| Index: src/arm/lithium-codegen-arm.cc
|
| diff --git a/src/arm/lithium-codegen-arm.cc b/src/arm/lithium-codegen-arm.cc
|
| index e077f04c0435177e0afdd413489231110a3afefc..6b38fd13ba8846739e243561393d7af13dfbcdc6 100644
|
| --- a/src/arm/lithium-codegen-arm.cc
|
| +++ b/src/arm/lithium-codegen-arm.cc
|
| @@ -1111,36 +1111,44 @@ void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| }
|
|
|
|
|
| -void LCodeGen::DoModI(LModI* instr) {
|
| +void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
| +
|
| + // Theoretically, a variation of the branch-free code for integer division by
|
| + // a power of 2 (calculating the remainder via an additional multiplication
|
| + // (which gets simplified to an 'and') and subtraction) should be faster, and
|
| + // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
|
| + // indicate that positive dividends are heavily favored, so the branching
|
| + // version performs better.
|
| HMod* hmod = instr->hydrogen();
|
| - HValue* left = hmod->left();
|
| - HValue* right = hmod->right();
|
| - if (hmod->RightIsPowerOf2()) {
|
| - // TODO(svenpanne) We should really do the strength reduction on the
|
| - // Hydrogen level.
|
| - Register left_reg = ToRegister(instr->left());
|
| - Register result_reg = ToRegister(instr->result());
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + Label dividend_is_not_negative, done;
|
| + if (hmod->left()->CanBeNegative()) {
|
| + __ cmp(dividend, Operand::Zero());
|
| + __ b(pl, ÷nd_is_not_negative);
|
| + // Note that this is correct even for kMinInt operands.
|
| + __ rsb(dividend, dividend, Operand::Zero());
|
| + __ and_(dividend, dividend, Operand(mask));
|
| + __ rsb(dividend, dividend, Operand::Zero(), SetCC);
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| + __ b(&done);
|
| + }
|
|
|
| - // Note: The code below even works when right contains kMinInt.
|
| - int32_t divisor = Abs(right->GetInteger32Constant());
|
| + __ bind(÷nd_is_not_negative);
|
| + __ and_(dividend, dividend, Operand(mask));
|
| + __ bind(&done);
|
| +}
|
|
|
| - Label left_is_not_negative, done;
|
| - if (left->CanBeNegative()) {
|
| - __ cmp(left_reg, Operand::Zero());
|
| - __ b(pl, &left_is_not_negative);
|
| - __ rsb(result_reg, left_reg, Operand::Zero());
|
| - __ and_(result_reg, result_reg, Operand(divisor - 1));
|
| - __ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(eq, instr->environment());
|
| - }
|
| - __ b(&done);
|
| - }
|
|
|
| - __ bind(&left_is_not_negative);
|
| - __ and_(result_reg, left_reg, Operand(divisor - 1));
|
| - __ bind(&done);
|
| - } else if (CpuFeatures::IsSupported(SUDIV)) {
|
| +void LCodeGen::DoModI(LModI* instr) {
|
| + HMod* hmod = instr->hydrogen();
|
| + HValue* left = hmod->left();
|
| + HValue* right = hmod->right();
|
| + if (CpuFeatures::IsSupported(SUDIV)) {
|
| CpuFeatureScope scope(masm(), SUDIV);
|
|
|
| Register left_reg = ToRegister(instr->left());
|
| @@ -1344,50 +1352,53 @@ void LCodeGen::EmitSignedIntegerDivisionByConstant(
|
| }
|
|
|
|
|
| -void LCodeGen::DoDivI(LDivI* instr) {
|
| - if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
|
| - Register dividend = ToRegister(instr->left());
|
| - HDiv* hdiv = instr->hydrogen();
|
| - int32_t divisor = hdiv->right()->GetInteger32Constant();
|
| - Register result = ToRegister(instr->result());
|
| - ASSERT(!result.is(dividend));
|
| +void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
|
| + ASSERT(!result.is(dividend));
|
|
|
| - // Check for (0 / -x) that will produce negative zero.
|
| - if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
|
| - hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ cmp(dividend, Operand::Zero());
|
| - DeoptimizeIf(eq, instr->environment());
|
| - }
|
| - // Check for (kMinInt / -1).
|
| - if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
|
| - hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| - __ cmp(dividend, Operand(kMinInt));
|
| - DeoptimizeIf(eq, instr->environment());
|
| - }
|
| - // Deoptimize if remainder will not be 0.
|
| - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| - Abs(divisor) != 1) {
|
| - __ tst(dividend, Operand(Abs(divisor) - 1));
|
| - DeoptimizeIf(ne, instr->environment());
|
| - }
|
| - if (divisor == -1) { // Nice shortcut, not needed for correctness.
