OLD | NEW |
(Empty) | |
| 1 // Copyright 2016 the V8 project authors. All rights reserved. |
| 2 |
| 3 #include "src/snapshot/deserializer.h" |
| 4 |
| 5 #include "src/bootstrapper.h" |
| 6 #include "src/heap/heap.h" |
| 7 #include "src/isolate.h" |
| 8 #include "src/macro-assembler.h" |
| 9 #include "src/snapshot/natives.h" |
| 10 #include "src/v8.h" |
| 11 |
| 12 namespace v8 { |
| 13 namespace internal { |
| 14 |
| 15 void Deserializer::DecodeReservation( |
| 16 Vector<const SerializedData::Reservation> res) { |
| 17 DCHECK_EQ(0, reservations_[NEW_SPACE].length()); |
| 18 STATIC_ASSERT(NEW_SPACE == 0); |
| 19 int current_space = NEW_SPACE; |
| 20 for (auto& r : res) { |
| 21 reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); |
| 22 if (r.is_last()) current_space++; |
| 23 } |
| 24 DCHECK_EQ(kNumberOfSpaces, current_space); |
| 25 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; |
| 26 } |
| 27 |
| 28 void Deserializer::FlushICacheForNewIsolate() { |
| 29 DCHECK(!deserializing_user_code_); |
| 30 // The entire isolate is newly deserialized. Simply flush all code pages. |
| 31 PageIterator it(isolate_->heap()->code_space()); |
| 32 while (it.has_next()) { |
| 33 Page* p = it.next(); |
| 34 Assembler::FlushICache(isolate_, p->area_start(), |
| 35 p->area_end() - p->area_start()); |
| 36 } |
| 37 } |
| 38 |
| 39 void Deserializer::FlushICacheForNewCodeObjects() { |
| 40 DCHECK(deserializing_user_code_); |
| 41 for (Code* code : new_code_objects_) { |
| 42 Assembler::FlushICache(isolate_, code->instruction_start(), |
| 43 code->instruction_size()); |
| 44 } |
| 45 } |
| 46 |
| 47 bool Deserializer::ReserveSpace() { |
| 48 #ifdef DEBUG |
| 49 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { |
| 50 CHECK(reservations_[i].length() > 0); |
| 51 } |
| 52 #endif // DEBUG |
| 53 if (!isolate_->heap()->ReserveSpace(reservations_)) return false; |
| 54 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { |
| 55 high_water_[i] = reservations_[i][0].start; |
| 56 } |
| 57 return true; |
| 58 } |
| 59 |
| 60 void Deserializer::Initialize(Isolate* isolate) { |
| 61 DCHECK_NULL(isolate_); |
| 62 DCHECK_NOT_NULL(isolate); |
| 63 isolate_ = isolate; |
| 64 DCHECK_NULL(external_reference_table_); |
| 65 external_reference_table_ = ExternalReferenceTable::instance(isolate); |
| 66 CHECK_EQ(magic_number_, |
| 67 SerializedData::ComputeMagicNumber(external_reference_table_)); |
| 68 } |
| 69 |
| 70 void Deserializer::Deserialize(Isolate* isolate) { |
| 71 Initialize(isolate); |
| 72 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); |
| 73 // No active threads. |
| 74 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); |
| 75 // No active handles. |
| 76 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); |
| 77 |
| 78 { |
| 79 DisallowHeapAllocation no_gc; |
| 80 isolate_->heap()->IterateSmiRoots(this); |
| 81 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); |
| 82 isolate_->heap()->RepairFreeListsAfterDeserialization(); |
| 83 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); |
| 84 DeserializeDeferredObjects(); |
| 85 FlushICacheForNewIsolate(); |
| 86 } |
| 87 |
| 88 isolate_->heap()->set_native_contexts_list( |
| 89 isolate_->heap()->undefined_value()); |
| 90 // The allocation site list is build during root iteration, but if no sites |
| 91 // were encountered then it needs to be initialized to undefined. |
| 92 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { |
| 93 isolate_->heap()->set_allocation_sites_list( |
| 94 isolate_->heap()->undefined_value()); |
| 95 } |
| 96 |
| 97 // Update data pointers to the external strings containing natives sources. |
| 98 Natives::UpdateSourceCache(isolate_->heap()); |
| 99 ExtraNatives::UpdateSourceCache(isolate_->heap()); |
| 100 |
| 101 // Issue code events for newly deserialized code objects. |
| 102 LOG_CODE_EVENT(isolate_, LogCodeObjects()); |
| 103 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); |
| 104 } |
| 105 |
| 106 MaybeHandle<Object> Deserializer::DeserializePartial( |
| 107 Isolate* isolate, Handle<JSGlobalProxy> global_proxy) { |
| 108 Initialize(isolate); |
| 109 if (!ReserveSpace()) { |
| 110 V8::FatalProcessOutOfMemory("deserialize context"); |
| 111 return MaybeHandle<Object>(); |
| 112 } |
| 113 |
| 114 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); |
