| Index: src/x64/lithium-codegen-x64.cc
|
| diff --git a/src/x64/lithium-codegen-x64.cc b/src/x64/lithium-codegen-x64.cc
|
| index 3316c3ffa1f70a8912a3eb098333dbfc3f386d86..5e84347e1283ce46d634d8fdaddb79867c46fe8e 100644
|
| --- a/src/x64/lithium-codegen-x64.cc
|
| +++ b/src/x64/lithium-codegen-x64.cc
|
| @@ -983,264 +983,275 @@ void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| }
|
|
|
|
|
| +void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
| +
|
| + // Theoretically, a variation of the branch-free code for integer division by
|
| + // a power of 2 (calculating the remainder via an additional multiplication
|
| + // (which gets simplified to an 'and') and subtraction) should be faster, and
|
| + // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
|
| + // indicate that positive dividends are heavily favored, so the branching
|
| + // version performs better.
|
| + HMod* hmod = instr->hydrogen();
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + Label dividend_is_not_negative, done;
|
| + if (hmod->left()->CanBeNegative()) {
|
| + __ testl(dividend, dividend);
|
| + __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
|
| + // Note that this is correct even for kMinInt operands.
|
| + __ negl(dividend);
|
| + __ andl(dividend, Immediate(mask));
|
| + __ negl(dividend);
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + __ jmp(&done, Label::kNear);
|
| + }
|
| +
|
| + __ bind(÷nd_is_not_negative);
|
| + __ andl(dividend, Immediate(mask));
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| void LCodeGen::DoModI(LModI* instr) {
|
| + if (instr->hydrogen()->RightIsPowerOf2()) {
|
| + return DoModByPowerOf2I(reinterpret_cast<LModByPowerOf2I*>(instr));
|
| + }
|
| HMod* hmod = instr->hydrogen();
|
| HValue* left = hmod->left();
|
| HValue* right = hmod->right();
|
| - if (hmod->RightIsPowerOf2()) {
|
| - // TODO(svenpanne) We should really do the strength reduction on the
|
| - // Hydrogen level.
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(ToRegister(instr->result())));
|
| -
|
| - // Note: The code below even works when right contains kMinInt.
|
| - int32_t divisor = Abs(right->GetInteger32Constant());
|
| -
|
| - Label left_is_not_negative, done;
|
| - if (left->CanBeNegative()) {
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_sign, &left_is_not_negative, Label::kNear);
|
| - __ negl(left_reg);
|
| - __ andl(left_reg, Immediate(divisor - 1));
|
| - __ negl(left_reg);
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ jmp(&done, Label::kNear);
|
| - }
|
| -
|
| - __ bind(&left_is_not_negative);
|
| - __ andl(left_reg, Immediate(divisor - 1));
|
| - __ bind(&done);
|
| - } else {
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(rax));
|
| - Register right_reg = ToRegister(instr->right());
|
| - ASSERT(!right_reg.is(rax));
|
| - ASSERT(!right_reg.is(rdx));
|
| - Register result_reg = ToRegister(instr->result());
|
| - ASSERT(result_reg.is(rdx));
|
|
|
| - Label done;
|
| - // Check for x % 0, idiv would signal a divide error. We have to
|
| - // deopt in this case because we can't return a NaN.
|
| - if (right->CanBeZero()) {
|
| - __ testl(right_reg, right_reg);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| + Register left_reg = ToRegister(instr->left());
|
| + ASSERT(left_reg.is(rax));
|
| + Register right_reg = ToRegister(instr->right());
|
| + ASSERT(!right_reg.is(rax));
|
| + ASSERT(!right_reg.is(rdx));
|
| + Register result_reg = ToRegister(instr->result());
|
| + ASSERT(result_reg.is(rdx));
|
|
|
| - // Check for kMinInt % -1, idiv would signal a divide error. We
|
| - // have to deopt if we care about -0, because we can't return that.
|
| - if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
| - Label no_overflow_possible;
|
| - __ cmpl(left_reg, Immediate(kMinInt));
|
| - __ j(not_zero, &no_overflow_possible, Label::kNear);
|
| - __ cmpl(right_reg, Immediate(-1));
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(equal, instr->environment());
|
| - } else {
|
| - __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| - __ Set(result_reg, 0);
|
| - __ jmp(&done, Label::kNear);
|
| - }
|
| - __ bind(&no_overflow_possible);
|
| - }
|
| + Label done;
|
| + // Check for x % 0, idiv would signal a divide error. We have to
|
| + // deopt in this case because we can't return a NaN.