|
| - __ rsb(result, dividend, Operand(0));
|
| - return;
|
| - }
|
| - int32_t shift = WhichPowerOf2(Abs(divisor));
|
| - if (shift == 0) {
|
| - __ mov(result, dividend);
|
| - } else if (shift == 1) {
|
| - __ add(result, dividend, Operand(dividend, LSR, 31));
|
| - } else {
|
| - __ mov(result, Operand(dividend, ASR, 31));
|
| - __ add(result, dividend, Operand(result, LSR, 32 - shift));
|
| - }
|
| - if (shift > 0) __ mov(result, Operand(result, ASR, shift));
|
| - if (divisor < 0) __ rsb(result, result, Operand(0));
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) &&
|
| + hdiv->left()->RangeCanInclude(0) && divisor < 0) {
|
| + __ cmp(dividend, Operand::Zero());
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| + // Check for (kMinInt / -1).
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow) &&
|
| + hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1) {
|
| + __ cmp(dividend, Operand(kMinInt));
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| + // Deoptimize if remainder will not be 0.
|
| + if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| + divisor != 1 && divisor != -1) {
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + __ tst(dividend, Operand(mask));
|
| + DeoptimizeIf(ne, instr->environment());
|
| + }
|
| +
|
| + if (divisor == -1) { // Nice shortcut, not needed for correctness.
|
| + __ rsb(result, dividend, Operand(0));
|
| return;
|
| }
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (shift == 0) {
|
| + __ mov(result, dividend);
|
| + } else if (shift == 1) {
|
| + __ add(result, dividend, Operand(dividend, LSR, 31));
|
| + } else {
|
| + __ mov(result, Operand(dividend, ASR, 31));
|
| + __ add(result, dividend, Operand(result, LSR, 32 - shift));
|
| + }
|
| + if (shift > 0) __ mov(result, Operand(result, ASR, shift));
|
| + if (divisor < 0) __ rsb(result, result, Operand(0));
|
| +}
|
|
|
| +
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| const Register left = ToRegister(instr->left());
|
| const Register right = ToRegister(instr->right());
|
| const Register result = ToRegister(instr->result());
|
| @@ -1482,18 +1493,55 @@ void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
|
| }
|
|
|
|
|
| -void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| - const Register result = ToRegister(instr->result());
|
| - const Register left = ToRegister(instr->left());
|
| - const Register remainder = ToRegister(instr->temp());
|
| - const Register scratch = scratch0();
|
| +void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
| +
|
| + // If the divisor is positive, things are easy: There can be no deopts and we
|
| + // can simply do an arithmetic right shift.
|
| + if (divisor == 1) return;
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (divisor > 1) {
|
| + __ mov(dividend, Operand(dividend, ASR, shift));
|
| + return;
|
| + }
|
| +
|
| + // If the divisor is negative, we have to negate and handle edge cases.
|
| + Label not_kmin_int, done;
|
| + __ rsb(dividend, dividend, Operand::Zero(), SetCC);
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(eq, instr->environment());
|
| + }
|
| + if (instr->hydrogen()->left()->RangeCanInclude(kMinInt)) {
|
| + // Note that we could emit branch-free code, but that would need one more
|
| + // register.
|
| + __ b(vc, ¬_kmin_int);
|
| + if (divisor == -1) {
|
| + DeoptimizeIf(al, instr->environment());
|
| + } else {
|
| + __ mov(dividend, Operand(kMinInt / divisor));
|
| + __ b(&done);
|
| + }
|
| + }
|
| + __ bind(¬_kmin_int);
|
| + __ mov(dividend, Operand(dividend, ASR, shift));
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
|
| + Register left = ToRegister(instr->dividend());
|
| + Register remainder = ToRegister(instr->temp());
|
| + Register scratch = scratch0();
|
| + Register result = ToRegister(instr->result());
|
|
|
| if (!CpuFeatures::IsSupported(SUDIV)) {
|
| // If the CPU doesn't support sdiv instruction, we only optimize when we
|
| // have magic numbers for the divisor. The standard integer division routine
|
| // is usually slower than transitionning to VFP.
|
| - ASSERT(instr->right()->IsConstantOperand());
|
| - int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
| + ASSERT(instr->divisor()->IsConstantOperand());
|
| + int32_t divisor = ToInteger32(LConstantOperand::cast(instr->divisor()));
|
| ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
|
| if (divisor < 0) {
|
| __ cmp(left, Operand::Zero());
|
| @@ -1511,7 +1559,8 @@ void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| __ sub(result, result, Operand(1), LeaveCC, mi);
|
| } else {
|
| CpuFeatureScope scope(masm(), SUDIV);
|
| - const Register right = ToRegister(instr->right());
|
| + // TODO(svenpanne) We *statically* know the divisor, use that fact!
|
| + Register right = ToRegister(instr->divisor());
|
|
|
| // Check for x / 0.
|
| __ cmp(right, Operand::Zero());
|
|
|