| 115 attached_objects[kGlobalProxyReference] = global_proxy; |
| 116 SetAttachedObjects(attached_objects); |
| 117 |
| 118 DisallowHeapAllocation no_gc; |
| 119 // Keep track of the code space start and end pointers in case new |
| 120 // code objects were unserialized |
| 121 OldSpace* code_space = isolate_->heap()->code_space(); |
| 122 Address start_address = code_space->top(); |
| 123 Object* root; |
| 124 VisitPointer(&root); |
| 125 DeserializeDeferredObjects(); |
| 126 |
| 127 // There's no code deserialized here. If this assert fires then that's |
| 128 // changed and logging should be added to notify the profiler et al of the |
| 129 // new code, which also has to be flushed from instruction cache. |
| 130 CHECK_EQ(start_address, code_space->top()); |
| 131 return Handle<Object>(root, isolate); |
| 132 } |
| 133 |
| 134 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( |
| 135 Isolate* isolate) { |
| 136 Initialize(isolate); |
| 137 if (!ReserveSpace()) { |
| 138 return Handle<SharedFunctionInfo>(); |
| 139 } else { |
| 140 deserializing_user_code_ = true; |
| 141 HandleScope scope(isolate); |
| 142 Handle<SharedFunctionInfo> result; |
| 143 { |
| 144 DisallowHeapAllocation no_gc; |
| 145 Object* root; |
| 146 VisitPointer(&root); |
| 147 DeserializeDeferredObjects(); |
| 148 FlushICacheForNewCodeObjects(); |
| 149 result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); |
| 150 } |
| 151 CommitPostProcessedObjects(isolate); |
| 152 return scope.CloseAndEscape(result); |
| 153 } |
| 154 } |
| 155 |
| 156 Deserializer::~Deserializer() { |
| 157 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. |
| 158 // DCHECK(source_.AtEOF()); |
| 159 attached_objects_.Dispose(); |
| 160 } |
| 161 |
| 162 // This is called on the roots. It is the driver of the deserialization |
| 163 // process. It is also called on the body of each function. |
| 164 void Deserializer::VisitPointers(Object** start, Object** end) { |
| 165 // The space must be new space. Any other space would cause ReadChunk to try |
| 166 // to update the remembered using NULL as the address. |
| 167 ReadData(start, end, NEW_SPACE, NULL); |
| 168 } |
| 169 |
| 170 void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) { |
| 171 static const byte expected = kSynchronize; |
| 172 CHECK_EQ(expected, source_.Get()); |
| 173 } |
| 174 |
| 175 void Deserializer::DeserializeDeferredObjects() { |
| 176 for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) { |
| 177 switch (code) { |
| 178 case kAlignmentPrefix: |
| 179 case kAlignmentPrefix + 1: |
| 180 case kAlignmentPrefix + 2: |
| 181 SetAlignment(code); |
| 182 break; |
| 183 default: { |
| 184 int space = code & kSpaceMask; |
| 185 DCHECK(space <= kNumberOfSpaces); |
| 186 DCHECK(code - space == kNewObject); |
| 187 HeapObject* object = GetBackReferencedObject(space); |
| 188 int size = source_.GetInt() << kPointerSizeLog2; |
| 189 Address obj_address = object->address(); |
| 190 Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize); |
| 191 Object** end = reinterpret_cast<Object**>(obj_address + size); |
| 192 bool filled = ReadData(start, end, space, obj_address); |
| 193 CHECK(filled); |
| 194 DCHECK(CanBeDeferred(object)); |
| 195 PostProcessNewObject(object, space); |
| 196 } |
| 197 } |
| 198 } |
| 199 } |
| 200 |
| 201 // Used to insert a deserialized internalized string into the string table. |
| 202 class StringTableInsertionKey : public HashTableKey { |
| 203 public: |
| 204 explicit StringTableInsertionKey(String* string) |
| 205 : string_(string), hash_(HashForObject(string)) { |
| 206 DCHECK(string->IsInternalizedString()); |
| 207 } |
| 208 |
| 209 bool IsMatch(Object* string) override { |
| 210 // We know that all entries in a hash table had their hash keys created. |
| 211 // Use that knowledge to have fast failure. |
| 212 if (hash_ != HashForObject(string)) return false; |
| 213 // We want to compare the content of two internalized strings here. |
| 214 return string_->SlowEquals(String::cast(string)); |
| 215 } |
| 216 |
| 217 uint32_t Hash() override { return hash_; } |
| 218 |
| 219 uint32_t HashForObject(Object* key) override { |
| 220 return String::cast(key)->Hash(); |
| 221 } |
| 222 |
| 223 MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override { |
| 224 return handle(string_, isolate); |