|
| + if (right->CanBeZero()) {
|
| + __ testl(right_reg, right_reg);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
|
|
| - // Sign extend dividend in eax into edx:eax, since we are using only the low
|
| - // 32 bits of the values.
|
| - __ cdq();
|
| -
|
| - // If we care about -0, test if the dividend is <0 and the result is 0.
|
| - if (left->CanBeNegative() &&
|
| - hmod->CanBeZero() &&
|
| - hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label positive_left;
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_sign, &positive_left, Label::kNear);
|
| - __ idivl(right_reg);
|
| - __ testl(result_reg, result_reg);
|
| - DeoptimizeIf(zero, instr->environment());
|
| + // Check for kMinInt % -1, idiv would signal a divide error. We
|
| + // have to deopt if we care about -0, because we can't return that.
|
| + if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
| + Label no_overflow_possible;
|
| + __ cmpl(left_reg, Immediate(kMinInt));
|
| + __ j(not_zero, &no_overflow_possible, Label::kNear);
|
| + __ cmpl(right_reg, Immediate(-1));
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(equal, instr->environment());
|
| + } else {
|
| + __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| + __ Set(result_reg, 0);
|
| __ jmp(&done, Label::kNear);
|
| - __ bind(&positive_left);
|
| }
|
| + __ bind(&no_overflow_possible);
|
| + }
|
| +
|
| + // Sign extend dividend in eax into edx:eax, since we are using only the low
|
| + // 32 bits of the values.
|
| + __ cdq();
|
| +
|
| + // If we care about -0, test if the dividend is <0 and the result is 0.
|
| + if (left->CanBeNegative() &&
|
| + hmod->CanBeZero() &&
|
| + hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label positive_left;
|
| + __ testl(left_reg, left_reg);
|
| + __ j(not_sign, &positive_left, Label::kNear);
|
| __ idivl(right_reg);
|
| - __ bind(&done);
|
| + __ testl(result_reg, result_reg);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + __ jmp(&done, Label::kNear);
|
| + __ bind(&positive_left);
|
| }
|
| + __ idivl(right_reg);
|
| + __ bind(&done);
|
| }
|
|
|
|
|
| -void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| - ASSERT(instr->right()->IsConstantOperand());
|
| +void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
|
|
| - const Register dividend = ToRegister(instr->left());
|
| - int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
| - const Register result = ToRegister(instr->result());
|
| -
|
| - switch (divisor) {
|
| - case 0:
|
| - DeoptimizeIf(no_condition, instr->environment());
|
| + // If the divisor is positive, things are easy: There can be no deopts and we
|
| + // can simply do an arithmetic right shift.
|
| + if (divisor == 1) return;
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (divisor > 1) {
|
| + __ sarl(dividend, Immediate(shift));
|
| return;
|
| + }
|
|
|
| - case 1:
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| + // If the divisor is negative, we have to negate and handle edge cases.
|
| + Label not_kmin_int, done;
|
| + __ negl(dividend);
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
|
| + // Note that we could emit branch-free code, but that would need one more
|
| + // register.
|
| + __ j(no_overflow, ¬_kmin_int, Label::kNear);
|
| + if (divisor == -1) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| + } else {
|
| + __ movl(dividend, Immediate(kMinInt / divisor));
|
| + __ jmp(&done, Label::kNear);
|
| }
|
| - return;
|
| + }
|
| + __ bind(¬_kmin_int);
|
| + __ sarl(dividend, Immediate(shift));
|
| + __ bind(&done);
|
| +}
|
|
|
| - case -1:
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| - }
|
| - __ negl(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
| - DeoptimizeIf(overflow, instr->environment());
|
| - }
|
| +
|
| +void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register temp = ToRegister(instr->temp());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (divisor == 0) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| return;
|
| }
|
|
|
| + // Find b which: 2^b < divisor_abs < 2^(b+1).
