obj;
812 }
813
814
815 // This routine writes the new object into the pointer provided and then
816 // returns true if the new object was in young space and false otherwise.
817 // The reason for this strange interface is that otherwise the object is
818 // written very late, which means the FreeSpace map is not set up by the
819 // time we need to use it to mark the space at the end of a page free.
820 void Deserializer::ReadObject(int space_number, Object** write_back) {
821 Address address;
822 HeapObject* obj;
823 int size = source_.GetInt() << kObjectAlignmentBits;
824
825 if (next_alignment_ != kWordAligned) {
826 int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
827 address = Allocate(space_number, reserved);
828 obj = HeapObject::FromAddress(address);
829 // If one of the following assertions fails, then we are deserializing an
830 // aligned object when the filler maps have not been deserialized yet.
831 // We require filler maps as padding to align the object.
832 Heap* heap = isolate_->heap();
833 DCHECK(heap->free_space_map()->IsMap());
834 DCHECK(heap->one_pointer_filler_map()->IsMap());
835 DCHECK(heap->two_pointer_filler_map()->IsMap());
836 obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
837 address = obj->address();
838 next_alignment_ = kWordAligned;
839 } else {
840 address = Allocate(space_number, size);
841 obj = HeapObject::FromAddress(address);
842 }
843
844 isolate_->heap()->OnAllocationEvent(obj, size);
845 Object** current = reinterpret_cast<Object**>(address);
846 Object** limit = current + (size >> kPointerSizeLog2);
847 if (FLAG_log_snapshot_positions) {
848 LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
849 }
850
851 if (ReadData(current, limit, space_number, address)) {
852 // Only post process if object content has not been deferred.
853 obj = PostProcessNewObject(obj, space_number);
854 }
855
856 Object* write_back_obj = obj;
857 UnalignedCopy(write_back, &write_back_obj);
858 #ifdef DEBUG
859 if (obj->IsCode()) {
860 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
861 } else {
862 DCHECK(space_number != CODE_SPACE);
863 }
864 #endif // DEBUG
865 }
866
867
868 // We know the space requirements before deserialization and can
869 // pre-allocate that reserved space. During deserialization, all we need
870 // to do is to bump up the pointer for each space in the reserved
871 // space. This is also used for fixing back references.
872 // We may have to split up the pre-allocation into several chunks
873 // because it would not fit onto a single page. We do not have to keep
874 // track of when to move to the next chunk. An opcode will signal this.
875 // Since multiple large objects cannot be folded into one large object
876 // space allocation, we have to do an actual allocation when deserializing
877 // each large object. Instead of tracking offset for back references, we
878 // reference large objects by index.
879 Address Deserializer::Allocate(int space_index, int size) {
880 if (space_index == LO_SPACE) {
881 AlwaysAllocateScope scope(isolate_);
882 LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
883 Executability exec = static_cast<Executability>(source_.Get());
884 AllocationResult result = lo_space->AllocateRaw(size, exec);
885 HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
886 deserialized_large_objects_.Add(obj);
887 return obj->address();
888 } else {
889 DCHECK(space_index < kNumberOfPreallocatedSpaces);
890 Address address = high_water_[space_index];
891 DCHECK_NOT_NULL(address);
892 high_water_[space_index] += size;
893 #ifdef DEBUG
894 // Assert that the current reserved chunk is still big enough.
895 const Heap::Reservation& reservation = reservations_[space_index];
896 int chunk_index = current_chunk_[space_index];
897 CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
898 #endif
899 return address;
900 }
901 }
902
903
904 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
905 Object** current) {
906 DCHECK(!isolate_->heap()->deserialization_complete());
907 NativesExternalStringResource* resource = new NativesExternalStringResource(
908 source_vector.start(), source_vector.length());
909 Object* resource_obj = reinterpret_cast<Object*>(resource);
910 UnalignedCopy(current++, &resource_obj);
911 return current;
912 }
913
914
915 bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
916 Address current_object_address) {
917 Isolate* const isolate = isolate_;
918 // Write barrier support costs around 1% in startup time. In fact there
919 // are no new space objects in current boot snapshots, so it's not needed,
920 // but that may change.
921 bool write_barrier_needed =
922 (current_object_address != NULL && source_space != NEW_SPACE &&
923 source_space != CODE_SPACE);
924 while (current < limit) {
925 byte data = source_.Get();
926 switch (data) {
927 #define CASE_STATEMENT(where, how, within, space_number) \
928 case where + how + within + space_number: \
929 STATIC_ASSERT((where & ~kWhereMask) == 0); \
930 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
931 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
932 STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
933
934 #define CASE_BODY(where, how, within, space_number_if_any) \
935 { \
936 bool emit_write_barrier = false; \
937 bool current_was_incremented = false; \
938 int space_number = space_number_if_any == kAnyOldSpace \
939 ? (data & kSpaceMask) \
940 : space_number_if_any; \
941 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
942 ReadObject(space_number, current); \
943 emit_write_barrier = (space_number == NEW_SPACE); \
944 } else { \
945 Object* new_object = NULL; /* May not be a real Object pointer. */ \
946 if (where == kNewObject) { \
947 ReadObject(space_number, &new_object); \
948 } else if (where == kBackref) { \
949 emit_write_barrier = (space_number == NEW_SPACE); \
950 new_object = GetBackReferencedObject(data & kSpaceMask); \
951 } else if (where == kBackrefWithSkip) { \
952 int skip = source_.GetInt(); \
953 current = reinterpret_cast<Object**>( \
954 reinterpret_cast<Address>(current) + skip); \
955 emit_write_barrier = (space_number == NEW_SPACE); \
956 new_object = GetBackReferencedObject(data & kSpaceMask); \
957 } else if (where == kRootArray) { \
958 int id = source_.GetInt(); \
959 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
960 new_object = isolate->heap()->root(root_index); \
961 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
962 } else if (where == kPartialSnapshotCache) { \
963 int cache_index = source_.GetInt(); \
964 new_object = isolate->partial_snapshot_cache()->at(cache_index); \
965 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
966 } else if (where == kExternalReference) { \
967 int skip = source_.GetInt(); \
968 current = reinterpret_cast<Object**>( \
969 reinterpret_cast<Address>(current) + skip); \
970 int reference_id = source_.GetInt(); \
971 Address address = external_reference_table_->address(reference_id); \
972 new_object = reinterpret_cast<Object*>(address); \
973 } else if (where == kAttachedReference) { \
974 int index = source_.GetInt(); \
975 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
976 new_object = *attached_objects_[index]; \
977 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
978 } else { \
979 DCHECK(where == kBuiltin); \
980 DCHECK(deserializing_user_code()); \
981 int builtin_id = source_.GetInt(); \
982 DCHECK_LE(0, builtin_id); \
983 DCHECK_LT(builtin_id, Builtins::builtin_count); \
984 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
985 new_object = isolate->builtins()->builtin(name); \
986 emit_write_barrier = false; \
987 } \
988 if (within == kInnerPointer) { \
989 if (space_number != CODE_SPACE || new_object->IsCode()) { \
990 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
991 new_object = \
992 reinterpret_cast<Object*>(new_code_object->instruction_start()); \
993 } else { \
994 DCHECK(space_number == CODE_SPACE); \
995 Cell* cell = Cell::cast(new_object); \
996 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
997 } \
998 } \
999 if (how == kFromCode) { \
1000 Address location_of_branch_data = reinterpret_cast<Address>(current); \
1001 Assembler::deserialization_set_special_target_at( \
1002 isolate, location_of_branch_data, \
1003 Code::cast(HeapObject::FromAddress(current_object_address)), \
1004 reinterpret_cast<Address>(new_object)); \
1005 location_of_branch_data += Assembler::kSpecialTargetSize; \
1006 current = reinterpret_cast<Object**>(location_of_branch_data); \
1007 current_was_incremented = true; \
1008 } else { \
1009 UnalignedCopy(current, &new_object); \
1010 } \
1011 } \
1012 if (emit_write_barrier && write_barrier_needed) { \
1013 Address current_address = reinterpret_cast<Address>(current); \
1014 SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \
1015 isolate->heap()->RecordWrite( \
1016 HeapObject::FromAddress(current_object_address), \
1017 static_cast<int>(current_address - current_object_address), \
1018 *reinterpret_cast<Object**>(current_address)); \
1019 } \
1020 if (!current_was_incremented) { \
1021 current++; \
1022 } \
1023 break; \
1024 }
1025
1026 // This generates a case and a body for the new space (which has to do extra
1027 // write barrier handling) and handles the other spaces with fall-through cases
1028 // and one body.