| 225 } |
| 226 |
| 227 private: |
| 228 String* string_; |
| 229 uint32_t hash_; |
| 230 DisallowHeapAllocation no_gc; |
| 231 }; |
| 232 |
| 233 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { |
| 234 if (deserializing_user_code()) { |
| 235 if (obj->IsString()) { |
| 236 String* string = String::cast(obj); |
| 237 // Uninitialize hash field as the hash seed may have changed. |
| 238 string->set_hash_field(String::kEmptyHashField); |
| 239 if (string->IsInternalizedString()) { |
| 240 // Canonicalize the internalized string. If it already exists in the |
| 241 // string table, set it to forward to the existing one. |
| 242 StringTableInsertionKey key(string); |
| 243 String* canonical = StringTable::LookupKeyIfExists(isolate_, &key); |
| 244 if (canonical == NULL) { |
| 245 new_internalized_strings_.Add(handle(string)); |
| 246 return string; |
| 247 } else { |
| 248 string->SetForwardedInternalizedString(canonical); |
| 249 return canonical; |
| 250 } |
| 251 } |
| 252 } else if (obj->IsScript()) { |
| 253 new_scripts_.Add(handle(Script::cast(obj))); |
| 254 } else { |
| 255 DCHECK(CanBeDeferred(obj)); |
| 256 } |
| 257 } |
| 258 if (obj->IsAllocationSite()) { |
| 259 DCHECK(obj->IsAllocationSite()); |
| 260 // Allocation sites are present in the snapshot, and must be linked into |
| 261 // a list at deserialization time. |
| 262 AllocationSite* site = AllocationSite::cast(obj); |
| 263 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() |
| 264 // as a (weak) root. If this root is relocated correctly, this becomes |
| 265 // unnecessary. |
| 266 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { |
| 267 site->set_weak_next(isolate_->heap()->undefined_value()); |
| 268 } else { |
| 269 site->set_weak_next(isolate_->heap()->allocation_sites_list()); |
| 270 } |
| 271 isolate_->heap()->set_allocation_sites_list(site); |
| 272 } else if (obj->IsCode()) { |
| 273 // We flush all code pages after deserializing the startup snapshot. In that |
| 274 // case, we only need to remember code objects in the large object space. |
| 275 // When deserializing user code, remember each individual code object. |
| 276 if (deserializing_user_code() || space == LO_SPACE) { |
| 277 new_code_objects_.Add(Code::cast(obj)); |
| 278 } |
| 279 } |
| 280 // Check alignment. |
| 281 DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment())); |
| 282 return obj; |
| 283 } |
| 284 |
| 285 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) { |
| 286 StringTable::EnsureCapacityForDeserialization( |
| 287 isolate, new_internalized_strings_.length()); |
| 288 for (Handle<String> string : new_internalized_strings_) { |
| 289 StringTableInsertionKey key(*string); |
| 290 DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key)); |
| 291 StringTable::LookupKey(isolate, &key); |
| 292 } |
| 293 |
| 294 Heap* heap = isolate->heap(); |
| 295 Factory* factory = isolate->factory(); |
| 296 for (Handle<Script> script : new_scripts_) { |
| 297 // Assign a new script id to avoid collision. |
| 298 script->set_id(isolate_->heap()->NextScriptId()); |
| 299 // Add script to list. |
| 300 Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script); |
| 301 heap->SetRootScriptList(*list); |
| 302 } |
| 303 } |
| 304 |
| 305 HeapObject* Deserializer::GetBackReferencedObject(int space) { |
| 306 HeapObject* obj; |
| 307 BackReference back_reference(source_.GetInt()); |
| 308 if (space == LO_SPACE) { |
| 309 CHECK(back_reference.chunk_index() == 0); |
| 310 uint32_t index = back_reference.large_object_index(); |
| 311 obj = deserialized_large_objects_[index]; |
| 312 } else { |
| 313 DCHECK(space < kNumberOfPreallocatedSpaces); |
| 314 uint32_t chunk_index = back_reference.chunk_index(); |
| 315 DCHECK_LE(chunk_index, current_chunk_[space]); |
| 316 uint32_t chunk_offset = back_reference.chunk_offset(); |
| 317 Address address = reservations_[space][chunk_index].start + chunk_offset; |
| 318 if (next_alignment_ != kWordAligned) { |
| 319 int padding = Heap::GetFillToAlign(address, next_alignment_); |
| 320 next_alignment_ = kWordAligned; |
| 321 DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller()); |
| 322 address += padding; |
| 323 } |
| 324 obj = HeapObject::FromAddress(address); |
| 325 } |
| 326 if (deserializing_user_code() && obj->IsInternalizedString()) { |
