| Index: src/ia32/lithium-codegen-ia32.cc
|
| diff --git a/src/ia32/lithium-codegen-ia32.cc b/src/ia32/lithium-codegen-ia32.cc
|
| index 96dda27b6c26d4c37d4b3fde47ef96eb68e5e1dd..827add3738e591f612f3e08c8cb7a3eab2af1d40 100644
|
| --- a/src/ia32/lithium-codegen-ia32.cc
|
| +++ b/src/ia32/lithium-codegen-ia32.cc
|
| @@ -1368,286 +1368,292 @@ void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| }
|
|
|
|
|
| +void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
| +
|
| + // Theoretically, a variation of the branch-free code for integer division by
|
| + // a power of 2 (calculating the remainder via an additional multiplication
|
| + // (which gets simplified to an 'and') and subtraction) should be faster, and
|
| + // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
|
| + // indicate that positive dividends are heavily favored, so the branching
|
| + // version performs better.
|
| + HMod* hmod = instr->hydrogen();
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + Label dividend_is_not_negative, done;
|
| + if (hmod->left()->CanBeNegative()) {
|
| + __ test(dividend, dividend);
|
| + __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
|
| + // Note that this is correct even for kMinInt operands.
|
| + __ neg(dividend);
|
| + __ and_(dividend, mask);
|
| + __ neg(dividend);
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + __ jmp(&done, Label::kNear);
|
| + }
|
| +
|
| + __ bind(÷nd_is_not_negative);
|
| + __ and_(dividend, mask);
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| void LCodeGen::DoModI(LModI* instr) {
|
| HMod* hmod = instr->hydrogen();
|
| HValue* left = hmod->left();
|
| HValue* right = hmod->right();
|
| - if (hmod->RightIsPowerOf2()) {
|
| - // TODO(svenpanne) We should really do the strength reduction on the
|
| - // Hydrogen level.
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(ToRegister(instr->result())));
|
| -
|
| - // Note: The code below even works when right contains kMinInt.
|
| - int32_t divisor = Abs(right->GetInteger32Constant());
|
| -
|
| - Label left_is_not_negative, done;
|
| - if (left->CanBeNegative()) {
|
| - __ test(left_reg, Operand(left_reg));
|
| - __ j(not_sign, &left_is_not_negative, Label::kNear);
|
| - __ neg(left_reg);
|
| - __ and_(left_reg, divisor - 1);
|
| - __ neg(left_reg);
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ jmp(&done, Label::kNear);
|
| - }
|
|
|
| - __ bind(&left_is_not_negative);
|
| - __ and_(left_reg, divisor - 1);
|
| - __ bind(&done);
|
| - } else {
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(eax));
|
| - Register right_reg = ToRegister(instr->right());
|
| - ASSERT(!right_reg.is(eax));
|
| - ASSERT(!right_reg.is(edx));
|
| - Register result_reg = ToRegister(instr->result());
|
| - ASSERT(result_reg.is(edx));
|
| + Register left_reg = ToRegister(instr->left());
|
| + ASSERT(left_reg.is(eax));
|
| + Register right_reg = ToRegister(instr->right());
|
| + ASSERT(!right_reg.is(eax));
|
| + ASSERT(!right_reg.is(edx));
|
| + Register result_reg = ToRegister(instr->result());
|
| + ASSERT(result_reg.is(edx));
|
|
|
| - Label done;
|
| - // Check for x % 0, idiv would signal a divide error. We have to
|
| - // deopt in this case because we can't return a NaN.
|
| - if (right->CanBeZero()) {
|
| - __ test(right_reg, Operand(right_reg));
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| + Label done;
|
| + // Check for x % 0, idiv would signal a divide error. We have to
|
| + // deopt in this case because we can't return a NaN.
|
| + if (right->CanBeZero()) {
|
| + __ test(right_reg, Operand(right_reg));
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
|
|
| - // Check for kMinInt % -1, idiv would signal a divide error. We
|
| - // have to deopt if we care about -0, because we can't return that.
|
| - if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
| - Label no_overflow_possible;
|
| - __ cmp(left_reg, kMinInt);
|
| + // Check for kMinInt % -1, idiv would signal a divide error. We
|
| + // have to deopt if we care about -0, because we can't return that.
|
| + if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
| + Label no_overflow_possible;
|
| + __ cmp(left_reg, kMinInt);
|
| + __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| + __ cmp(right_reg, -1);
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(equal, instr->environment());
|
| + } else {
|
| __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| - __ cmp(right_reg, -1);
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(equal, instr->environment());
|
| - } else {
|
| - __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| - __ Set(result_reg, Immediate(0));
|
| - __ jmp(&done, Label::kNear);
|
| - }
|
| - __ bind(&no_overflow_possible);
|
| - }
|
| -
|
| - // Sign extend dividend in eax into edx:eax.
