Index: src/core/SkGeometry.cpp |
diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp |
index 574954019eb8d6ad4f9a6bdeaa9800b9ba258b03..76d3a3f4f6ccbf2255aa1bff99ca89280c98cdde 100644 |
--- a/src/core/SkGeometry.cpp |
+++ b/src/core/SkGeometry.cpp |
@@ -69,9 +69,9 @@ bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) |
//////////////////////////////////////////////////////////////////////// |
-static int is_not_monotonic(float a, float b, float c) { |
- float ab = a - b; |
- float bc = b - c; |
+static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) { |
+ SkScalar ab = a - b; |
+ SkScalar bc = b - c; |
if (ab < 0) { |
bc = -bc; |
} |
@@ -80,31 +80,30 @@ static int is_not_monotonic(float a, float b, float c) { |
//////////////////////////////////////////////////////////////////////// |
-static bool is_unit_interval(SkScalar x) |
-{ |
+static bool is_unit_interval(SkScalar x) { |
return x > 0 && x < SK_Scalar1; |
} |
-static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) |
-{ |
+static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) { |
SkASSERT(ratio); |
- if (numer < 0) |
- { |
+ if (numer < 0) { |
numer = -numer; |
denom = -denom; |
} |
- if (denom == 0 || numer == 0 || numer >= denom) |
+ if (denom == 0 || numer == 0 || numer >= denom) { |
return 0; |
+ } |
SkScalar r = SkScalarDiv(numer, denom); |
if (SkScalarIsNaN(r)) { |
return 0; |
} |
SkASSERT(r >= 0 && r < SK_Scalar1); |
- if (r == 0) // catch underflow if numer <<<< denom |
+ if (r == 0) { // catch underflow if numer <<<< denom |
return 0; |
+ } |
*ratio = r; |
return 1; |
} |
@@ -115,26 +114,25 @@ static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) |
x1 = Q / A |
x2 = C / Q |
*/ |
-int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) |
-{ |
+int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { |
SkASSERT(roots); |
- if (A == 0) |
+ if (A == 0) { |
return valid_unit_divide(-C, B, roots); |
+ } |
SkScalar* r = roots; |
- float R = B*B - 4*A*C; |
+ SkScalar R = B*B - 4*A*C; |
if (R < 0 || SkScalarIsNaN(R)) { // complex roots |
return 0; |
} |
- R = sk_float_sqrt(R); |
+ R = SkScalarSqrt(R); |
SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; |
r += valid_unit_divide(Q, A, r); |
r += valid_unit_divide(C, Q, r); |
- if (r - roots == 2) |
- { |
+ if (r - roots == 2) { |
if (roots[0] > roots[1]) |
SkTSwap<SkScalar>(roots[0], roots[1]); |
else if (roots[0] == roots[1]) // nearly-equal? |
@@ -146,8 +144,7 @@ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) |
/////////////////////////////////////////////////////////////////////////////// |
/////////////////////////////////////////////////////////////////////////////// |
-static SkScalar eval_quad(const SkScalar src[], SkScalar t) |
-{ |
+static SkScalar eval_quad(const SkScalar src[], SkScalar t) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
@@ -163,52 +160,50 @@ static SkScalar eval_quad(const SkScalar src[], SkScalar t) |
#endif |
} |
-static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) |
-{ |
+static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) { |
SkScalar A = src[4] - 2 * src[2] + src[0]; |
SkScalar B = src[2] - src[0]; |
return 2 * SkScalarMulAdd(A, t, B); |
} |
-static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) |
-{ |
+static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) { |
SkScalar A = src[4] - 2 * src[2] + src[0]; |
SkScalar B = src[2] - src[0]; |
return A + 2 * B; |
} |
-void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) |
-{ |
+void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, |
+ SkVector* tangent) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
- if (pt) |
+ if (pt) { |
pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); |
- if (tangent) |
+ } |
+ if (tangent) { |
tangent->set(eval_quad_derivative(&src[0].fX, t), |
eval_quad_derivative(&src[0].fY, t)); |
+ } |
} |
-void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) |
-{ |
+void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) { |
SkASSERT(src); |
- if (pt) |
- { |
+ if (pt) { |
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); |
pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); |
} |
- if (tangent) |
+ if (tangent) { |
tangent->set(eval_quad_derivative_at_half(&src[0].fX), |
eval_quad_derivative_at_half(&src[0].fY)); |
+ } |
} |
-static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
-{ |
+static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) { |
SkScalar ab = SkScalarInterp(src[0], src[2], t); |
SkScalar bc = SkScalarInterp(src[2], src[4], t); |
@@ -219,16 +214,14 @@ static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
dst[8] = src[4]; |
} |
-void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) |
-{ |
+void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) { |
SkASSERT(t > 0 && t < SK_Scalar1); |
interp_quad_coords(&src[0].fX, &dst[0].fX, t); |
interp_quad_coords(&src[0].fY, &dst[0].fY, t); |
} |