1029 #define ALL_SPACES(where, how, within) \
1030 CASE_STATEMENT(where, how, within, NEW_SPACE) \
1031 CASE_BODY(where, how, within, NEW_SPACE) \
1032 CASE_STATEMENT(where, how, within, OLD_SPACE) \
1033 CASE_STATEMENT(where, how, within, CODE_SPACE) \
1034 CASE_STATEMENT(where, how, within, MAP_SPACE) \
1035 CASE_STATEMENT(where, how, within, LO_SPACE) \
1036 CASE_BODY(where, how, within, kAnyOldSpace)
1037
1038 #define FOUR_CASES(byte_code) \
1039 case byte_code: \
1040 case byte_code + 1: \
1041 case byte_code + 2: \
1042 case byte_code + 3:
1043
1044 #define SIXTEEN_CASES(byte_code) \
1045 FOUR_CASES(byte_code) \
1046 FOUR_CASES(byte_code + 4) \
1047 FOUR_CASES(byte_code + 8) \
1048 FOUR_CASES(byte_code + 12)
1049
1050 #define SINGLE_CASE(where, how, within, space) \
1051 CASE_STATEMENT(where, how, within, space) \
1052 CASE_BODY(where, how, within, space)
1053
1054 // Deserialize a new object and write a pointer to it to the current
1055 // object.
1056 ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1057 // Support for direct instruction pointers in functions. It's an inner
1058 // pointer because it points at the entry point, not at the start of the
1059 // code object.
1060 SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1061 // Deserialize a new code object and write a pointer to its first
1062 // instruction to the current code object.
1063 ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1064 // Find a recently deserialized object using its offset from the current
1065 // allocation point and write a pointer to it to the current object.
1066 ALL_SPACES(kBackref, kPlain, kStartOfObject)
1067 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1068 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1069 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1070 // Deserialize a new object from pointer found in code and write
1071 // a pointer to it to the current object. Required only for MIPS, PPC or
1072 // ARM with embedded constant pool, and omitted on the other architectures
1073 // because it is fully unrolled and would cause bloat.
1074 ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1075 // Find a recently deserialized code object using its offset from the
1076 // current allocation point and write a pointer to it to the current
1077 // object. Required only for MIPS, PPC or ARM with embedded constant pool.
1078 ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1079 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1080 #endif
1081 // Find a recently deserialized code object using its offset from the
1082 // current allocation point and write a pointer to its first instruction
1083 // to the current code object or the instruction pointer in a function
1084 // object.
1085 ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1086 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1087 ALL_SPACES(kBackref, kPlain, kInnerPointer)
1088 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1089 // Find an object in the roots array and write a pointer to it to the
1090 // current object.
1091 SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
1092 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1093 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1094 // Find an object in the roots array and write a pointer to it to in code.
1095 SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
1096 #endif
1097 // Find an object in the partial snapshots cache and write a pointer to it
1098 // to the current object.
1099 SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1100 // Find an code entry in the partial snapshots cache and
1101 // write a pointer to it to the current object.
1102 SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1103 // Find an external reference and write a pointer to it to the current
1104 // object.
1105 SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
1106 // Find an external reference and write a pointer to it in the current
1107 // code object.
1108 SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
1109 // Find an object in the attached references and write a pointer to it to
1110 // the current object.
1111 SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
1112 SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
1113 SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
1114 // Find a builtin and write a pointer to it to the current object.
1115 SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
1116 SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
1117 SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
1118
1119 #undef CASE_STATEMENT
1120 #undef CASE_BODY
1121 #undef ALL_SPACES
1122
1123 case kSkip: {
1124 int size = source_.GetInt();
1125 current = reinterpret_cast<Object**>(
1126 reinterpret_cast<intptr_t>(current) + size);
1127 break;
1128 }
1129
1130 case kInternalReferenceEncoded:
1131 case kInternalReference: {
1132 // Internal reference address is not encoded via skip, but by offset
1133 // from code entry.
1134 int pc_offset = source_.GetInt();
1135 int target_offset = source_.GetInt();
1136 Code* code =
1137 Code::cast(HeapObject::FromAddress(current_object_address));
1138 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
1139 DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
1140 Address pc = code->entry() + pc_offset;
1141 Address target = code->entry() + target_offset;
1142 Assembler::deserialization_set_target_internal_reference_at(
1143 isolate, pc, target, data == kInternalReference
1144 ? RelocInfo::INTERNAL_REFERENCE
1145 : RelocInfo::INTERNAL_REFERENCE_ENCODED);
1146 break;
1147 }
1148
1149 case kNop:
1150 break;
1151
1152 case kNextChunk: {
1153 int space = source_.Get();
1154 DCHECK(space < kNumberOfPreallocatedSpaces);
1155 int chunk_index = current_chunk_[space];
1156 const Heap::Reservation& reservation = reservations_[space];
1157 // Make sure the current chunk is indeed exhausted.
1158 CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
1159 // Move to next reserved chunk.
1160 chunk_index = ++current_chunk_[space];
1161 CHECK_LT(chunk_index, reservation.length());
1162 high_water_[space] = reservation[chunk_index].start;
1163 break;
1164 }
1165
1166 case kDeferred: {
1167 // Deferred can only occur right after the heap object header.
1168 DCHECK(current == reinterpret_cast<Object**>(current_object_address +
1169 kPointerSize));
1170 HeapObject* obj = HeapObject::FromAddress(current_object_address);
1171 // If the deferred object is a map, its instance type may be used
1172 // during deserialization. Initialize it with a temporary value.
1173 if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
1174 current = limit;
1175 return false;
1176 }
1177
1178 case kSynchronize:
1179 // If we get here then that indicates that you have a mismatch between
1180 // the number of GC roots when serializing and deserializing.
1181 CHECK(false);
1182 break;
1183
1184 case kNativesStringResource:
1185 current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
1186 current);
1187 break;
1188
1189 case kExtraNativesStringResource:
1190 current = CopyInNativesSource(
1191 ExtraNatives::GetScriptSource(source_.Get()), current);
1192 break;
1193
1194 // Deserialize raw data of variable length.
1195 case kVariableRawData: {
1196 int size_in_bytes = source_.GetInt();
1197 byte* raw_data_out = reinterpret_cast<byte*>(current);
1198 source_.CopyRaw(raw_data_out, size_in_bytes);
1199 break;
1200 }
1201
1202 case kVariableRepeat: {
1203 int repeats = source_.GetInt();
1204 Object* object = current[-1];
1205 DCHECK(!isolate->heap()->InNewSpace(object));
1206 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1207 break;
1208 }
1209
1210 case kAlignmentPrefix:
1211 case kAlignmentPrefix + 1:
1212 case kAlignmentPrefix + 2:
1213 SetAlignment(data);
1214 break;
1215
1216 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
1217 STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
1218 SIXTEEN_CASES(kRootArrayConstantsWithSkip)
1219 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
1220 int skip = source_.GetInt();
1221 current = reinterpret_cast<Object**>(
1222 reinterpret_cast<intptr_t>(current) + skip);
1223 // Fall through.
1224 }
1225
1226 SIXTEEN_CASES(kRootArrayConstants)
1227 SIXTEEN_CASES(kRootArrayConstants + 16) {
1228 int id = data & kRootArrayConstantsMask;
1229 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
1230 Object* object = isolate->heap()->root(root_index);
1231 DCHECK(!isolate->heap()->InNewSpace(object));
1232 UnalignedCopy(current++, &object);
1233 break;
1234 }
1235
1236 STATIC_ASSERT(kNumberOfHotObjects == 8);
1237 FOUR_CASES(kHotObjectWithSkip)
1238 FOUR_CASES(kHotObjectWithSkip + 4) {
1239 int skip = source_.GetInt();
1240 current = reinterpret_cast<Object**>(
1241 reinterpret_cast<Address>(current) + skip);
1242 // Fall through.
1243 }
1244
1245 FOUR_CASES(kHotObject)
1246 FOUR_CASES(kHotObject + 4) {
1247 int index = data & kHotObjectMask;
1248 Object* hot_object = hot_objects_.Get(index);
1249 UnalignedCopy(current, &hot_object);
1250 if (write_barrier_needed) {
1251 Address current_address = reinterpret_cast<Address>(current);
1252 SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address));
1253 isolate->heap()->RecordWrite(
1254 HeapObject::FromAddress(current_object_address),
1255 static_cast<int>(current_address - current_object_address),
1256 hot_object);
1257 }
1258 current++;
1259 break;
1260 }
1261
1262 // Deserialize raw data of fixed length from 1 to 32 words.
1263 STATIC_ASSERT(kNumberOfFixedRawData == 32);
1264 SIXTEEN_CASES(kFixedRawData)
1265 SIXTEEN_CASES(kFixedRawData + 16) {
1266 byte* raw_data_out = reinterpret_cast<byte*>(current);
1267 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
1268 source_.CopyRaw(raw_data_out, size_in_bytes);
1269 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
1270 break;
1271 }
1272
1273 STATIC_ASSERT(kNumberOfFixedRepeat == 16);
1274 SIXTEEN_CASES(kFixedRepeat) {
1275 int repeats = data - kFixedRepeatStart;
1276 Object* object;
1277 UnalignedCopy(&object, current - 1);
1278 DCHECK(!isolate->heap()->InNewSpace(object));
1279 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1280 break;
1281 }
1282
1283 #undef SIXTEEN_CASES
1284 #undef FOUR_CASES
1285 #undef SINGLE_CASE
1286
1287 default:
1288 CHECK(false);
1289 }
1290 }
1291 CHECK_EQ(limit, current);
1292 return true;
1293 }
1294
1295
1296 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1297 : isolate_(isolate),
1298 sink_(sink),
1299 external_reference_encoder_(isolate),
1300 root_index_map_(isolate),
1301 recursion_depth_(0),
1302 code_address_map_(NULL),
1303 large_objects_total_size_(0),
1304 seen_large_objects_index_(0) {
1305 // The serializer is meant to be used only to generate initial heap images
1306 // from a context in which there is only one isolate.