|
| - __ cdq();
|
| -
|
| - // If we care about -0, test if the dividend is <0 and the result is 0.
|
| - if (left->CanBeNegative() &&
|
| - hmod->CanBeZero() &&
|
| - hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label positive_left;
|
| - __ test(left_reg, Operand(left_reg));
|
| - __ j(not_sign, &positive_left, Label::kNear);
|
| - __ idiv(right_reg);
|
| - __ test(result_reg, Operand(result_reg));
|
| - DeoptimizeIf(zero, instr->environment());
|
| + __ Set(result_reg, Immediate(0));
|
| __ jmp(&done, Label::kNear);
|
| - __ bind(&positive_left);
|
| }
|
| + __ bind(&no_overflow_possible);
|
| + }
|
| +
|
| + // Sign extend dividend in eax into edx:eax.
|
| + __ cdq();
|
| +
|
| + // If we care about -0, test if the dividend is <0 and the result is 0.
|
| + if (left->CanBeNegative() &&
|
| + hmod->CanBeZero() &&
|
| + hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label positive_left;
|
| + __ test(left_reg, Operand(left_reg));
|
| + __ j(not_sign, &positive_left, Label::kNear);
|
| __ idiv(right_reg);
|
| - __ bind(&done);
|
| + __ test(result_reg, Operand(result_reg));
|
| + DeoptimizeIf(zero, instr->environment());
|
| + __ jmp(&done, Label::kNear);
|
| + __ bind(&positive_left);
|
| }
|
| + __ idiv(right_reg);
|
| + __ bind(&done);
|
| }
|
|
|
|
|
| -void LCodeGen::DoDivI(LDivI* instr) {
|
| - if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
|
| - Register dividend = ToRegister(instr->left());
|
| - HDiv* hdiv = instr->hydrogen();
|
| - int32_t divisor = hdiv->right()->GetInteger32Constant();
|
| - Register result = ToRegister(instr->result());
|
| - ASSERT(!result.is(dividend));
|
| +void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
|
| + ASSERT(!result.is(dividend));
|
|
|
| - // Check for (0 / -x) that will produce negative zero.
|
| - if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
|
| - hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ test(dividend, Operand(dividend));
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Check for (kMinInt / -1).
|
| - if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
|
| - hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| - __ cmp(dividend, kMinInt);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Deoptimize if remainder will not be 0.
|
| - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| - Abs(divisor) != 1) {
|
| - __ test(dividend, Immediate(Abs(divisor) - 1));
|
| - DeoptimizeIf(not_zero, instr->environment());
|
| - }
|
| - __ Move(result, dividend);
|
| - int32_t shift = WhichPowerOf2(Abs(divisor));
|
| - if (shift > 0) {
|
| - // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| - if (shift > 1) __ sar(result, 31);
|
| - __ shr(result, 32 - shift);
|
| - __ add(result, dividend);
|
| - __ sar(result, shift);
|
| - }
|
| - if (divisor < 0) __ neg(result);
|
| - return;
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
|
| + hdiv->left()->RangeCanInclude(0) && divisor < 0) {
|
| + __ test(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + // Check for (kMinInt / -1).
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow) &&
|
| + hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
|
| + __ cmp(dividend, kMinInt);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + // Deoptimize if remainder will not be 0.
|
| + if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| + divisor != 1 && divisor != -1) {
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + __ test(dividend, Immediate(mask));
|
| + DeoptimizeIf(not_zero, instr->environment());
|
| }
|
| + __ Move(result, dividend);
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (shift > 0) {
|
| + // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| + if (shift > 1) __ sar(result, 31);
|
| + __ shr(result, 32 - shift);
|
| + __ add(result, dividend);
|
| + __ sar(result, shift);
|
| + }
|
| + if (divisor < 0) __ neg(result);
|
| +}
|
|
|
| - LOperand* right = instr->right();
|
| - ASSERT(ToRegister(instr->result()).is(eax));
|
| - ASSERT(ToRegister(instr->left()).is(eax));
|
| - ASSERT(!ToRegister(instr->right()).is(eax));
|
| - ASSERT(!ToRegister(instr->right()).is(edx));
|
|
|
| - Register left_reg = eax;
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| + Register dividend = ToRegister(instr->left());
|
| + Register divisor = ToRegister(instr->right());
|
| + Register remainder = ToRegister(instr->temp());
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(dividend.is(eax));
|
| + ASSERT(remainder.is(edx));
|
| + ASSERT(result.is(eax));
|
| + ASSERT(!divisor.is(eax));
|
| + ASSERT(!divisor.is(edx));
|
|
|
| // Check for x / 0.
|
| - Register right_reg = ToRegister(right);
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
|
| - __ test(right_reg, ToOperand(right));
|
| + HBinaryOperation* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + __ test(divisor, divisor);
|
| DeoptimizeIf(zero, instr->environment());
|
| }
|
|
|
| // Check for (0 / -x) that will produce negative zero.