| 327 obj = String::cast(obj)->GetForwardedInternalizedString(); |
| 328 } |
| 329 hot_objects_.Add(obj); |
| 330 return obj; |
| 331 } |
| 332 |
| 333 // This routine writes the new object into the pointer provided and then |
| 334 // returns true if the new object was in young space and false otherwise. |
| 335 // The reason for this strange interface is that otherwise the object is |
| 336 // written very late, which means the FreeSpace map is not set up by the |
| 337 // time we need to use it to mark the space at the end of a page free. |
| 338 void Deserializer::ReadObject(int space_number, Object** write_back) { |
| 339 Address address; |
| 340 HeapObject* obj; |
| 341 int size = source_.GetInt() << kObjectAlignmentBits; |
| 342 |
| 343 if (next_alignment_ != kWordAligned) { |
| 344 int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); |
| 345 address = Allocate(space_number, reserved); |
| 346 obj = HeapObject::FromAddress(address); |
| 347 // If one of the following assertions fails, then we are deserializing an |
| 348 // aligned object when the filler maps have not been deserialized yet. |
| 349 // We require filler maps as padding to align the object. |
| 350 Heap* heap = isolate_->heap(); |
| 351 DCHECK(heap->free_space_map()->IsMap()); |
| 352 DCHECK(heap->one_pointer_filler_map()->IsMap()); |
| 353 DCHECK(heap->two_pointer_filler_map()->IsMap()); |
| 354 obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_); |
| 355 address = obj->address(); |
| 356 next_alignment_ = kWordAligned; |
| 357 } else { |
| 358 address = Allocate(space_number, size); |
| 359 obj = HeapObject::FromAddress(address); |
| 360 } |
| 361 |
| 362 isolate_->heap()->OnAllocationEvent(obj, size); |
| 363 Object** current = reinterpret_cast<Object**>(address); |
| 364 Object** limit = current + (size >> kPointerSizeLog2); |
| 365 if (FLAG_log_snapshot_positions) { |
| 366 LOG(isolate_, SnapshotPositionEvent(address, source_.position())); |
| 367 } |
| 368 |
| 369 if (ReadData(current, limit, space_number, address)) { |
| 370 // Only post process if object content has not been deferred. |
| 371 obj = PostProcessNewObject(obj, space_number); |
| 372 } |
| 373 |
| 374 Object* write_back_obj = obj; |
| 375 UnalignedCopy(write_back, &write_back_obj); |
| 376 #ifdef DEBUG |
| 377 if (obj->IsCode()) { |
| 378 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); |
| 379 } else { |
| 380 DCHECK(space_number != CODE_SPACE); |
| 381 } |
| 382 #endif // DEBUG |
| 383 } |
| 384 |
| 385 // We know the space requirements before deserialization and can |
| 386 // pre-allocate that reserved space. During deserialization, all we need |
| 387 // to do is to bump up the pointer for each space in the reserved |
| 388 // space. This is also used for fixing back references. |
| 389 // We may have to split up the pre-allocation into several chunks |
| 390 // because it would not fit onto a single page. We do not have to keep |
| 391 // track of when to move to the next chunk. An opcode will signal this. |
| 392 // Since multiple large objects cannot be folded into one large object |
| 393 // space allocation, we have to do an actual allocation when deserializing |
| 394 // each large object. Instead of tracking offset for back references, we |
| 395 // reference large objects by index. |
| 396 Address Deserializer::Allocate(int space_index, int size) { |
| 397 if (space_index == LO_SPACE) { |
| 398 AlwaysAllocateScope scope(isolate_); |
| 399 LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); |
| 400 Executability exec = static_cast<Executability>(source_.Get()); |
| 401 AllocationResult result = lo_space->AllocateRaw(size, exec); |
| 402 HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); |
| 403 deserialized_large_objects_.Add(obj); |
| 404 return obj->address(); |
| 405 } else { |
| 406 DCHECK(space_index < kNumberOfPreallocatedSpaces); |
| 407 Address address = high_water_[space_index]; |
| 408 DCHECK_NOT_NULL(address); |
| 409 high_water_[space_index] += size; |
| 410 #ifdef DEBUG |
| 411 // Assert that the current reserved chunk is still big enough. |
| 412 const Heap::Reservation& reservation = reservations_[space_index]; |
| 413 int chunk_index = current_chunk_[space_index]; |
| 414 CHECK_LE(high_water_[space_index], reservation[chunk_index].end); |