1307 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1308 pending_chunk_[i] = 0;
1309 max_chunk_size_[i] = static_cast<uint32_t>(
1310 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
1311 }
1312
1313 #ifdef OBJECT_PRINT
1314 if (FLAG_serialization_statistics) {
1315 instance_type_count_ = NewArray<int>(kInstanceTypes);
1316 instance_type_size_ = NewArray<size_t>(kInstanceTypes);
1317 for (int i = 0; i < kInstanceTypes; i++) {
1318 instance_type_count_[i] = 0;
1319 instance_type_size_[i] = 0;
1320 }
1321 } else {
1322 instance_type_count_ = NULL;
1323 instance_type_size_ = NULL;
1324 }
1325 #endif // OBJECT_PRINT
1326 }
1327
1328
1329 Serializer::~Serializer() {
1330 if (code_address_map_ != NULL) delete code_address_map_;
1331 #ifdef OBJECT_PRINT
1332 if (instance_type_count_ != NULL) {
1333 DeleteArray(instance_type_count_);
1334 DeleteArray(instance_type_size_);
1335 }
1336 #endif // OBJECT_PRINT
1337 }
1338
1339
1340 #ifdef OBJECT_PRINT
1341 void Serializer::CountInstanceType(Map* map, int size) {
1342 int instance_type = map->instance_type();
1343 instance_type_count_[instance_type]++;
1344 instance_type_size_[instance_type] += size;
1345 }
1346 #endif // OBJECT_PRINT
1347
1348
1349 void Serializer::OutputStatistics(const char* name) {
1350 if (!FLAG_serialization_statistics) return;
1351 PrintF("%s:\n", name);
1352 PrintF(" Spaces (bytes):\n");
1353 for (int space = 0; space < kNumberOfSpaces; space++) {
1354 PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
1355 }
1356 PrintF("\n");
1357 for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
1358 size_t s = pending_chunk_[space];
1359 for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
1360 PrintF("%16" V8_PTR_PREFIX "d", s);
1361 }
1362 PrintF("%16d\n", large_objects_total_size_);
1363 #ifdef OBJECT_PRINT
1364 PrintF(" Instance types (count and bytes):\n");
1365 #define PRINT_INSTANCE_TYPE(Name) \
1366 if (instance_type_count_[Name]) { \
1367 PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
1368 instance_type_size_[Name], #Name); \
1369 }
1370 INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
1371 #undef PRINT_INSTANCE_TYPE
1372 PrintF("\n");
1373 #endif // OBJECT_PRINT
1374 }
1375
1376
1377 class Serializer::ObjectSerializer : public ObjectVisitor {
1378 public:
1379 ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
1380 HowToCode how_to_code, WhereToPoint where_to_point)
1381 : serializer_(serializer),
1382 object_(HeapObject::cast(o)),
1383 sink_(sink),
1384 reference_representation_(how_to_code + where_to_point),
1385 bytes_processed_so_far_(0),
1386 is_code_object_(o->IsCode()),
1387 code_has_been_output_(false) {}
1388 void Serialize();
1389 void SerializeDeferred();
1390 void VisitPointers(Object** start, Object** end) override;
1391 void VisitEmbeddedPointer(RelocInfo* target) override;
1392 void VisitExternalReference(Address* p) override;
1393 void VisitExternalReference(RelocInfo* rinfo) override;
1394 void VisitInternalReference(RelocInfo* rinfo) override;
1395 void VisitCodeTarget(RelocInfo* target) override;
1396 void VisitCodeEntry(Address entry_address) override;
1397 void VisitCell(RelocInfo* rinfo) override;
1398 void VisitRuntimeEntry(RelocInfo* reloc) override;
1399 // Used for seralizing the external strings that hold the natives source.
1400 void VisitExternalOneByteString(
1401 v8::String::ExternalOneByteStringResource** resource) override;
1402 // We can't serialize a heap with external two byte strings.
1403 void VisitExternalTwoByteString(
1404 v8::String::ExternalStringResource** resource) override {
1405 UNREACHABLE();
1406 }
1407
1408 private:
1409 void SerializePrologue(AllocationSpace space, int size, Map* map);
1410
1411 bool SerializeExternalNativeSourceString(
1412 int builtin_count,
1413 v8::String::ExternalOneByteStringResource** resource_pointer,
1414 FixedArray* source_cache, int resource_index);
1415
1416 enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
1417 // This function outputs or skips the raw data between the last pointer and
1418 // up to the current position. It optionally can just return the number of
1419 // bytes to skip instead of performing a skip instruction, in case the skip
1420 // can be merged into the next instruction.
1421 int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
1422 // External strings are serialized in a way to resemble sequential strings.
1423 void SerializeExternalString();
1424
1425 Address PrepareCode();
1426
1427 Serializer* serializer_;
1428 HeapObject* object_;
1429 SnapshotByteSink* sink_;
1430 int reference_representation_;
1431 int bytes_processed_so_far_;
1432 bool is_code_object_;
1433 bool code_has_been_output_;
1434 };
1435
1436
1437 void Serializer::SerializeDeferredObjects() {
1438 while (deferred_objects_.length() > 0) {
1439 HeapObject* obj = deferred_objects_.RemoveLast();
1440 ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
1441 obj_serializer.SerializeDeferred();
1442 }
1443 sink_->Put(kSynchronize, "Finished with deferred objects");
1444 }
1445
1446
1447 void StartupSerializer::SerializeStrongReferences() {
1448 Isolate* isolate = this->isolate();
1449 // No active threads.
1450 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
1451 // No active or weak handles.
1452 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1453 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1454 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1455 // We don't support serializing installed extensions.
1456 CHECK(!isolate->has_installed_extensions());
1457 isolate->heap()->IterateSmiRoots(this);
1458 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1459 }
1460
1461
1462 void StartupSerializer::VisitPointers(Object** start, Object** end) {
1463 for (Object** current = start; current < end; current++) {
1464 if (start == isolate()->heap()->roots_array_start()) {
1465 root_index_wave_front_ =
1466 Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1467 }
1468 if (ShouldBeSkipped(current)) {
1469 sink_->Put(kSkip, "Skip");
1470 sink_->PutInt(kPointerSize, "SkipOneWord");
1471 } else if ((*current)->IsSmi()) {
1472 sink_->Put(kOnePointerRawData, "Smi");
1473 for (int i = 0; i < kPointerSize; i++) {
1474 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1475 }
1476 } else {
1477 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1478 }
1479 }
1480 }
1481
1482
1483 void PartialSerializer::Serialize(Object** o) {
1484 if ((*o)->IsContext()) {
1485 Context* context = Context::cast(*o);
1486 global_object_ = context->global_object();
1487 back_reference_map()->AddGlobalProxy(context->global_proxy());
1488 // The bootstrap snapshot has a code-stub context. When serializing the
1489 // partial snapshot, it is chained into the weak context list on the isolate
1490 // and it's next context pointer may point to the code-stub context. Clear
1491 // it before serializing, it will get re-added to the context list
1492 // explicitly when it's loaded.
1493 if (context->IsNativeContext()) {
1494 context->set(Context::NEXT_CONTEXT_LINK,
1495 isolate_->heap()->undefined_value());
1496 DCHECK(!context->global_object()->IsUndefined());
1497 }
1498 }
1499 VisitPointer(o);
1500 SerializeDeferredObjects();
1501 Pad();
1502 }
1503
1504
1505 bool Serializer::ShouldBeSkipped(Object** current) {
1506 Object** roots = isolate()->heap()->roots_array_start();
1507 return current == &roots[Heap::kStoreBufferTopRootIndex]
1508 || current == &roots[Heap::kStackLimitRootIndex]
1509 || current == &roots[Heap::kRealStackLimitRootIndex];
1510 }
1511
1512
1513 void Serializer::VisitPointers(Object** start, Object** end) {
1514 for (Object** current = start; current < end; current++) {
1515 if ((*current)->IsSmi()) {
1516 sink_->Put(kOnePointerRawData, "Smi");
1517 for (int i = 0; i < kPointerSize; i++) {
1518 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1519 }
1520 } else {
1521 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1522 }
1523 }
1524 }
1525
1526
1527 void Serializer::EncodeReservations(
1528 List<SerializedData::Reservation>* out) const {
1529 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1530 for (int j = 0; j < completed_chunks_[i].length(); j++) {
1531 out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
1532 }
1533
1534 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
1535 out->Add(SerializedData::Reservation(pending_chunk_[i]));
1536 }
1537 out->last().mark_as_last();
1538 }
1539
1540 out->Add(SerializedData::Reservation(large_objects_total_size_));
1541 out->last().mark_as_last();
1542 }
1543
1544
1545 // This ensures that the partial snapshot cache keeps things alive during GC and
1546 // tracks their movement. When it is called during serialization of the startup
1547 // snapshot nothing happens. When the partial (context) snapshot is created,
1548 // this array is populated with the pointers that the partial snapshot will
1549 // need. As that happens we emit serialized objects to the startup snapshot
1550 // that correspond to the elements of this cache array. On deserialization we
1551 // therefore need to visit the cache array. This fills it up with pointers to
1552 // deserialized objects.