-void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) |
-{ |
+void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { |
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
@@ -246,49 +239,31 @@ void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) |
B = 2(b - a) |
Solve for t, only if it fits between 0 < t < 1 |
*/ |
-int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) |
-{ |
+int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) { |
/* At + B == 0 |
t = -B / A |
*/ |
return valid_unit_divide(a - b, a - b - b + c, tValue); |
} |
-static inline void flatten_double_quad_extrema(SkScalar coords[14]) |
-{ |
+static inline void flatten_double_quad_extrema(SkScalar coords[14]) { |
coords[2] = coords[6] = coords[4]; |
} |
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is |
stored in dst[]. Guarantees that the 1/2 quads will be monotonic. |
*/ |
-int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) |
-{ |
+int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) { |
SkASSERT(src); |
SkASSERT(dst); |
-#if 0 |
- static bool once = true; |
- if (once) |
- { |
- once = false; |
- SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 }; |
- SkPoint d[6]; |
- |
- int n = SkChopQuadAtYExtrema(s, d); |
- SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY); |
- } |
-#endif |
- |
SkScalar a = src[0].fY; |
SkScalar b = src[1].fY; |
SkScalar c = src[2].fY; |
- if (is_not_monotonic(a, b, c)) |
- { |
+ if (is_not_monotonic(a, b, c)) { |
SkScalar tValue; |
- if (valid_unit_divide(a - b, a - b - b + c, &tValue)) |
- { |
+ if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { |
SkChopQuadAt(src, dst, tValue); |
flatten_double_quad_extrema(&dst[0].fY); |
return 1; |
@@ -306,8 +281,7 @@ int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) |
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is |
stored in dst[]. Guarantees that the 1/2 quads will be monotonic. |
*/ |
-int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) |
-{ |
+int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) { |
SkASSERT(src); |
SkASSERT(dst); |
@@ -344,7 +318,7 @@ int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) |
// |
// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) |
// |
-float SkFindQuadMaxCurvature(const SkPoint src[3]) { |
+SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) { |
SkScalar Ax = src[1].fX - src[0].fX; |
SkScalar Ay = src[1].fY - src[0].fY; |
SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; |
@@ -355,8 +329,7 @@ float SkFindQuadMaxCurvature(const SkPoint src[3]) { |
return t; |
} |
-int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) |
-{ |
+int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) { |
SkScalar t = SkFindQuadMaxCurvature(src); |
if (t == 0) { |
memcpy(dst, src, 3 * sizeof(SkPoint)); |
@@ -379,35 +352,35 @@ void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { |
dst[3] = src[2]; |
} |
-//////////////////////////////////////////////////////////////////////////////////////// |
-///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// |
-//////////////////////////////////////////////////////////////////////////////////////// |
+////////////////////////////////////////////////////////////////////////////// |
+///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// |
+////////////////////////////////////////////////////////////////////////////// |
-static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) |
-{ |
+static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) { |
coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; |
coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); |
coeff[2] = 3*(pt[2] - pt[0]); |
coeff[3] = pt[0]; |
} |
-void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) |
-{ |
+void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) { |
SkASSERT(pts); |
- if (cx) |
+ if (cx) { |
get_cubic_coeff(&pts[0].fX, cx); |
- if (cy) |
+ } |
+ if (cy) { |
get_cubic_coeff(&pts[0].fY, cy); |
+ } |
} |
-static SkScalar eval_cubic(const SkScalar src[], SkScalar t) |
-{ |
+static SkScalar eval_cubic(const SkScalar src[], SkScalar t) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
- if (t == 0) |
+ if (t == 0) { |
return src[0]; |
+ } |
#ifdef DIRECT_EVAL_OF_POLYNOMIALS |
SkScalar D = src[0]; |
@@ -428,15 +401,13 @@ static SkScalar eval_cubic(const SkScalar src[], SkScalar t) |
/** return At^2 + Bt + C |
*/ |
-static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) |
-{ |
+static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) { |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
} |
-static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) |
-{ |
+static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) { |
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); |
SkScalar C = src[2] - src[0]; |
@@ -444,27 +415,29 @@ static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) |
return eval_quadratic(A, B, C, t); |