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label left_not_zero;
|
| - __ test(left_reg, Operand(left_reg));
|
| - __ j(not_zero, &left_not_zero, Label::kNear);
|
| - __ test(right_reg, ToOperand(right));
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label dividend_not_zero;
|
| + __ test(dividend, dividend);
|
| + __ j(not_zero, ÷nd_not_zero, Label::kNear);
|
| + __ test(divisor, divisor);
|
| DeoptimizeIf(sign, instr->environment());
|
| - __ bind(&left_not_zero);
|
| + __ bind(÷nd_not_zero);
|
| }
|
|
|
| // Check for (kMinInt / -1).
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
|
| - Label left_not_min_int;
|
| - __ cmp(left_reg, kMinInt);
|
| - __ j(not_zero, &left_not_min_int, Label::kNear);
|
| - __ cmp(right_reg, -1);
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| + Label dividend_not_min_int;
|
| + __ cmp(dividend, kMinInt);
|
| + __ j(not_zero, ÷nd_not_min_int, Label::kNear);
|
| + __ cmp(divisor, -1);
|
| DeoptimizeIf(zero, instr->environment());
|
| - __ bind(&left_not_min_int);
|
| + __ bind(÷nd_not_min_int);
|
| }
|
|
|
| - // Sign extend to edx.
|
| + // Sign extend to edx (= remainder).
|
| __ cdq();
|
| - __ idiv(right_reg);
|
| + __ idiv(divisor);
|
|
|
| if (instr->is_flooring()) {
|
| Label done;
|
| - __ test(edx, edx);
|
| + __ test(remainder, remainder);
|
| __ j(zero, &done, Label::kNear);
|
| - __ xor_(edx, right_reg);
|
| - __ sar(edx, 31);
|
| - __ add(eax, edx);
|
| + __ xor_(remainder, divisor);
|
| + __ sar(remainder, 31);
|
| + __ add(result, remainder);
|
| __ bind(&done);
|
| } else if (!instr->hydrogen()->CheckFlag(
|
| HInstruction::kAllUsesTruncatingToInt32)) {
|
| // Deoptimize if remainder is not 0.
|
| - __ test(edx, Operand(edx));
|
| + __ test(remainder, remainder);
|
| DeoptimizeIf(not_zero, instr->environment());
|
| }
|
| }
|
|
|
|
|
| -void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| - ASSERT(instr->right()->IsConstantOperand());
|
| -
|
| - Register dividend = ToRegister(instr->left());
|
| - int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
| - Register result = ToRegister(instr->result());
|
| -
|
| - switch (divisor) {
|
| - case 0:
|
| - DeoptimizeIf(no_condition, instr->environment());
|
| - return;
|
| +void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
|
|
| - case 1:
|
| - __ Move(result, dividend);
|
| + // If the divisor is positive, things are easy: There can be no deopts and we
|
| + // can simply do an arithmetic right shift.
|
| + if (divisor == 1) return;
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (divisor > 1) {
|
| + __ sar(dividend, shift);
|
| return;
|
| + }
|
|
|
| - case -1:
|
| - __ Move(result, dividend);
|
| - __ neg(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
| - DeoptimizeIf(overflow, instr->environment());
|
| + // If the divisor is negative, we have to negate and handle edge cases.
|
| + Label not_kmin_int, done;
|
| + __ neg(dividend);
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
|
| + // Note that we could emit branch-free code, but that would need one more
|
| + // register.
|
| + __ j(no_overflow, ¬_kmin_int, Label::kNear);
|
| + if (divisor == -1) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| + } else {
|
| + __ mov(dividend, Immediate(kMinInt / divisor));
|
| + __ jmp(&done, Label::kNear);
|
| }
|
| + }
|
| + __ bind(¬_kmin_int);
|
| + __ sar(dividend, shift);
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register scratch = ToRegister(instr->temp());
|
| + ASSERT(ToRegister(instr->dividend()).is(eax));
|
| + ASSERT(ToRegister(instr->result()).is(edx));
|
| +
|
| + if (divisor == 0) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| return;
|
| }
|
|
|
| + // Find b which: 2^b < divisor_abs < 2^(b+1).