|
| uint32_t divisor_abs = abs(divisor);
|
| - if (IsPowerOf2(divisor_abs)) {
|
| - int32_t power = WhichPowerOf2(divisor_abs);
|
| - if (divisor < 0) {
|
| - __ movsxlq(result, dividend);
|
| - __ neg(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ sar(result, Immediate(power));
|
| - } else {
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| - }
|
| - __ sarl(result, Immediate(power));
|
| - }
|
| + unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
|
| + unsigned shift = 32 + b; // Precision +1bit (effectively).
|
| + double multiplier_f =
|
| + static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
|
| + int64_t multiplier;
|
| + if (multiplier_f - std::floor(multiplier_f) < 0.5) {
|
| + multiplier = static_cast<int64_t>(std::floor(multiplier_f));
|
| } else {
|
| - Register reg1 = ToRegister(instr->temp());
|
| - Register reg2 = ToRegister(instr->result());
|
| -
|
| - // Find b which: 2^b < divisor_abs < 2^(b+1).
|
| - unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
|
| - unsigned shift = 32 + b; // Precision +1bit (effectively).
|
| - double multiplier_f =
|
| - static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
|
| - int64_t multiplier;
|
| - if (multiplier_f - std::floor(multiplier_f) < 0.5) {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f));
|
| - } else {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
|
| - }
|
| - // The multiplier is a uint32.
|
| - ASSERT(multiplier > 0 &&
|
| - multiplier < (static_cast<int64_t>(1) << 32));
|
| - // The multiply is int64, so sign-extend to r64.
|
| - __ movsxlq(reg1, dividend);
|
| - if (divisor < 0 &&
|
| - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ neg(reg1);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ Set(reg2, multiplier);
|
| - // Result just fit in r64, because it's int32 * uint32.
|
| - __ imul(reg2, reg1);
|
| -
|
| - __ addq(reg2, Immediate(1 << 30));
|
| - __ sar(reg2, Immediate(shift));
|
| + multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
|
| + }
|
| + // The multiplier is a uint32.
|
| + ASSERT(multiplier > 0 &&
|
| + multiplier < (static_cast<int64_t>(1) << 32));
|
| + // The multiply is int64, so sign-extend to r64.
|
| + __ movsxlq(temp, dividend);
|
| + if (divisor < 0 &&
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ neg(temp);
|
| + DeoptimizeIf(zero, instr->environment());
|
| }
|
| + __ Set(result, multiplier);
|
| + // Result just fit in r64, because it's int32 * uint32.
|
| + __ imul(result, temp);
|
| +
|
| + __ addq(result, Immediate(1 << 30));
|
| + __ sar(result, Immediate(shift));
|
| }
|
|
|
|
|
| -void LCodeGen::DoDivI(LDivI* instr) {
|
| - if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
|
| - Register dividend = ToRegister(instr->left());
|
| - HDiv* hdiv = instr->hydrogen();
|
| - int32_t divisor = hdiv->right()->GetInteger32Constant();
|
| - Register result = ToRegister(instr->result());
|
| - ASSERT(!result.is(dividend));
|
| +void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
|
| + ASSERT(!result.is(dividend));
|
|
|
| - // Check for (0 / -x) that will produce negative zero.
|
| - if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
|
| - hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ testl(dividend, dividend);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Check for (kMinInt / -1).
|
| - if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
|
| - hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| - __ cmpl(dividend, Immediate(kMinInt));
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Deoptimize if remainder will not be 0.
|
| - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
|
| - __ testl(dividend, Immediate(Abs(divisor) - 1));
|
| - DeoptimizeIf(not_zero, instr->environment());
|
| - }
|
| - __ Move(result, dividend);
|
| - int32_t shift = WhichPowerOf2(Abs(divisor));
|
| - if (shift > 0) {
|
| - // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| - if (shift > 1) __ sarl(result, Immediate(31));
|
| - __ shrl(result, Immediate(32 - shift));
|
| - __ addl(result, dividend);
|
| - __ sarl(result, Immediate(shift));
|
| - }
|
| - if (divisor < 0) __ negl(result);
|
| - return;
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
|
| + hdiv->left()->RangeCanInclude(0) && divisor < 0) {
|
| + __ testl(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| }
|
| + // Check for (kMinInt / -1).