1553 void SerializerDeserializer::Iterate(Isolate* isolate,
1554 ObjectVisitor* visitor) {
1555 if (isolate->serializer_enabled()) return;
1556 List<Object*>* cache = isolate->partial_snapshot_cache();
1557 for (int i = 0;; ++i) {
1558 // Extend the array ready to get a value when deserializing.
1559 if (cache->length() <= i) cache->Add(Smi::FromInt(0));
1560 visitor->VisitPointer(&cache->at(i));
1561 // Sentinel is the undefined object, which is a root so it will not normally
1562 // be found in the cache.
1563 if (cache->at(i)->IsUndefined()) break;
1564 }
1565 }
1566
1567
1568 bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
1569 return !o->IsString() && !o->IsScript();
1570 }
1571
1572
1573 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1574 Isolate* isolate = this->isolate();
1575 List<Object*>* cache = isolate->partial_snapshot_cache();
1576 int new_index = cache->length();
1577
1578 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
1579 if (index == PartialCacheIndexMap::kInvalidIndex) {
1580 // We didn't find the object in the cache. So we add it to the cache and
1581 // then visit the pointer so that it becomes part of the startup snapshot
1582 // and we can refer to it from the partial snapshot.
1583 cache->Add(heap_object);
1584 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1585 // We don't recurse from the startup snapshot generator into the partial
1586 // snapshot generator.
1587 return new_index;
1588 }
1589 return index;
1590 }
1591
1592
1593 bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
1594 // Scripts should be referred only through shared function infos. We can't
1595 // allow them to be part of the partial snapshot because they contain a
1596 // unique ID, and deserializing several partial snapshots containing script
1597 // would cause dupes.
1598 DCHECK(!o->IsScript());
1599 return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
1600 o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() ||
1601 o->map() ==
1602 startup_serializer_->isolate()->heap()->fixed_cow_array_map();
1603 }
1604
1605
1606 #ifdef DEBUG
1607 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
1608 DCHECK(reference.is_valid());
1609 DCHECK(!reference.is_source());
1610 DCHECK(!reference.is_global_proxy());
1611 AllocationSpace space = reference.space();
1612 int chunk_index = reference.chunk_index();
1613 if (space == LO_SPACE) {
1614 return chunk_index == 0 &&
1615 reference.large_object_index() < seen_large_objects_index_;
1616 } else if (chunk_index == completed_chunks_[space].length()) {
1617 return reference.chunk_offset() < pending_chunk_[space];
1618 } else {
1619 return chunk_index < completed_chunks_[space].length() &&
1620 reference.chunk_offset() < completed_chunks_[space][chunk_index];
1621 }
1622 }
1623 #endif // DEBUG
1624
1625
1626 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
1627 WhereToPoint where_to_point, int skip) {
1628 if (how_to_code == kPlain && where_to_point == kStartOfObject) {
1629 // Encode a reference to a hot object by its index in the working set.
1630 int index = hot_objects_.Find(obj);
1631 if (index != HotObjectsList::kNotFound) {
1632 DCHECK(index >= 0 && index < kNumberOfHotObjects);
1633 if (FLAG_trace_serializer) {
1634 PrintF(" Encoding hot object %d:", index);
1635 obj->ShortPrint();
1636 PrintF("\n");
1637 }
1638 if (skip != 0) {
1639 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
1640 sink_->PutInt(skip, "HotObjectSkipDistance");
1641 } else {
1642 sink_->Put(kHotObject + index, "HotObject");
1643 }
1644 return true;
1645 }
1646 }
1647 BackReference back_reference = back_reference_map_.Lookup(obj);
1648 if (back_reference.is_valid()) {
1649 // Encode the location of an already deserialized object in order to write
1650 // its location into a later object. We can encode the location as an
1651 // offset fromthe start of the deserialized objects or as an offset
1652 // backwards from thecurrent allocation pointer.
1653 if (back_reference.is_source()) {
1654 FlushSkip(skip);
1655 if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
1656 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1657 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
1658 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
1659 } else if (back_reference.is_global_proxy()) {
1660 FlushSkip(skip);
1661 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
1662 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1663 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
1664 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
1665 } else {
1666 if (FLAG_trace_serializer) {
1667 PrintF(" Encoding back reference to: ");
1668 obj->ShortPrint();
1669 PrintF("\n");
1670 }
1671
1672 PutAlignmentPrefix(obj);
1673 AllocationSpace space = back_reference.space();
1674 if (skip == 0) {
1675 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
1676 } else {
1677 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1678 "BackRefWithSkip");
1679 sink_->PutInt(skip, "BackRefSkipDistance");
1680 }
1681 PutBackReference(obj, back_reference);
1682 }
1683 return true;
1684 }
1685 return false;
1686 }
1687
1688 StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
1689 : Serializer(isolate, sink),
1690 root_index_wave_front_(0),
1691 serializing_builtins_(false) {
1692 // Clear the cache of objects used by the partial snapshot. After the
1693 // strong roots have been serialized we can create a partial snapshot
1694 // which will repopulate the cache with objects needed by that partial
1695 // snapshot.
1696 isolate->partial_snapshot_cache()->Clear();
1697 InitializeCodeAddressMap();
1698 }
1699
1700
1701 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1702 WhereToPoint where_to_point, int skip) {
1703 DCHECK(!obj->IsJSFunction());
1704
1705 if (obj->IsCode()) {
1706 Code* code = Code::cast(obj);
1707 // If the function code is compiled (either as native code or bytecode),
1708 // replace it with lazy-compile builtin. Only exception is when we are
1709 // serializing the canonical interpreter-entry-trampoline builtin.
1710 if (code->kind() == Code::FUNCTION ||
1711 (!serializing_builtins_ && code->is_interpreter_entry_trampoline())) {
1712 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
1713 }
1714 } else if (obj->IsBytecodeArray()) {
1715 obj = isolate()->heap()->undefined_value();
1716 }
1717
1718 int root_index = root_index_map_.Lookup(obj);
1719 bool is_immortal_immovable_root = false;
1720 // We can only encode roots as such if it has already been serialized.
1721 // That applies to root indices below the wave front.
1722 if (root_index != RootIndexMap::kInvalidRootIndex) {
1723 if (root_index < root_index_wave_front_) {
1724 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1725 return;
1726 } else {
1727 is_immortal_immovable_root = Heap::RootIsImmortalImmovable(root_index);
1728 }
1729 }
1730
1731 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1732
1733 FlushSkip(skip);
1734
1735 // Object has not yet been serialized. Serialize it here.
1736 ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
1737 where_to_point);
1738 object_serializer.Serialize();
1739
1740 if (is_immortal_immovable_root) {
1741 // Make sure that the immortal immovable root has been included in the first
1742 // chunk of its reserved space , so that it is deserialized onto the first
1743 // page of its space and stays immortal immovable.
1744 BackReference ref = back_reference_map_.Lookup(obj);
1745 CHECK(ref.is_valid() && ref.chunk_index() == 0);
1746 }
1747 }
1748
1749
1750 void StartupSerializer::SerializeWeakReferencesAndDeferred() {
1751 // This phase comes right after the serialization (of the snapshot).
1752 // After we have done the partial serialization the partial snapshot cache
1753 // will contain some references needed to decode the partial snapshot. We
1754 // add one entry with 'undefined' which is the sentinel that the deserializer
1755 // uses to know it is done deserializing the array.
1756 Object* undefined = isolate()->heap()->undefined_value();
1757 VisitPointer(&undefined);
1758 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1759 SerializeDeferredObjects();
1760 Pad();
1761 }
1762
1763 void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
1764 // We expect the builtins tag after builtins have been serialized.
1765 DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
1766 serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
1767 sink_->Put(kSynchronize, "Synchronize");
1768 }
1769
1770 void Serializer::PutRoot(int root_index,
1771 HeapObject* object,
1772 SerializerDeserializer::HowToCode how_to_code,
1773 SerializerDeserializer::WhereToPoint where_to_point,
1774 int skip) {
1775 if (FLAG_trace_serializer) {
1776 PrintF(" Encoding root %d:", root_index);
1777 object->ShortPrint();
1778 PrintF("\n");
1779 }
1780
1781 if (how_to_code == kPlain && where_to_point == kStartOfObject &&
1782 root_index < kNumberOfRootArrayConstants &&
1783 !isolate()->heap()->InNewSpace(object)) {
1784 if (skip == 0) {
1785 sink_->Put(kRootArrayConstants + root_index, "RootConstant");
1786 } else {
1787 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
1788 sink_->PutInt(skip, "SkipInPutRoot");
1789 }
1790 } else {
1791 FlushSkip(skip);
1792 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1793 sink_->PutInt(root_index, "root_index");
1794 }
1795 }
1796
1797
1798 void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
1799 DCHECK(BackReferenceIsAlreadyAllocated(reference));
1800 sink_->PutInt(reference.reference(), "BackRefValue");
1801 hot_objects_.Add(object);
1802 }
1803
1804
1805 int Serializer::PutAlignmentPrefix(HeapObject* object) {
1806 AllocationAlignment alignment = object->RequiredAlignment();
1807 if (alignment != kWordAligned) {
1808 DCHECK(1 <= alignment && alignment <= 3);
1809 byte prefix = (kAlignmentPrefix - 1) + alignment;
1810 sink_->Put(prefix, "Alignment");
1811 return Heap::GetMaximumFillToAlign(alignment);
1812 }
1813 return 0;
1814 }
1815
1816
1817 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1818 WhereToPoint where_to_point, int skip) {
1819 if (obj->IsMap()) {
1820 // The code-caches link to context-specific code objects, which
1821 // the startup and context serializes cannot currently handle.
