| Index: src/core/SkMipMap.cpp
|
| diff --git a/src/core/SkMipMap.cpp b/src/core/SkMipMap.cpp
|
| index 1b630a0466cede5d910049e262a298a130bdc0cc..d766dfa8a56378debe58255589087ca7790423fa 100644
|
| --- a/src/core/SkMipMap.cpp
|
| +++ b/src/core/SkMipMap.cpp
|
| @@ -80,52 +80,86 @@ template <typename T> T add_121(const T& a, const T& b, const T& c) {
|
| // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
|
| // else for even cases, we just use a 2x box filter.
|
| //
|
| -// This produces 4 possible filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of src pixels
|
| -// we need to sample in each dimension to produce 1 dst pixel.
|
| +// This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
|
| +// src pixels we need to sample in each dimension to produce 1 dst pixel.
|
| //
|
| +// OpenGL expects a full mipmap stack to contain anisotropic space as well.
|
| +// This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
|
| +// Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
|
|
|
| -template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
|
| +template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| auto p0 = static_cast<const typename F::Type*>(src);
|
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| auto d = static_cast<typename F::Type*>(dst);
|
|
|
| for (int i = 0; i < count; ++i) {
|
| auto c00 = F::Expand(p0[0]);
|
| - auto c01 = F::Expand(p0[1]);
|
| auto c10 = F::Expand(p1[0]);
|
| - auto c11 = F::Expand(p1[1]);
|
|
|
| - auto c = c00 + c10 + c01 + c11;
|
| + auto c = c00 + c10;
|
| + d[i] = F::Compact(c >> 1);
|
| + p0 += 2;
|
| + p1 += 2;
|
| + }
|
| +}
|
| +
|
| +template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| + auto p0 = static_cast<const typename F::Type*>(src);
|
| + auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| + auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
|
| + auto d = static_cast<typename F::Type*>(dst);
|
| +
|
| + for (int i = 0; i < count; ++i) {
|
| + auto c00 = F::Expand(p0[0]);
|
| + auto c10 = F::Expand(p1[0]);
|
| + auto c20 = F::Expand(p2[0]);
|
| +
|
| + auto c = add_121(c00, c10, c20);
|
| d[i] = F::Compact(c >> 2);
|
| p0 += 2;
|
| p1 += 2;
|
| + p2 += 2;
|
| }
|
| }
|
|
|
| -template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
|
| +template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| + auto p0 = static_cast<const typename F::Type*>(src);
|
| + auto d = static_cast<typename F::Type*>(dst);
|
| +
|
| + for (int i = 0; i < count; ++i) {
|
| + auto c00 = F::Expand(p0[0]);
|
| + auto c01 = F::Expand(p0[1]);
|
| +
|
| + auto c = c00 + c01;
|
| + d[i] = F::Compact(c >> 1);
|
| + p0 += 2;
|
| + }
|
| +}
|
| +
|
| +template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
|
| SkASSERT(count > 0);
|
| auto p0 = static_cast<const typename F::Type*>(src);
|
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| auto d = static_cast<typename F::Type*>(dst);
|
|
|
| - auto c02 = F::Expand(p0[0]);
|
| - auto c12 = F::Expand(p1[0]);
|
| for (int i = 0; i < count; ++i) {
|
| - auto c00 = c02;
|
| + auto c00 = F::Expand(p0[0]);
|
| auto c01 = F::Expand(p0[1]);
|
| - c02 = F::Expand(p0[2]);
|
| - auto c10 = c12;
|
| + auto c10 = F::Expand(p1[0]);
|
| auto c11 = F::Expand(p1[1]);
|
| - c12 = F::Expand(p1[2]);
|
|
|
| - auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
|
| - d[i] = F::Compact(c >> 3);
|
| + auto c = c00 + c10 + c01 + c11;
|
| + d[i] = F::Compact(c >> 2);
|
| p0 += 2;
|
| p1 += 2;
|
| }
|
| }
|
|
|
| template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| auto p0 = static_cast<const typename F::Type*>(src);
|
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
|
| @@ -147,7 +181,48 @@ template <typename F> void downsample_2_3(void* dst, const void* src, size_t src
|
| }
|
| }
|
|
|
| +template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| + auto p0 = static_cast<const typename F::Type*>(src);
|
| + auto d = static_cast<typename F::Type*>(dst);