|
| uint32_t divisor_abs = abs(divisor);
|
| - if (IsPowerOf2(divisor_abs)) {
|
| - int32_t power = WhichPowerOf2(divisor_abs);
|
| - if (divisor < 0) {
|
| - // Input[dividend] is clobbered.
|
| - // The sequence is tedious because neg(dividend) might overflow.
|
| - __ mov(result, dividend);
|
| - __ sar(dividend, 31);
|
| - __ neg(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ shl(dividend, 32 - power);
|
| - __ sar(result, power);
|
| - __ not_(dividend);
|
| - // Clear result.sign if dividend.sign is set.
|
| - __ and_(result, dividend);
|
| - } else {
|
| - __ Move(result, dividend);
|
| - __ sar(result, power);
|
| - }
|
| + unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
|
| + unsigned shift = 32 + b; // Precision +1bit (effectively).
|
| + double multiplier_f =
|
| + static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
|
| + int64_t multiplier;
|
| + if (multiplier_f - std::floor(multiplier_f) < 0.5) {
|
| + multiplier = static_cast<int64_t>(std::floor(multiplier_f));
|
| } else {
|
| - ASSERT(ToRegister(instr->left()).is(eax));
|
| - ASSERT(ToRegister(instr->result()).is(edx));
|
| - Register scratch = ToRegister(instr->temp());
|
| -
|
| - // Find b which: 2^b < divisor_abs < 2^(b+1).
|
| - unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
|
| - unsigned shift = 32 + b; // Precision +1bit (effectively).
|
| - double multiplier_f =
|
| - static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
|
| - int64_t multiplier;
|
| - if (multiplier_f - std::floor(multiplier_f) < 0.5) {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f));
|
| - } else {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
|
| - }
|
| - // The multiplier is a uint32.
|
| - ASSERT(multiplier > 0 &&
|
| - multiplier < (static_cast<int64_t>(1) << 32));
|
| - __ mov(scratch, dividend);
|
| - if (divisor < 0 &&
|
| - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ test(dividend, dividend);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ mov(edx, static_cast<int32_t>(multiplier));
|
| - __ imul(edx);
|
| - if (static_cast<int32_t>(multiplier) < 0) {
|
| - __ add(edx, scratch);
|
| - }
|
| - Register reg_lo = eax;
|
| - Register reg_byte_scratch = scratch;
|
| - if (!reg_byte_scratch.is_byte_register()) {
|
| - __ xchg(reg_lo, reg_byte_scratch);
|
| - reg_lo = scratch;
|
| - reg_byte_scratch = eax;
|
| - }
|
| - if (divisor < 0) {
|
| - __ xor_(reg_byte_scratch, reg_byte_scratch);
|
| - __ cmp(reg_lo, 0x40000000);
|
| - __ setcc(above, reg_byte_scratch);
|
| - __ neg(edx);
|
| - __ sub(edx, reg_byte_scratch);
|
| - } else {
|
| - __ xor_(reg_byte_scratch, reg_byte_scratch);
|
| - __ cmp(reg_lo, 0xC0000000);
|
| - __ setcc(above_equal, reg_byte_scratch);
|
| - __ add(edx, reg_byte_scratch);
|
| - }
|
| - __ sar(edx, shift - 32);
|
| + multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
|
| + }
|
| + // The multiplier is a uint32.
|
| + ASSERT(multiplier > 0 &&
|
| + multiplier < (static_cast<int64_t>(1) << 32));
|
| + __ mov(scratch, dividend);
|
| + if (divisor < 0 &&
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ test(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + __ mov(edx, static_cast<int32_t>(multiplier));
|
| + __ imul(edx);
|
| + if (static_cast<int32_t>(multiplier) < 0) {
|
| + __ add(edx, scratch);
|
| + }
|
| + Register reg_lo = eax;
|
| + Register reg_byte_scratch = scratch;
|
| + if (!reg_byte_scratch.is_byte_register()) {
|
| + __ xchg(reg_lo, reg_byte_scratch);
|
| + reg_lo = scratch;
|
| + reg_byte_scratch = eax;
|
| + }
|
| + if (divisor < 0) {
|
| + __ xor_(reg_byte_scratch, reg_byte_scratch);
|
| + __ cmp(reg_lo, 0x40000000);
|
| + __ setcc(above, reg_byte_scratch);
|
| + __ neg(edx);
|
| + __ sub(edx, reg_byte_scratch);
|
| + } else {
|
| + __ xor_(reg_byte_scratch, reg_byte_scratch);
|
| + __ cmp(reg_lo, 0xC0000000);
|
| + __ setcc(above_equal, reg_byte_scratch);
|
| + __ add(edx, reg_byte_scratch);
|
| }
|
| + __ sar(edx, shift - 32);
|
| }
|
|
|
|
|
|
|