} |
-static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) |
-{ |
+static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) { |
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
SkScalar B = src[4] - 2 * src[2] + src[0]; |
return SkScalarMulAdd(A, t, B); |
} |
-void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature) |
-{ |
+void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, |
+ SkVector* tangent, SkVector* curvature) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
- if (loc) |
+ if (loc) { |
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); |
- if (tangent) |
+ } |
+ if (tangent) { |
tangent->set(eval_cubic_derivative(&src[0].fX, t), |
eval_cubic_derivative(&src[0].fY, t)); |
- if (curvature) |
+ } |
+ if (curvature) { |
curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), |
eval_cubic_2ndDerivative(&src[0].fY, t)); |
+ } |
} |
/** Cubic'(t) = At^2 + Bt + C, where |
@@ -473,8 +446,8 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tan |
C = 3(b - a) |
Solve for t, keeping only those that fit betwee 0 < t < 1 |
*/ |
-int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]) |
-{ |
+int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
+ SkScalar tValues[2]) { |
// we divide A,B,C by 3 to simplify |
SkScalar A = d - a + 3*(b - c); |
SkScalar B = 2*(a - b - b + c); |
@@ -483,8 +456,8 @@ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar |
return SkFindUnitQuadRoots(A, B, C, tValues); |
} |
-static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
-{ |
+static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, |
+ SkScalar t) { |
SkScalar ab = SkScalarInterp(src[0], src[2], t); |
SkScalar bc = SkScalarInterp(src[2], src[4], t); |
SkScalar cd = SkScalarInterp(src[4], src[6], t); |
@@ -501,8 +474,7 @@ static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
dst[12] = src[6]; |
} |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) |
-{ |
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { |
SkASSERT(t > 0 && t < SK_Scalar1); |
interp_cubic_coords(&src[0].fX, &dst[0].fX, t); |
@@ -532,8 +504,8 @@ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) |
} |
*/ |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots) |
-{ |
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], |
+ const SkScalar tValues[], int roots) { |
#ifdef SK_DEBUG |
{ |
for (int i = 0; i < roots - 1; i++) |
@@ -545,20 +517,18 @@ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[] |
} |
#endif |
- if (dst) |
- { |
- if (roots == 0) // nothing to chop |
+ if (dst) { |
+ if (roots == 0) { // nothing to chop |
memcpy(dst, src, 4*sizeof(SkPoint)); |
- else |
- { |
+ } else { |
SkScalar t = tValues[0]; |
SkPoint tmp[4]; |
- for (int i = 0; i < roots; i++) |
- { |
+ for (int i = 0; i < roots; i++) { |
SkChopCubicAt(src, dst, t); |
- if (i == roots - 1) |
+ if (i == roots - 1) { |
break; |
+ } |
dst += 3; |
// have src point to the remaining cubic (after the chop) |
@@ -577,8 +547,7 @@ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[] |
} |
} |
-void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) |
-{ |
+void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) { |
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
@@ -600,8 +569,7 @@ void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) |
dst[6] = src[3]; |
} |
-static void flatten_double_cubic_extrema(SkScalar coords[14]) |
-{ |
+static void flatten_double_cubic_extrema(SkScalar coords[14]) { |
coords[4] = coords[8] = coords[6]; |
} |
@@ -656,8 +624,7 @@ int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) { |
C = d - 3c + 3b - a |
(BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 |
*/ |
-int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) |
-{ |
+int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) { |
SkScalar Ax = src[1].fX - src[0].fX; |
SkScalar Ay = src[1].fY - src[0].fY; |
SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; |
@@ -668,23 +635,21 @@ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) |
return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues); |
} |
-int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) |
-{ |
+int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) { |
SkScalar tValues[2]; |
int count = SkFindCubicInflections(src, tValues); |
- if (dst) |
- { |
- if (count == 0) |
+ if (dst) { |
+ if (count == 0) { |
memcpy(dst, src, 4 * sizeof(SkPoint)); |
- else |
+ } else { |
SkChopCubicAt(src, dst, tValues, count); |
+ } |
} |
return count + 1; |
} |
-template <typename T> void bubble_sort(T array[], int count) |
-{ |
+template <typename T> void bubble_sort(T array[], int count) { |
for (int i = count - 1; i > 0; --i) |
for (int j = i; j > 0; --j) |
if (array[j] < array[j-1]) |
@@ -695,45 +660,11 @@ template <typename T> void bubble_sort(T array[], int count) |
} |
} |
-// newton refinement |
-#if 0 |
-static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root) |