|
| +
|
| + auto c02 = F::Expand(p0[0]);
|
| + for (int i = 0; i < count; ++i) {
|
| + auto c00 = c02;
|
| + auto c01 = F::Expand(p0[1]);
|
| + c02 = F::Expand(p0[2]);
|
| +
|
| + auto c = add_121(c00, c01, c02);
|
| + d[i] = F::Compact(c >> 2);
|
| + p0 += 2;
|
| + }
|
| +}
|
| +
|
| +template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| + auto p0 = static_cast<const typename F::Type*>(src);
|
| + auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| + auto d = static_cast<typename F::Type*>(dst);
|
| +
|
| + auto c02 = F::Expand(p0[0]);
|
| + auto c12 = F::Expand(p1[0]);
|
| + for (int i = 0; i < count; ++i) {
|
| + auto c00 = c02;
|
| + auto c01 = F::Expand(p0[1]);
|
| + c02 = F::Expand(p0[2]);
|
| + auto c10 = c12;
|
| + auto c11 = F::Expand(p1[1]);
|
| + c12 = F::Expand(p1[2]);
|
| +
|
| + auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
|
| + d[i] = F::Compact(c >> 3);
|
| + p0 += 2;
|
| + p1 += 2;
|
| + }
|
| +}
|
| +
|
| template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
|
| + SkASSERT(count > 0);
|
| auto p0 = static_cast<const typename F::Type*>(src);
|
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
|
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
|
| @@ -191,8 +266,12 @@ size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
|
| SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
| typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
|
|
|
| + FilterProc* proc_1_2 = nullptr;
|
| + FilterProc* proc_1_3 = nullptr;
|
| + FilterProc* proc_2_1 = nullptr;
|
| FilterProc* proc_2_2 = nullptr;
|
| FilterProc* proc_2_3 = nullptr;
|
| + FilterProc* proc_3_1 = nullptr;
|
| FilterProc* proc_3_2 = nullptr;
|
| FilterProc* proc_3_3 = nullptr;
|
|
|
| @@ -201,27 +280,43 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
| switch (ct) {
|
| case kRGBA_8888_SkColorType:
|
| case kBGRA_8888_SkColorType:
|
| + proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
|
| + proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
|
| + proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
|
| proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
|
| proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
|
| + proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
|
| proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
|
| proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
|
| break;
|
| case kRGB_565_SkColorType:
|
| + proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
|
| + proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
|
| + proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
|
| proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
|
| proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
|
| + proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
|
| proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
|
| proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
|
| break;
|
| case kARGB_4444_SkColorType:
|
| + proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
|
| + proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
|
| + proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
|
| proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
|
| proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
|
| + proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
|
| proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
|
| proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
|
| break;
|
| case kAlpha_8_SkColorType:
|
| case kGray_8_SkColorType:
|
| + proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
|
| + proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
|
| + proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
|
| proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
|
| proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
|
| + proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
|
| proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