| 415 #endif |
| 416 return address; |
| 417 } |
| 418 } |
| 419 |
| 420 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector, |
| 421 Object** current) { |
| 422 DCHECK(!isolate_->heap()->deserialization_complete()); |
| 423 NativesExternalStringResource* resource = new NativesExternalStringResource( |
| 424 source_vector.start(), source_vector.length()); |
| 425 Object* resource_obj = reinterpret_cast<Object*>(resource); |
| 426 UnalignedCopy(current++, &resource_obj); |
| 427 return current; |
| 428 } |
| 429 |
| 430 bool Deserializer::ReadData(Object** current, Object** limit, int source_space, |
| 431 Address current_object_address) { |
| 432 Isolate* const isolate = isolate_; |
| 433 // Write barrier support costs around 1% in startup time. In fact there |
| 434 // are no new space objects in current boot snapshots, so it's not needed, |
| 435 // but that may change. |
| 436 bool write_barrier_needed = |
| 437 (current_object_address != NULL && source_space != NEW_SPACE && |
| 438 source_space != CODE_SPACE); |
| 439 while (current < limit) { |
| 440 byte data = source_.Get(); |
| 441 switch (data) { |
| 442 #define CASE_STATEMENT(where, how, within, space_number) \ |
| 443 case where + how + within + space_number: \ |
| 444 STATIC_ASSERT((where & ~kWhereMask) == 0); \ |
| 445 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ |
| 446 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ |
| 447 STATIC_ASSERT((space_number & ~kSpaceMask) == 0); |
| 448 |
| 449 #define CASE_BODY(where, how, within, space_number_if_any) \ |
| 450 { \ |
| 451 bool emit_write_barrier = false; \ |
| 452 bool current_was_incremented = false; \ |
| 453 int space_number = space_number_if_any == kAnyOldSpace \ |
| 454 ? (data & kSpaceMask) \ |
| 455 : space_number_if_any; \ |
| 456 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ |
| 457 ReadObject(space_number, current); \ |
| 458 emit_write_barrier = (space_number == NEW_SPACE); \ |
| 459 } else { \ |
| 460 Object* new_object = NULL; /* May not be a real Object pointer. */ \ |
| 461 if (where == kNewObject) { \ |
| 462 ReadObject(space_number, &new_object); \ |
| 463 } else if (where == kBackref) { \ |
| 464 emit_write_barrier = (space_number == NEW_SPACE); \ |
| 465 new_object = GetBackReferencedObject(data & kSpaceMask); \ |
| 466 } else if (where == kBackrefWithSkip) { \ |
| 467 int skip = source_.GetInt(); \ |
| 468 current = reinterpret_cast<Object**>( \ |
| 469 reinterpret_cast<Address>(current) + skip); \ |
| 470 emit_write_barrier = (space_number == NEW_SPACE); \ |
| 471 new_object = GetBackReferencedObject(data & kSpaceMask); \ |
| 472 } else if (where == kRootArray) { \ |
| 473 int id = source_.GetInt(); \ |
| 474 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \ |
| 475 new_object = isolate->heap()->root(root_index); \ |
| 476 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
| 477 } else if (where == kPartialSnapshotCache) { \ |
| 478 int cache_index = source_.GetInt(); \ |
| 479 new_object = isolate->partial_snapshot_cache()->at(cache_index); \ |
| 480 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
| 481 } else if (where == kExternalReference) { \ |
| 482 int skip = source_.GetInt(); \ |
| 483 current = reinterpret_cast<Object**>( \ |
| 484 reinterpret_cast<Address>(current) + skip); \ |
| 485 int reference_id = source_.GetInt(); \ |
| 486 Address address = external_reference_table_->address(reference_id); \ |
| 487 new_object = reinterpret_cast<Object*>(address); \ |
| 488 } else if (where == kAttachedReference) { \ |
| 489 int index = source_.GetInt(); \ |
| 490 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ |
| 491 new_object = *attached_objects_[index]; \ |
| 492 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
| 493 } else { \ |
| 494 DCHECK(where == kBuiltin); \ |
| 495 DCHECK(deserializing_user_code()); \ |
| 496 int builtin_id = source_.GetInt(); \ |
| 497 DCHECK_LE(0, builtin_id); \ |
| 498 DCHECK_LT(builtin_id, Builtins::builtin_count); \ |
| 499 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ |
| 500 new_object = isolate->builtins()->builtin(name); \ |
| 501 emit_write_barrier = false; \ |
| 502 } \ |
| 503 if (within == kInnerPointer) { \ |
| 504 if (space_number != CODE_SPACE || new_object->IsCode()) { \ |
| 505 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ |