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow) &&
|
| + hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
|
| + __ cmpl(dividend, Immediate(kMinInt));
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + // Deoptimize if remainder will not be 0.
|
| + if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| + divisor != 1 && divisor != -1) {
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + __ testl(dividend, Immediate(mask));
|
| + DeoptimizeIf(not_zero, instr->environment());
|
| + }
|
| + __ Move(result, dividend);
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (shift > 0) {
|
| + // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| + if (shift > 1) __ sarl(result, Immediate(31));
|
| + __ shrl(result, Immediate(32 - shift));
|
| + __ addl(result, dividend);
|
| + __ sarl(result, Immediate(shift));
|
| + }
|
| + if (divisor < 0) __ negl(result);
|
| +}
|
|
|
| - LOperand* right = instr->right();
|
| - ASSERT(ToRegister(instr->result()).is(rax));
|
| - ASSERT(ToRegister(instr->left()).is(rax));
|
| - ASSERT(!ToRegister(instr->right()).is(rax));
|
| - ASSERT(!ToRegister(instr->right()).is(rdx));
|
|
|
| - Register left_reg = rax;
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| + Register dividend = ToRegister(instr->left());
|
| + Register divisor = ToRegister(instr->right());
|
| + Register remainder = ToRegister(instr->temp());
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(dividend.is(rax));
|
| + ASSERT(remainder.is(rdx));
|
| + ASSERT(result.is(rax));
|
| + ASSERT(!divisor.is(rax));
|
| + ASSERT(!divisor.is(rdx));
|
|
|
| // Check for x / 0.
|
| - Register right_reg = ToRegister(right);
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
|
| - __ testl(right_reg, right_reg);
|
| + HBinaryOperation* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + __ testl(divisor, divisor);
|
| DeoptimizeIf(zero, instr->environment());
|
| }
|
|
|
| // Check for (0 / -x) that will produce negative zero.
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label left_not_zero;
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_zero, &left_not_zero, Label::kNear);
|
| - __ testl(right_reg, right_reg);
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label dividend_not_zero;
|
| + __ testl(dividend, dividend);
|
| + __ j(not_zero, ÷nd_not_zero, Label::kNear);
|
| + __ testl(divisor, divisor);
|
| DeoptimizeIf(sign, instr->environment());
|
| - __ bind(&left_not_zero);
|
| + __ bind(÷nd_not_zero);
|
| }
|
|
|
| // Check for (kMinInt / -1).
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
|
| - Label left_not_min_int;
|
| - __ cmpl(left_reg, Immediate(kMinInt));
|
| - __ j(not_zero, &left_not_min_int, Label::kNear);
|
| - __ cmpl(right_reg, Immediate(-1));
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| + Label dividend_not_min_int;
|
| + __ cmpl(dividend, Immediate(kMinInt));
|
| + __ j(not_zero, ÷nd_not_min_int, Label::kNear);
|
| + __ cmpl(divisor, Immediate(-1));
|
| DeoptimizeIf(zero, instr->environment());
|
| - __ bind(&left_not_min_int);
|
| + __ bind(÷nd_not_min_int);
|
| }
|
|
|
| - // Sign extend to rdx.
|
| + // Sign extend to rdx (= remainder).
|
| __ cdq();
|
| - __ idivl(right_reg);
|
| + __ idivl(divisor);
|
|
|
| if (instr->is_flooring()) {
|
| Label done;
|
| - __ testl(rdx, rdx);
|
| + __ testl(remainder, remainder);
|
| __ j(zero, &done, Label::kNear);
|
| - __ xorl(rdx, right_reg);
|
| - __ sarl(rdx, Immediate(31));
|
| - __ addl(rax, rdx);
|
| + __ xorl(remainder, divisor);
|
| + __ sarl(remainder, Immediate(31));
|
| + __ addl(result, remainder);
|
| __ bind(&done);
|
| } else if (!instr->hydrogen()->CheckFlag(
|
| HInstruction::kAllUsesTruncatingToInt32)) {
|
| // Deoptimize if remainder is not 0.
|
| - __ testl(rdx, rdx);
|
| + __ testl(remainder, remainder);
|
| DeoptimizeIf(not_zero, instr->environment());
|
| }
|
| }
|
|
|