1822 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
1823 }
1824
1825 // Replace typed arrays by undefined.
1826 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
1827
1828 int root_index = root_index_map_.Lookup(obj);
1829 if (root_index != RootIndexMap::kInvalidRootIndex) {
1830 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1831 return;
1832 }
1833
1834 if (ShouldBeInThePartialSnapshotCache(obj)) {
1835 FlushSkip(skip);
1836
1837 int cache_index = PartialSnapshotCacheIndex(obj);
1838 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1839 "PartialSnapshotCache");
1840 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1841 return;
1842 }
1843
1844 // Pointers from the partial snapshot to the objects in the startup snapshot
1845 // should go through the root array or through the partial snapshot cache.
1846 // If this is not the case you may have to add something to the root array.
1847 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
1848 // All the internalized strings that the partial snapshot needs should be
1849 // either in the root table or in the partial snapshot cache.
1850 DCHECK(!obj->IsInternalizedString());
1851
1852 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1853
1854 FlushSkip(skip);
1855
1856 // Clear literal boilerplates.
1857 if (obj->IsJSFunction()) {
1858 FixedArray* literals = JSFunction::cast(obj)->literals();
1859 for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
1860 }
1861
1862 // Object has not yet been serialized. Serialize it here.
1863 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
1864 serializer.Serialize();
1865 }
1866
1867
1868 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
1869 int size, Map* map) {
1870 if (serializer_->code_address_map_) {
1871 const char* code_name =
1872 serializer_->code_address_map_->Lookup(object_->address());
1873 LOG(serializer_->isolate_,
1874 CodeNameEvent(object_->address(), sink_->Position(), code_name));
1875 LOG(serializer_->isolate_,
1876 SnapshotPositionEvent(object_->address(), sink_->Position()));
1877 }
1878
1879 BackReference back_reference;
1880 if (space == LO_SPACE) {
1881 sink_->Put(kNewObject + reference_representation_ + space,
1882 "NewLargeObject");
1883 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1884 if (object_->IsCode()) {
1885 sink_->Put(EXECUTABLE, "executable large object");
1886 } else {
1887 sink_->Put(NOT_EXECUTABLE, "not executable large object");
1888 }
1889 back_reference = serializer_->AllocateLargeObject(size);
1890 } else {
1891 int fill = serializer_->PutAlignmentPrefix(object_);
1892 back_reference = serializer_->Allocate(space, size + fill);
1893 sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
1894 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1895 }
1896
1897 #ifdef OBJECT_PRINT
1898 if (FLAG_serialization_statistics) {
1899 serializer_->CountInstanceType(map, size);
1900 }
1901 #endif // OBJECT_PRINT
1902
1903 // Mark this object as already serialized.
1904 serializer_->back_reference_map()->Add(object_, back_reference);
1905
1906 // Serialize the map (first word of the object).
1907 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
1908 }
1909
1910
1911 void Serializer::ObjectSerializer::SerializeExternalString() {
1912 // Instead of serializing this as an external string, we serialize
1913 // an imaginary sequential string with the same content.
1914 Isolate* isolate = serializer_->isolate();
1915 DCHECK(object_->IsExternalString());
1916 DCHECK(object_->map() != isolate->heap()->native_source_string_map());
1917 ExternalString* string = ExternalString::cast(object_);
1918 int length = string->length();
1919 Map* map;
1920 int content_size;
1921 int allocation_size;
1922 const byte* resource;
1923 // Find the map and size for the imaginary sequential string.
1924 bool internalized = object_->IsInternalizedString();
1925 if (object_->IsExternalOneByteString()) {
1926 map = internalized ? isolate->heap()->one_byte_internalized_string_map()
1927 : isolate->heap()->one_byte_string_map();
1928 allocation_size = SeqOneByteString::SizeFor(length);
1929 content_size = length * kCharSize;
1930 resource = reinterpret_cast<const byte*>(
1931 ExternalOneByteString::cast(string)->resource()->data());
1932 } else {
1933 map = internalized ? isolate->heap()->internalized_string_map()
1934 : isolate->heap()->string_map();
1935 allocation_size = SeqTwoByteString::SizeFor(length);
1936 content_size = length * kShortSize;
1937 resource = reinterpret_cast<const byte*>(
1938 ExternalTwoByteString::cast(string)->resource()->data());
1939 }
1940
1941 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
1942 ? LO_SPACE
1943 : OLD_SPACE;
1944 SerializePrologue(space, allocation_size, map);
1945
1946 // Output the rest of the imaginary string.
1947 int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
1948
1949 // Output raw data header. Do not bother with common raw length cases here.
1950 sink_->Put(kVariableRawData, "RawDataForString");
1951 sink_->PutInt(bytes_to_output, "length");
1952
1953 // Serialize string header (except for map).
1954 Address string_start = string->address();
1955 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
1956 sink_->PutSection(string_start[i], "StringHeader");
1957 }
1958
1959 // Serialize string content.
1960 sink_->PutRaw(resource, content_size, "StringContent");
1961
1962 // Since the allocation size is rounded up to object alignment, there
1963 // maybe left-over bytes that need to be padded.
1964 int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
1965 DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
1966 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
1967
1968 sink_->Put(kSkip, "SkipAfterString");
1969 sink_->PutInt(bytes_to_output, "SkipDistance");
1970 }
1971
1972 // Clear and later restore the next link in the weak cell or allocation site.
1973 // TODO(all): replace this with proper iteration of weak slots in serializer.
1974 class UnlinkWeakNextScope {
1975 public:
1976 explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
1977 if (object->IsWeakCell()) {
1978 object_ = object;
1979 next_ = WeakCell::cast(object)->next();
1980 WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
1981 } else if (object->IsAllocationSite()) {
1982 object_ = object;
1983 next_ = AllocationSite::cast(object)->weak_next();
1984 AllocationSite::cast(object)
1985 ->set_weak_next(object->GetHeap()->undefined_value());
1986 }
1987 }
1988
1989 ~UnlinkWeakNextScope() {
1990 if (object_ != nullptr) {
1991 if (object_->IsWeakCell()) {
1992 WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
1993 } else {
1994 AllocationSite::cast(object_)
1995 ->set_weak_next(next_, UPDATE_WEAK_WRITE_BARRIER);
1996 }
1997 }
1998 }
1999
2000 private:
2001 HeapObject* object_;
2002 Object* next_;
2003 DisallowHeapAllocation no_gc_;
2004 };
2005
2006
2007 void Serializer::ObjectSerializer::Serialize() {
2008 if (FLAG_trace_serializer) {
2009 PrintF(" Encoding heap object: ");
2010 object_->ShortPrint();
2011 PrintF("\n");
2012 }
2013
2014 // We cannot serialize typed array objects correctly.
2015 DCHECK(!object_->IsJSTypedArray());
2016
2017 // We don't expect fillers.
2018 DCHECK(!object_->IsFiller());
2019
2020 if (object_->IsScript()) {
2021 // Clear cached line ends.
2022 Object* undefined = serializer_->isolate()->heap()->undefined_value();
2023 Script::cast(object_)->set_line_ends(undefined);
2024 }
2025
2026 if (object_->IsExternalString()) {
2027 Heap* heap = serializer_->isolate()->heap();
2028 if (object_->map() != heap->native_source_string_map()) {
2029 // Usually we cannot recreate resources for external strings. To work
2030 // around this, external strings are serialized to look like ordinary
2031 // sequential strings.
2032 // The exception are native source code strings, since we can recreate
2033 // their resources. In that case we fall through and leave it to
2034 // VisitExternalOneByteString further down.
2035 SerializeExternalString();
2036 return;
2037 }
2038 }
2039
2040 int size = object_->Size();
2041 Map* map = object_->map();
2042 AllocationSpace space =
2043 MemoryChunk::FromAddress(object_->address())->owner()->identity();
2044 SerializePrologue(space, size, map);
2045
2046 // Serialize the rest of the object.
2047 CHECK_EQ(0, bytes_processed_so_far_);
2048 bytes_processed_so_far_ = kPointerSize;
2049
2050 RecursionScope recursion(serializer_);
2051 // Objects that are immediately post processed during deserialization
2052 // cannot be deferred, since post processing requires the object content.