| 506 new_object = \ |
| 507 reinterpret_cast<Object*>(new_code_object->instruction_start()); \ |
| 508 } else { \ |
| 509 DCHECK(space_number == CODE_SPACE); \ |
| 510 Cell* cell = Cell::cast(new_object); \ |
| 511 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ |
| 512 } \ |
| 513 } \ |
| 514 if (how == kFromCode) { \ |
| 515 Address location_of_branch_data = reinterpret_cast<Address>(current); \ |
| 516 Assembler::deserialization_set_special_target_at( \ |
| 517 isolate, location_of_branch_data, \ |
| 518 Code::cast(HeapObject::FromAddress(current_object_address)), \ |
| 519 reinterpret_cast<Address>(new_object)); \ |
| 520 location_of_branch_data += Assembler::kSpecialTargetSize; \ |
| 521 current = reinterpret_cast<Object**>(location_of_branch_data); \ |
| 522 current_was_incremented = true; \ |
| 523 } else { \ |
| 524 UnalignedCopy(current, &new_object); \ |
| 525 } \ |
| 526 } \ |
| 527 if (emit_write_barrier && write_barrier_needed) { \ |
| 528 Address current_address = reinterpret_cast<Address>(current); \ |
| 529 SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \ |
| 530 isolate->heap()->RecordWrite( \ |
| 531 HeapObject::FromAddress(current_object_address), \ |
| 532 static_cast<int>(current_address - current_object_address), \ |
| 533 *reinterpret_cast<Object**>(current_address)); \ |
| 534 } \ |
| 535 if (!current_was_incremented) { \ |
| 536 current++; \ |
| 537 } \ |
| 538 break; \ |
| 539 } |
| 540 |
| 541 // This generates a case and a body for the new space (which has to do extra |
| 542 // write barrier handling) and handles the other spaces with fall-through cases |
| 543 // and one body. |
| 544 #define ALL_SPACES(where, how, within) \ |
| 545 CASE_STATEMENT(where, how, within, NEW_SPACE) \ |
| 546 CASE_BODY(where, how, within, NEW_SPACE) \ |
| 547 CASE_STATEMENT(where, how, within, OLD_SPACE) \ |
| 548 CASE_STATEMENT(where, how, within, CODE_SPACE) \ |
| 549 CASE_STATEMENT(where, how, within, MAP_SPACE) \ |
| 550 CASE_STATEMENT(where, how, within, LO_SPACE) \ |
| 551 CASE_BODY(where, how, within, kAnyOldSpace) |
| 552 |
| 553 #define FOUR_CASES(byte_code) \ |
| 554 case byte_code: \ |
| 555 case byte_code + 1: \ |
| 556 case byte_code + 2: \ |
| 557 case byte_code + 3: |
| 558 |
| 559 #define SIXTEEN_CASES(byte_code) \ |
| 560 FOUR_CASES(byte_code) \ |
| 561 FOUR_CASES(byte_code + 4) \ |
| 562 FOUR_CASES(byte_code + 8) \ |
| 563 FOUR_CASES(byte_code + 12) |
| 564 |
| 565 #define SINGLE_CASE(where, how, within, space) \ |
| 566 CASE_STATEMENT(where, how, within, space) \ |
| 567 CASE_BODY(where, how, within, space) |
| 568 |
| 569 // Deserialize a new object and write a pointer to it to the current |
| 570 // object. |
| 571 ALL_SPACES(kNewObject, kPlain, kStartOfObject) |
| 572 // Support for direct instruction pointers in functions. It's an inner |
| 573 // pointer because it points at the entry point, not at the start of the |
| 574 // code object. |
| 575 SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE) |
| 576 // Deserialize a new code object and write a pointer to its first |
| 577 // instruction to the current code object. |
| 578 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) |
| 579 // Find a recently deserialized object using its offset from the current |
| 580 // allocation point and write a pointer to it to the current object. |
| 581 ALL_SPACES(kBackref, kPlain, kStartOfObject) |
| 582 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) |
| 583 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ |
| 584 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL |
| 585 // Deserialize a new object from pointer found in code and write |
| 586 // a pointer to it to the current object. Required only for MIPS, PPC or |
| 587 // ARM with embedded constant pool, and omitted on the other architectures |
| 588 // because it is fully unrolled and would cause bloat. |
| 589 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) |
| 590 // Find a recently deserialized code object using its offset from the |
| 591 // current allocation point and write a pointer to it to the current |
| 592 // object. Required only for MIPS, PPC or ARM with embedded constant pool. |
| 593 ALL_SPACES(kBackref, kFromCode, kStartOfObject) |
| 594 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) |