|
| proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
|
| break;
|
| @@ -231,6 +326,9 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
| return nullptr;
|
| }
|
|
|
| + if (src.width() <= 1 && src.height() <= 1) {
|
| + return nullptr;
|
| + }
|
| // whip through our loop to compute the exact size needed
|
| size_t size = 0;
|
| int countLevels = 0;
|
| @@ -238,18 +336,15 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
| int width = src.width();
|
| int height = src.height();
|
| for (;;) {
|
| - width >>= 1;
|
| - height >>= 1;
|
| - if (0 == width || 0 == height) {
|
| - break;
|
| - }
|
| + width = SkTMax(1, width >> 1);
|
| + height = SkTMax(1, height >> 1);
|
| size += SkColorTypeMinRowBytes(ct, width) * height;
|
| countLevels += 1;
|
| + if (1 == width && 1 == height) {
|
| + break;
|
| + }
|
| }
|
| }
|
| - if (0 == countLevels) {
|
| - return nullptr;
|
| - }
|
|
|
| SkASSERT(countLevels == SkMipMap::ComputeLevelCount(src.width(), src.height()));
|
|
|
| @@ -283,21 +378,37 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
|
|
| for (int i = 0; i < countLevels; ++i) {
|
| FilterProc* proc;
|
| - if (height & 1) { // src-height is 3
|
| - if (width & 1) { // src-width is 3
|
| - proc = proc_3_3;
|
| - } else { // src-width is 2
|
| - proc = proc_2_3;
|
| + if (height & 1) {
|
| + if (height == 1) { // src-height is 1
|
| + if (width & 1) { // src-width is 3
|
| + proc = proc_3_1;
|
| + } else { // src-width is 2
|
| + proc = proc_2_1;
|
| + }
|
| + } else { // src-height is 3
|
| + if (width & 1) {
|
| + if (width == 1) { // src-width is 1
|
| + proc = proc_1_3;
|
| + } else { // src-width is 3
|
| + proc = proc_3_3;
|
| + }
|
| + } else { // src-width is 2
|
| + proc = proc_2_3;
|
| + }
|
| }
|
| - } else { // src-height is 2
|
| - if (width & 1) { // src-width is 3
|
| - proc = proc_3_2;
|
| - } else { // src-width is 2
|
| + } else { // src-height is 2
|
| + if (width & 1) {
|
| + if (width == 1) { // src-width is 1
|
| + proc = proc_1_2;
|
| + } else { // src-width is 3
|
| + proc = proc_3_2;
|
| + }
|
| + } else { // src-width is 2
|
| proc = proc_2_2;
|
| }
|
| }
|
| - width >>= 1;
|
| - height >>= 1;
|
| + width = SkTMax(1, width >> 1);
|
| + height = SkTMax(1, height >> 1);
|
| rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
|
|
|
| levels[i].fPixmap = SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
|
| @@ -323,27 +434,21 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
|
| }
|
|
|
| int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
|
| + if (baseWidth < 1 || baseHeight < 1) {
|
| + return 0;
|
| + }
|
| +
|
| // OpenGL's spec requires that each mipmap level have height/width equal to
|
| // max(1, floor(original_height / 2^i)
|
| // (or original_width) where i is the mipmap level.
|
| // Continue scaling down until both axes are size 1.
|
| - //
|
| - // This means it maintains isotropic space (both axes scaling down
|
| - // at the same rate) until one axis hits size 1.
|
| - // At that point, OpenGL continues to scale down into anisotropic space
|
| - // (where the scales are not the same between axes).
|
| - //
|
| - // Skia currently does not go into anisotropic space.
|
| - // Once an axis hits size 1 we stop.
|
| - // All this means is rather than use the largest axis we will use the
|
| - // smallest axis.
|
| -
|
| - const int smallestAxis = SkTMin(baseWidth, baseHeight);
|
| - if (smallestAxis < 2) {
|
| +
|
| + const int largestAxis = SkTMax(baseWidth, baseHeight);
|
| + if (largestAxis < 2) {
|
| // SkMipMap::Build requires a minimum size of 2.
|
| return 0;
|
| }
|
| - const int leadingZeros = SkCLZ(static_cast<uint32_t>(smallestAxis));
|
| + const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
|
| // If the value 00011010 has 3 leading 0s then it has 5 significant bits
|
| // (the bits which are not leading zeros)
|
| const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
|
|
|