2053 if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
2054 serializer_->QueueDeferredObject(object_);
2055 sink_->Put(kDeferred, "Deferring object content");
2056 return;
2057 }
2058
2059 UnlinkWeakNextScope unlink_weak_next(object_);
2060
2061 object_->IterateBody(map->instance_type(), size, this);
2062 OutputRawData(object_->address() + size);
2063 }
2064
2065
2066 void Serializer::ObjectSerializer::SerializeDeferred() {
2067 if (FLAG_trace_serializer) {
2068 PrintF(" Encoding deferred heap object: ");
2069 object_->ShortPrint();
2070 PrintF("\n");
2071 }
2072
2073 int size = object_->Size();
2074 Map* map = object_->map();
2075 BackReference reference = serializer_->back_reference_map()->Lookup(object_);
2076
2077 // Serialize the rest of the object.
2078 CHECK_EQ(0, bytes_processed_so_far_);
2079 bytes_processed_so_far_ = kPointerSize;
2080
2081 serializer_->PutAlignmentPrefix(object_);
2082 sink_->Put(kNewObject + reference.space(), "deferred object");
2083 serializer_->PutBackReference(object_, reference);
2084 sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
2085
2086 UnlinkWeakNextScope unlink_weak_next(object_);
2087
2088 object_->IterateBody(map->instance_type(), size, this);
2089 OutputRawData(object_->address() + size);
2090 }
2091
2092
2093 void Serializer::ObjectSerializer::VisitPointers(Object** start,
2094 Object** end) {
2095 Object** current = start;
2096 while (current < end) {
2097 while (current < end && (*current)->IsSmi()) current++;
2098 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
2099
2100 while (current < end && !(*current)->IsSmi()) {
2101 HeapObject* current_contents = HeapObject::cast(*current);
2102 int root_index = serializer_->root_index_map()->Lookup(current_contents);
2103 // Repeats are not subject to the write barrier so we can only use
2104 // immortal immovable root members. They are never in new space.
2105 if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
2106 Heap::RootIsImmortalImmovable(root_index) &&
2107 current_contents == current[-1]) {
2108 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
2109 int repeat_count = 1;
2110 while (&current[repeat_count] < end - 1 &&
2111 current[repeat_count] == current_contents) {
2112 repeat_count++;
2113 }
2114 current += repeat_count;
2115 bytes_processed_so_far_ += repeat_count * kPointerSize;
2116 if (repeat_count > kNumberOfFixedRepeat) {
2117 sink_->Put(kVariableRepeat, "VariableRepeat");
2118 sink_->PutInt(repeat_count, "repeat count");
2119 } else {
2120 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
2121 }
2122 } else {
2123 serializer_->SerializeObject(
2124 current_contents, kPlain, kStartOfObject, 0);
2125 bytes_processed_so_far_ += kPointerSize;
2126 current++;
2127 }
2128 }
2129 }
2130 }
2131
2132
2133 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
2134 int skip = OutputRawData(rinfo->target_address_address(),
2135 kCanReturnSkipInsteadOfSkipping);
2136 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2137 Object* object = rinfo->target_object();
2138 serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
2139 kStartOfObject, skip);
2140 bytes_processed_so_far_ += rinfo->target_address_size();
2141 }
2142
2143
2144 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
2145 int skip = OutputRawData(reinterpret_cast<Address>(p),
2146 kCanReturnSkipInsteadOfSkipping);
2147 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
2148 sink_->PutInt(skip, "SkipB4ExternalRef");
2149 Address target = *p;
2150 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2151 bytes_processed_so_far_ += kPointerSize;
2152 }
2153
2154
2155 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
2156 int skip = OutputRawData(rinfo->target_address_address(),
2157 kCanReturnSkipInsteadOfSkipping);
2158 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2159 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2160 sink_->PutInt(skip, "SkipB4ExternalRef");
2161 Address target = rinfo->target_external_reference();
2162 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2163 bytes_processed_so_far_ += rinfo->target_address_size();
2164 }
2165
2166
2167 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
2168 // We can only reference to internal references of code that has been output.
2169 DCHECK(is_code_object_ && code_has_been_output_);
2170 // We do not use skip from last patched pc to find the pc to patch, since
2171 // target_address_address may not return addresses in ascending order when
2172 // used for internal references. External references may be stored at the
2173 // end of the code in the constant pool, whereas internal references are
2174 // inline. That would cause the skip to be negative. Instead, we store the
2175 // offset from code entry.
2176 Address entry = Code::cast(object_)->entry();
2177 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
2178 intptr_t target_offset = rinfo->target_internal_reference() - entry;
2179 DCHECK(0 <= pc_offset &&
2180 pc_offset <= Code::cast(object_)->instruction_size());
2181 DCHECK(0 <= target_offset &&
2182 target_offset <= Code::cast(object_)->instruction_size());
2183 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
2184 ? kInternalReference
2185 : kInternalReferenceEncoded,
2186 "InternalRef");
2187 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
2188 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
2189 }
2190
2191
2192 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
2193 int skip = OutputRawData(rinfo->target_address_address(),
2194 kCanReturnSkipInsteadOfSkipping);
2195 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2196 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2197 sink_->PutInt(skip, "SkipB4ExternalRef");
2198 Address target = rinfo->target_address();
2199 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2200 bytes_processed_so_far_ += rinfo->target_address_size();
2201 }
2202
2203
2204 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
2205 int skip = OutputRawData(rinfo->target_address_address(),
2206 kCanReturnSkipInsteadOfSkipping);
2207 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
2208 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
2209 bytes_processed_so_far_ += rinfo->target_address_size();
2210 }
2211
2212
2213 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
2214 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
2215 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
2216 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2217 bytes_processed_so_far_ += kPointerSize;
2218 }
2219
2220
2221 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
2222 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
2223 Cell* object = Cell::cast(rinfo->target_cell());
2224 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2225 bytes_processed_so_far_ += kPointerSize;
2226 }
2227
2228
2229 bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
2230 int builtin_count,
2231 v8::String::ExternalOneByteStringResource** resource_pointer,
2232 FixedArray* source_cache, int resource_index) {
2233 for (int i = 0; i < builtin_count; i++) {
2234 Object* source = source_cache->get(i);
2235 if (!source->IsUndefined()) {
2236 ExternalOneByteString* string = ExternalOneByteString::cast(source);
2237 typedef v8::String::ExternalOneByteStringResource Resource;
2238 const Resource* resource = string->resource();
2239 if (resource == *resource_pointer) {
2240 sink_->Put(resource_index, "NativesStringResource");
2241 sink_->PutSection(i, "NativesStringResourceEnd");
2242 bytes_processed_so_far_ += sizeof(resource);
2243 return true;
2244 }
2245 }
2246 }
2247 return false;
2248 }
2249
2250
2251 void Serializer::ObjectSerializer::VisitExternalOneByteString(
2252 v8::String::ExternalOneByteStringResource** resource_pointer) {
2253 Address references_start = reinterpret_cast<Address>(resource_pointer);
2254 OutputRawData(references_start);
2255 if (SerializeExternalNativeSourceString(
2256 Natives::GetBuiltinsCount(), resource_pointer,
2257 Natives::GetSourceCache(serializer_->isolate()->heap()),
2258 kNativesStringResource)) {
2259 return;
2260 }
2261 if (SerializeExternalNativeSourceString(
2262 ExtraNatives::GetBuiltinsCount(), resource_pointer,
2263 ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
2264 kExtraNativesStringResource)) {
2265 return;
2266 }
2267 // One of the strings in the natives cache should match the resource. We
2268 // don't expect any other kinds of external strings here.
2269 UNREACHABLE();
2270 }
2271
2272
2273 Address Serializer::ObjectSerializer::PrepareCode() {
2274 // To make snapshots reproducible, we make a copy of the code object
2275 // and wipe all pointers in the copy, which we then serialize.
2276 Code* original = Code::cast(object_);
2277 Code* code = serializer_->CopyCode(original);
2278 // Code age headers are not serializable.
2279 code->MakeYoung(serializer_->isolate());
2280 int mode_mask = RelocInfo::kCodeTargetMask |
2281 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
2282 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
2283 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
2284 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
2285 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
2286 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
2287 RelocInfo* rinfo = it.rinfo();
2288 rinfo->WipeOut();
2289 }
2290 // We need to wipe out the header fields *after* wiping out the
2291 // relocations, because some of these fields are needed for the latter.
2292 code->WipeOutHeader();
2293 return code->address();
2294 }
2295
2296
2297 int Serializer::ObjectSerializer::OutputRawData(
2298 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
2299 Address object_start = object_->address();
2300 int base = bytes_processed_so_far_;
2301 int up_to_offset = static_cast<int>(up_to - object_start);
2302 int to_skip = up_to_offset - bytes_processed_so_far_;
2303 int bytes_to_output = to_skip;
2304 bytes_processed_so_far_ += to_skip;
2305 // This assert will fail if the reloc info gives us the target_address_address
2306 // locations in a non-ascending order. Luckily that doesn't happen.
2307 DCHECK(to_skip >= 0);
2308 bool outputting_code = false;
2309 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
2310 // Output the code all at once and fix later.
2311 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
2312 outputting_code = true;
2313 code_has_been_output_ = true;
2314 }
2315 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
2316 if (!outputting_code && bytes_to_output == to_skip &&
2317 IsAligned(bytes_to_output, kPointerAlignment) &&
2318 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
2319 int size_in_words = bytes_to_output >> kPointerSizeLog2;
2320 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
2321 to_skip = 0; // This instruction includes skip.