| 595 #endif |
| 596 // Find a recently deserialized code object using its offset from the |
| 597 // current allocation point and write a pointer to its first instruction |
| 598 // to the current code object or the instruction pointer in a function |
| 599 // object. |
| 600 ALL_SPACES(kBackref, kFromCode, kInnerPointer) |
| 601 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) |
| 602 ALL_SPACES(kBackref, kPlain, kInnerPointer) |
| 603 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) |
| 604 // Find an object in the roots array and write a pointer to it to the |
| 605 // current object. |
| 606 SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) |
| 607 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ |
| 608 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL |
| 609 // Find an object in the roots array and write a pointer to it to in code. |
| 610 SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) |
| 611 #endif |
| 612 // Find an object in the partial snapshots cache and write a pointer to it |
| 613 // to the current object. |
| 614 SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) |
| 615 // Find an code entry in the partial snapshots cache and |
| 616 // write a pointer to it to the current object. |
| 617 SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0) |
| 618 // Find an external reference and write a pointer to it to the current |
| 619 // object. |
| 620 SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) |
| 621 // Find an external reference and write a pointer to it in the current |
| 622 // code object. |
| 623 SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) |
| 624 // Find an object in the attached references and write a pointer to it to |
| 625 // the current object. |
| 626 SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) |
| 627 SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0) |
| 628 SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) |
| 629 // Find a builtin and write a pointer to it to the current object. |
| 630 SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) |
| 631 SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0) |
| 632 SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) |
| 633 |
| 634 #undef CASE_STATEMENT |
| 635 #undef CASE_BODY |
| 636 #undef ALL_SPACES |
| 637 |
| 638 case kSkip: { |
| 639 int size = source_.GetInt(); |
| 640 current = reinterpret_cast<Object**>( |
| 641 reinterpret_cast<intptr_t>(current) + size); |
| 642 break; |
| 643 } |
| 644 |
| 645 case kInternalReferenceEncoded: |
| 646 case kInternalReference: { |
| 647 // Internal reference address is not encoded via skip, but by offset |
| 648 // from code entry. |
| 649 int pc_offset = source_.GetInt(); |
| 650 int target_offset = source_.GetInt(); |
| 651 Code* code = |
| 652 Code::cast(HeapObject::FromAddress(current_object_address)); |
| 653 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); |
| 654 DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); |
| 655 Address pc = code->entry() + pc_offset; |
| 656 Address target = code->entry() + target_offset; |
| 657 Assembler::deserialization_set_target_internal_reference_at( |
| 658 isolate, pc, target, data == kInternalReference |
| 659 ? RelocInfo::INTERNAL_REFERENCE |
| 660 : RelocInfo::INTERNAL_REFERENCE_ENCODED); |
| 661 break; |
| 662 } |
| 663 |
| 664 case kNop: |
| 665 break; |
| 666 |
| 667 case kNextChunk: { |
| 668 int space = source_.Get(); |
| 669 DCHECK(space < kNumberOfPreallocatedSpaces); |
| 670 int chunk_index = current_chunk_[space]; |
| 671 const Heap::Reservation& reservation = reservations_[space]; |
| 672 // Make sure the current chunk is indeed exhausted. |
| 673 CHECK_EQ(reservation[chunk_index].end, high_water_[space]); |
| 674 // Move to next reserved chunk. |
| 675 chunk_index = ++current_chunk_[space]; |
| 676 CHECK_LT(chunk_index, reservation.length()); |
| 677 high_water_[space] = reservation[chunk_index].start; |
| 678 break; |
| 679 } |
| 680 |
| 681 case kDeferred: { |
| 682 // Deferred can only occur right after the heap object header. |
| 683 DCHECK(current == reinterpret_cast<Object**>(current_object_address + |
| 684 kPointerSize)); |
| 685 HeapObject* obj = HeapObject::FromAddress(current_object_address); |
| 686 // If the deferred object is a map, its instance type may be used |
| 687 // during deserialization. Initialize it with a temporary value. |
| 688 if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE); |
| 689 current = limit; |
| 690 return false; |
| 691 } |
| 692 |
| 693 case kSynchronize: |
| 694 // If we get here then that indicates that you have a mismatch between |
| 695 // the number of GC roots when serializing and deserializing. |
| 696 CHECK(false); |
| 697 break; |
| 698 |
| 699 case kNativesStringResource: |
| 700 current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()), |
| 701 current); |
| 702 break; |
| 703 |
| 704 case kExtraNativesStringResource: |
| 705 current = CopyInNativesSource( |
| 706 ExtraNatives::GetScriptSource(source_.Get()), current); |
| 707 break; |
| 708 |
| 709 // Deserialize raw data of variable length. |
| 710 case kVariableRawData: { |
| 711 int size_in_bytes = source_.GetInt(); |
| 712 byte* raw_data_out = reinterpret_cast<byte*>(current); |
| 713 source_.CopyRaw(raw_data_out, size_in_bytes); |
| 714 break; |
| 715 } |
| 716 |
| 717 case kVariableRepeat: { |
| 718 int repeats = source_.GetInt(); |
| 719 Object* object = current[-1]; |
| 720 DCHECK(!isolate->heap()->InNewSpace(object)); |
| 721 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); |
| 722 break; |
| 723 } |
| 724 |
| 725 case kAlignmentPrefix: |
| 726 case kAlignmentPrefix + 1: |
| 727 case kAlignmentPrefix + 2: |
| 728 SetAlignment(data); |
| 729 break; |
| 730 |
| 731 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); |
| 732 STATIC_ASSERT(kNumberOfRootArrayConstants == 32); |
| 733 SIXTEEN_CASES(kRootArrayConstantsWithSkip) |
| 734 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { |
| 735 int skip = source_.GetInt(); |
| 736 current = reinterpret_cast<Object**>( |
| 737 reinterpret_cast<intptr_t>(current) + skip); |
| 738 // Fall through. |
| 739 } |
| 740 |
| 741 SIXTEEN_CASES(kRootArrayConstants) |
| 742 SIXTEEN_CASES(kRootArrayConstants + 16) { |
| 743 int id = data & kRootArrayConstantsMask; |
| 744 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); |
| 745 Object* object = isolate->heap()->root(root_index); |
| 746 DCHECK(!isolate->heap()->InNewSpace(object)); |
| 747 UnalignedCopy(current++, &object); |
| 748 break; |
| 749 } |
| 750 |
| 751 STATIC_ASSERT(kNumberOfHotObjects == 8); |
| 752 FOUR_CASES(kHotObjectWithSkip) |
| 753 FOUR_CASES(kHotObjectWithSkip + 4) { |
| 754 int skip = source_.GetInt(); |
| 755 current = reinterpret_cast<Object**>( |
| 756 reinterpret_cast<Address>(current) + skip); |
| 757 // Fall through. |
| 758 } |
| 759 |
| 760 FOUR_CASES(kHotObject) |
| 761 FOUR_CASES(kHotObject + 4) { |
| 762 int index = data & kHotObjectMask; |
| 763 Object* hot_object = hot_objects_.Get(index); |
| 764 UnalignedCopy(current, &hot_object); |
| 765 if (write_barrier_needed) { |
| 766 Address current_address = reinterpret_cast<Address>(current); |
| 767 SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); |
| 768 isolate->heap()->RecordWrite( |
| 769 HeapObject::FromAddress(current_object_address), |
| 770 static_cast<int>(current_address - current_object_address), |
| 771 hot_object); |
| 772 } |
| 773 current++; |
| 774 break; |
| 775 } |
| 776 |
| 777 // Deserialize raw data of fixed length from 1 to 32 words. |
| 778 STATIC_ASSERT(kNumberOfFixedRawData == 32); |
| 779 SIXTEEN_CASES(kFixedRawData) |
| 780 SIXTEEN_CASES(kFixedRawData + 16) { |
| 781 byte* raw_data_out = reinterpret_cast<byte*>(current); |
| 782 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; |
| 783 source_.CopyRaw(raw_data_out, size_in_bytes); |
| 784 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); |
| 785 break; |
| 786 } |
| 787 |
| 788 STATIC_ASSERT(kNumberOfFixedRepeat == 16); |
| 789 SIXTEEN_CASES(kFixedRepeat) { |
| 790 int repeats = data - kFixedRepeatStart; |
| 791 Object* object; |
| 792 UnalignedCopy(&object, current - 1); |
| 793 DCHECK(!isolate->heap()->InNewSpace(object)); |
| 794 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); |
| 795 break; |
| 796 } |
| 797 |
| 798 #undef SIXTEEN_CASES |
| 799 #undef FOUR_CASES |
| 800 #undef SINGLE_CASE |
| 801 |
| 802 default: |
| 803 CHECK(false); |
| 804 } |
| 805 } |
| 806 CHECK_EQ(limit, current); |
| 807 return true; |
| 808 } |
| 809 } // namespace internal |
| 810 } // namespace v8 |
OLD | NEW |