2322 } else {
2323 // We always end up here if we are outputting the code of a code object.
2324 sink_->Put(kVariableRawData, "VariableRawData");
2325 sink_->PutInt(bytes_to_output, "length");
2326 }
2327
2328 if (is_code_object_) object_start = PrepareCode();
2329
2330 const char* description = is_code_object_ ? "Code" : "Byte";
2331 sink_->PutRaw(object_start + base, bytes_to_output, description);
2332 }
2333 if (to_skip != 0 && return_skip == kIgnoringReturn) {
2334 sink_->Put(kSkip, "Skip");
2335 sink_->PutInt(to_skip, "SkipDistance");
2336 to_skip = 0;
2337 }
2338 return to_skip;
2339 }
2340
2341
2342 BackReference Serializer::AllocateLargeObject(int size) {
2343 // Large objects are allocated one-by-one when deserializing. We do not
2344 // have to keep track of multiple chunks.
2345 large_objects_total_size_ += size;
2346 return BackReference::LargeObjectReference(seen_large_objects_index_++);
2347 }
2348
2349
2350 BackReference Serializer::Allocate(AllocationSpace space, int size) {
2351 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
2352 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
2353 uint32_t new_chunk_size = pending_chunk_[space] + size;
2354 if (new_chunk_size > max_chunk_size(space)) {
2355 // The new chunk size would not fit onto a single page. Complete the
2356 // current chunk and start a new one.
2357 sink_->Put(kNextChunk, "NextChunk");
2358 sink_->Put(space, "NextChunkSpace");
2359 completed_chunks_[space].Add(pending_chunk_[space]);
2360 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
2361 pending_chunk_[space] = 0;
2362 new_chunk_size = size;
2363 }
2364 uint32_t offset = pending_chunk_[space];
2365 pending_chunk_[space] = new_chunk_size;
2366 return BackReference::Reference(space, completed_chunks_[space].length(),
2367 offset);
2368 }
2369
2370
2371 void Serializer::Pad() {
2372 // The non-branching GetInt will read up to 3 bytes too far, so we need
2373 // to pad the snapshot to make sure we don't read over the end.
2374 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
2375 sink_->Put(kNop, "Padding");
2376 }
2377 // Pad up to pointer size for checksum.
2378 while (!IsAligned(sink_->Position(), kPointerAlignment)) {
2379 sink_->Put(kNop, "Padding");
2380 }
2381 }
2382
2383
2384 void Serializer::InitializeCodeAddressMap() {
2385 isolate_->InitializeLoggingAndCounters();
2386 code_address_map_ = new CodeAddressMap(isolate_);
2387 }
2388
2389
2390 Code* Serializer::CopyCode(Code* code) {
2391 code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
2392 int size = code->CodeSize();
2393 code_buffer_.AddAll(Vector<byte>(code->address(), size));
2394 return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
2395 }
2396
2397
2398 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
2399 Handle<SharedFunctionInfo> info,
2400 Handle<String> source) {
2401 base::ElapsedTimer timer;
2402 if (FLAG_profile_deserialization) timer.Start();
2403 if (FLAG_trace_serializer) {
2404 PrintF("[Serializing from");
2405 Object* script = info->script();
2406 if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
2407 PrintF("]\n");
2408 }
2409
2410 // Serialize code object.
2411 SnapshotByteSink sink(info->code()->CodeSize() * 2);
2412 CodeSerializer cs(isolate, &sink, *source);
2413 DisallowHeapAllocation no_gc;
2414 Object** location = Handle<Object>::cast(info).location();
2415 cs.VisitPointer(location);
2416 cs.SerializeDeferredObjects();
2417 cs.Pad();
2418
2419 SerializedCodeData data(sink.data(), cs);
2420 ScriptData* script_data = data.GetScriptData();
2421
2422 if (FLAG_profile_deserialization) {
2423 double ms = timer.Elapsed().InMillisecondsF();
2424 int length = script_data->length();
2425 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
2426 }
2427
2428 return script_data;
2429 }
2430
2431
2432 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
2433 WhereToPoint where_to_point, int skip) {
2434 int root_index = root_index_map_.Lookup(obj);
2435 if (root_index != RootIndexMap::kInvalidRootIndex) {
2436 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
2437 return;
2438 }
2439
2440 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
2441
2442 FlushSkip(skip);
2443
2444 if (obj->IsCode()) {
2445 Code* code_object = Code::cast(obj);
2446 switch (code_object->kind()) {
2447 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
2448 case Code::HANDLER: // No handlers patched in yet.
2449 case Code::REGEXP: // No regexp literals initialized yet.
2450 case Code::NUMBER_OF_KINDS: // Pseudo enum value.
2451 CHECK(false);
2452 case Code::BUILTIN:
2453 SerializeBuiltin(code_object->builtin_index(), how_to_code,
2454 where_to_point);
2455 return;
2456 case Code::STUB:
2457 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
2458 return;
2459 #define IC_KIND_CASE(KIND) case Code::KIND:
2460 IC_KIND_LIST(IC_KIND_CASE)
2461 #undef IC_KIND_CASE
2462 SerializeIC(code_object, how_to_code, where_to_point);
2463 return;
2464 case Code::FUNCTION:
2465 DCHECK(code_object->has_reloc_info_for_serialization());
2466 SerializeGeneric(code_object, how_to_code, where_to_point);
2467 return;
2468 case Code::WASM_FUNCTION:
2469 UNREACHABLE();
2470 }
2471 UNREACHABLE();
2472 }
2473
2474 // Past this point we should not see any (context-specific) maps anymore.
2475 CHECK(!obj->IsMap());
2476 // There should be no references to the global object embedded.
2477 CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
2478 // There should be no hash table embedded. They would require rehashing.
2479 CHECK(!obj->IsHashTable());
2480 // We expect no instantiated function objects or contexts.
2481 CHECK(!obj->IsJSFunction() && !obj->IsContext());
2482
2483 SerializeGeneric(obj, how_to_code, where_to_point);
2484 }
2485
2486
2487 void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
2488 HowToCode how_to_code,
2489 WhereToPoint where_to_point) {
2490 // Object has not yet been serialized. Serialize it here.
2491 ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
2492 where_to_point);
2493 serializer.Serialize();
2494 }
2495
2496
2497 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
2498 WhereToPoint where_to_point) {
2499 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2500 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2501 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2502 DCHECK_LT(builtin_index, Builtins::builtin_count);
2503 DCHECK_LE(0, builtin_index);
2504
2505 if (FLAG_trace_serializer) {
2506 PrintF(" Encoding builtin: %s\n",
2507 isolate()->builtins()->name(builtin_index));
2508 }
2509
2510 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
2511 sink_->PutInt(builtin_index, "builtin_index");
2512 }
2513
2514
2515 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
2516 WhereToPoint where_to_point) {
2517 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2518 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2519 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2520 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
2521 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
2522
2523 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
2524
2525 if (FLAG_trace_serializer) {
2526 PrintF(" Encoding code stub %s as %d\n",
2527 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
2528 }
2529
2530 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
2531 sink_->PutInt(index, "CodeStub key");
2532 }
2533
2534
2535 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
2536 WhereToPoint where_to_point) {
2537 // The IC may be implemented as a stub.
2538 uint32_t stub_key = ic->stub_key();
2539 if (stub_key != CodeStub::NoCacheKey()) {
2540 if (FLAG_trace_serializer) {
2541 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
2542 }
2543 SerializeCodeStub(stub_key, how_to_code, where_to_point);
2544 return;
2545 }
2546 // The IC may be implemented as builtin. Only real builtins have an
2547 // actual builtin_index value attached (otherwise it's just garbage).
2548 // Compare to make sure we are really dealing with a builtin.
2549 int builtin_index = ic->builtin_index();
2550 if (builtin_index < Builtins::builtin_count) {
2551 Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
2552 Code* builtin = isolate()->builtins()->builtin(name);
2553 if (builtin == ic) {
2554 if (FLAG_trace_serializer) {
2555 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
2556 }
2557 DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
2558 ic->kind() == Code::KEYED_STORE_IC);
2559 SerializeBuiltin(builtin_index, how_to_code, where_to_point);
2560 return;
2561 }
2562 }
2563 // The IC may also just be a piece of code kept in the non_monomorphic_cache.
2564 // In that case, just serialize as a normal code object.
2565 if (FLAG_trace_serializer) {
2566 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
2567 }
2568 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
2569 SerializeGeneric(ic, how_to_code, where_to_point);
2570 }
2571
2572
2573 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
2574 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
2575 int index = 0;
2576 while (index < stub_keys_.length()) {
2577 if (stub_keys_[index] == stub_key) return index;
2578 index++;
2579 }
2580 stub_keys_.Add(stub_key);
2581 return index;
2582 }
2583
2584
2585 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
2586 Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
2587 base::ElapsedTimer timer;
2588 if (FLAG_profile_deserialization) timer.Start();
2589
2590 HandleScope scope(isolate);
2591
2592 base::SmartPointer<SerializedCodeData> scd(
2593 SerializedCodeData::FromCachedData(isolate, cached_data, *source));
2594 if (scd.is_empty()) {
2595 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
2596 DCHECK(cached_data->rejected());
2597 return MaybeHandle<SharedFunctionInfo>();
2598 }
2599
2600 // Prepare and register list of attached objects.
2601 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
2602 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2603 code_stub_keys.length() + kCodeStubsBaseIndex);
2604 attached_objects[kSourceObjectIndex] = source;
2605 for (int i = 0; i < code_stub_keys.length(); i++) {
2606 attached_objects[i + kCodeStubsBaseIndex] =
2607 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2608 }
2609
2610 Deserializer deserializer(scd.get());
2611 deserializer.SetAttachedObjects(attached_objects);
2612
2613 // Deserialize.
2614 Handle<SharedFunctionInfo> result;
2615 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
2616 // Deserializing may fail if the reservations cannot be fulfilled.
2617 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
2618 return MaybeHandle<SharedFunctionInfo>();
2619 }
2620
2621 if (FLAG_profile_deserialization) {
2622 double ms = timer.Elapsed().InMillisecondsF();
2623 int length = cached_data->length();
2624 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2625 }
2626 result->set_deserialized(true);
2627
2628 if (isolate->logger()->is_logging_code_events() ||
2629 isolate->cpu_profiler()->is_profiling()) {
2630 String* name = isolate->heap()->empty_string();
2631 if (result->script()->IsScript()) {
2632 Script* script = Script::cast(result->script());
2633 if (script->name()->IsString()) name = String::cast(script->name());
2634 }
2635 isolate->logger()->CodeCreateEvent(
2636 Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name);
2637 }
2638 return scope.CloseAndEscape(result);
2639 }
2640
2641
2642 void SerializedData::AllocateData(int size) {
2643 DCHECK(!owns_data_);
2644 data_ = NewArray<byte>(size);
2645 size_ = size;
2646 owns_data_ = true;
2647 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
2648 }
2649
2650
2651 SnapshotData::SnapshotData(const Serializer& ser) {
2652 DisallowHeapAllocation no_gc;
2653 List<Reservation> reservations;
2654 ser.EncodeReservations(&reservations);
2655 const List<byte>& payload = ser.sink()->data();
2656
2657 // Calculate sizes.
2658 int reservation_size = reservations.length() * kInt32Size;
2659 int size = kHeaderSize + reservation_size + payload.length();
2660
2661 // Allocate backing store and create result data.
2662 AllocateData(size);
2663
2664 // Set header values.
2665 SetMagicNumber(ser.isolate());
2666 SetHeaderValue(kCheckSumOffset, Version::Hash());
2667 SetHeaderValue(kNumReservationsOffset, reservations.length());
2668 SetHeaderValue(kPayloadLengthOffset, payload.length());
2669
2670 // Copy reservation chunk sizes.
2671 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2672 reservation_size);
2673
2674 // Copy serialized data.
2675 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
2676 static_cast<size_t>(payload.length()));
2677 }
2678
2679
2680 bool SnapshotData::IsSane() {
2681 return GetHeaderValue(kCheckSumOffset) == Version::Hash();
2682 }
2683
2684
2685 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
2686 return Vector<const Reservation>(
2687 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2688 GetHeaderValue(kNumReservationsOffset));
2689 }
2690
2691
2692 Vector<const byte> SnapshotData::Payload() const {
2693 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2694 const byte* payload = data_ + kHeaderSize + reservations_size;
2695 int length = GetHeaderValue(kPayloadLengthOffset);
2696 DCHECK_EQ(data_ + size_, payload + length);
2697 return Vector<const byte>(payload, length);
2698 }
2699
2700
2701 class Checksum {
2702 public:
2703 explicit Checksum(Vector<const byte> payload) {
2704 #ifdef MEMORY_SANITIZER
2705 // Computing the checksum includes padding bytes for objects like strings.
2706 // Mark every object as initialized in the code serializer.
2707 MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
2708 #endif // MEMORY_SANITIZER
2709 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
2710 uintptr_t a = 1;
2711 uintptr_t b = 0;
2712 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
2713 DCHECK(IsAligned(payload.length(), kIntptrSize));
2714 const uintptr_t* end = cur + payload.length() / kIntptrSize;
2715 while (cur < end) {
2716 // Unsigned overflow expected and intended.
2717 a += *cur++;
2718 b += a;
2719 }
2720 #if V8_HOST_ARCH_64_BIT
2721 a ^= a >> 32;
2722 b ^= b >> 32;
2723 #endif // V8_HOST_ARCH_64_BIT
2724 a_ = static_cast<uint32_t>(a);
2725 b_ = static_cast<uint32_t>(b);
2726 }
2727
2728 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
2729
2730 uint32_t a() const { return a_; }
2731 uint32_t b() const { return b_; }
2732
2733 private:
2734 uint32_t a_;
2735 uint32_t b_;
2736
2737 DISALLOW_COPY_AND_ASSIGN(Checksum);
2738 };
2739
2740
2741 SerializedCodeData::SerializedCodeData(const List<byte>& payload,
2742 const CodeSerializer& cs) {
2743 DisallowHeapAllocation no_gc;
2744 const List<uint32_t>* stub_keys = cs.stub_keys();
2745
2746 List<Reservation> reservations;
2747 cs.EncodeReservations(&reservations);
2748
2749 // Calculate sizes.
2750 int reservation_size = reservations.length() * kInt32Size;
2751 int num_stub_keys = stub_keys->length();
2752 int stub_keys_size = stub_keys->length() * kInt32Size;
2753 int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
2754 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2755 int size = padded_payload_offset + payload.length();
2756
2757 // Allocate backing store and create result data.
2758 AllocateData(size);
2759
2760 // Set header values.
2761 SetMagicNumber(cs.isolate());
2762 SetHeaderValue(kVersionHashOffset, Version::Hash());
2763 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
2764 SetHeaderValue(kCpuFeaturesOffset,
2765 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
2766 SetHeaderValue(kFlagHashOffset, FlagList::Hash());
2767 SetHeaderValue(kNumReservationsOffset, reservations.length());
2768 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2769 SetHeaderValue(kPayloadLengthOffset, payload.length());
2770
2771 Checksum checksum(payload.ToConstVector());
2772 SetHeaderValue(kChecksum1Offset, checksum.a());
2773 SetHeaderValue(kChecksum2Offset, checksum.b());
2774
2775 // Copy reservation chunk sizes.
2776 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2777 reservation_size);
2778
2779 // Copy code stub keys.
2780 CopyBytes(data_ + kHeaderSize + reservation_size,
2781 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
2782
2783 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
2784
2785 // Copy serialized data.
2786 CopyBytes(data_ + padded_payload_offset, payload.begin(),
2787 static_cast<size_t>(payload.length()));
2788 }
2789
2790
2791 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
2792 Isolate* isolate, String* source) const {
2793 uint32_t magic_number = GetMagicNumber();
2794 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
2795 uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
2796 uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
2797 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
2798 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
2799 uint32_t c1 = GetHeaderValue(kChecksum1Offset);
2800 uint32_t c2 = GetHeaderValue(kChecksum2Offset);
2801 if (version_hash != Version::Hash()) return VERSION_MISMATCH;
2802 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
2803 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
2804 return CPU_FEATURES_MISMATCH;
2805 }
2806 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
2807 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
2808 return CHECK_SUCCESS;
2809 }
2810
2811
2812 uint32_t SerializedCodeData::SourceHash(String* source) const {
2813 return source->length();
2814 }
2815
2816
2817 // Return ScriptData object and relinquish ownership over it to the caller.
2818 ScriptData* SerializedCodeData::GetScriptData() {
2819 DCHECK(owns_data_);
2820 ScriptData* result = new ScriptData(data_, size_);
2821 result->AcquireDataOwnership();
2822 owns_data_ = false;
2823 data_ = NULL;
2824 return result;
2825 }
2826
2827
2828 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
2829 const {
2830 return Vector<const Reservation>(
2831 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2832 GetHeaderValue(kNumReservationsOffset));
2833 }
2834
2835
2836 Vector<const byte> SerializedCodeData::Payload() const {
2837 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2838 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
2839 int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
2840 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2841 const byte* payload = data_ + padded_payload_offset;
2842 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
2843 int length = GetHeaderValue(kPayloadLengthOffset);
2844 DCHECK_EQ(data_ + size_, payload + length);
2845 return Vector<const byte>(payload, length);
2846 }
2847
2848
2849 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
2850 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2851 const byte* start = data_ + kHeaderSize + reservations_size;
2852 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
2853 GetHeaderValue(kNumCodeStubKeysOffset));
2854 }
2855
2856
2857 SerializedCodeData::SerializedCodeData(ScriptData* data)
2858 : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
2859
2860
2861 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
2862 ScriptData* cached_data,
2863 String* source) {
2864 DisallowHeapAllocation no_gc;
2865 SerializedCodeData* scd = new SerializedCodeData(cached_data);
2866 SanityCheckResult r = scd->SanityCheck(isolate, source);
2867 if (r == CHECK_SUCCESS) return scd;
2868 cached_data->Reject();
2869 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
2870 delete scd;
2871 return NULL;
2872 }
2873 } // namespace internal
2874 } // namespace v8
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698