-{ |
- // x1 = x0 - f(t) / f'(t) |
- |
- SkFP T = SkScalarToFloat(root); |
- SkFP N, D; |
- |
- // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2] |
- D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3); |
- D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2)); |
- D = SkFPAdd(D, coeff[2]); |
- |
- if (D == 0) |
- return root; |
- |
- // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
- N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]); |
- N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1])); |
- N = SkFPAdd(N, SkFPMul(T, coeff[2])); |
- N = SkFPAdd(N, coeff[3]); |
- |
- if (N) |
- { |
- SkScalar delta = SkFPToScalar(SkFPDiv(N, D)); |
- |
- if (delta) |
- root -= delta; |
- } |
- return root; |
-} |
-#endif |
- |
/** |
* Given an array and count, remove all pair-wise duplicates from the array, |
* keeping the existing sorting, and return the new count |
*/ |
-static int collaps_duplicates(float array[], int count) { |
+static int collaps_duplicates(SkScalar array[], int count) { |
for (int n = count; n > 1; --n) { |
if (array[0] == array[1]) { |
for (int i = 1; i < n; ++i) { |
@@ -755,15 +686,15 @@ static void test_collaps_duplicates() { |
static bool gOnce; |
if (gOnce) { return; } |
gOnce = true; |
- const float src0[] = { 0 }; |
- const float src1[] = { 0, 0 }; |
- const float src2[] = { 0, 1 }; |
- const float src3[] = { 0, 0, 0 }; |
- const float src4[] = { 0, 0, 1 }; |
- const float src5[] = { 0, 1, 1 }; |
- const float src6[] = { 0, 1, 2 }; |
+ const SkScalar src0[] = { 0 }; |
+ const SkScalar src1[] = { 0, 0 }; |
+ const SkScalar src2[] = { 0, 1 }; |
+ const SkScalar src3[] = { 0, 0, 0 }; |
+ const SkScalar src4[] = { 0, 0, 1 }; |
+ const SkScalar src5[] = { 0, 1, 1 }; |
+ const SkScalar src6[] = { 0, 1, 2 }; |
const struct { |
- const float* fData; |
+ const SkScalar* fData; |
int fCount; |
int fCollapsedCount; |
} data[] = { |
@@ -776,7 +707,7 @@ static void test_collaps_duplicates() { |
{ TEST_COLLAPS_ENTRY(src6), 3 }, |
}; |
for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { |
- float dst[3]; |
+ SkScalar dst[3]; |
memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0])); |
int count = collaps_duplicates(dst, data[i].fCount); |
SkASSERT(data[i].fCollapsedCount == count); |
@@ -788,7 +719,7 @@ static void test_collaps_duplicates() { |
#endif |
static SkScalar SkScalarCubeRoot(SkScalar x) { |
- return sk_float_pow(x, 0.3333333f); |
+ return SkScalarPow(x, 0.3333333f); |
} |
/* Solve coeff(t) == 0, returning the number of roots that |
@@ -798,10 +729,8 @@ static SkScalar SkScalarCubeRoot(SkScalar x) { |
Eliminates repeated roots (so that all tValues are distinct, and are always |
in increasing order. |
*/ |
-static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3]) |
-{ |
- if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic |
- { |
+static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) { |
+ if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic |
return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); |
} |
@@ -825,23 +754,22 @@ static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3]) |
SkScalar* roots = tValues; |
SkScalar r; |
- if (R2MinusQ3 < 0) // we have 3 real roots |
- { |
- float theta = sk_float_acos(R / sk_float_sqrt(Q3)); |
- float neg2RootQ = -2 * sk_float_sqrt(Q); |
+ if (R2MinusQ3 < 0) { // we have 3 real roots |
+ SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3)); |
+ SkScalar neg2RootQ = -2 * SkScalarSqrt(Q); |
- r = neg2RootQ * sk_float_cos(theta/3) - adiv3; |
- if (is_unit_interval(r)) |
+ r = neg2RootQ * SkScalarCos(theta/3) - adiv3; |
+ if (is_unit_interval(r)) { |
*roots++ = r; |
- |
- r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3; |
- if (is_unit_interval(r)) |
+ } |
+ r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3; |
+ if (is_unit_interval(r)) { |
*roots++ = r; |
- |
- r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3; |
- if (is_unit_interval(r)) |
+ } |
+ r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3; |
+ if (is_unit_interval(r)) { |
*roots++ = r; |
- |
+ } |
SkDEBUGCODE(test_collaps_duplicates();) |
// now sort the roots |
@@ -850,19 +778,19 @@ static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3]) |
bubble_sort(tValues, count); |
count = collaps_duplicates(tValues, count); |
roots = tValues + count; // so we compute the proper count below |
- } |
- else // we have 1 real root |
- { |
+ } else { // we have 1 real root |
SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3); |
A = SkScalarCubeRoot(A); |
- if (R > 0) |
+ if (R > 0) { |
A = -A; |
- |
- if (A != 0) |
+ } |
+ if (A != 0) { |
A += Q / A; |
+ } |
r = A - adiv3; |
- if (is_unit_interval(r)) |
+ if (is_unit_interval(r)) { |
*roots++ = r; |
+ } |
} |
return (int)(roots - tValues); |
@@ -879,8 +807,7 @@ static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3]) |
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
*/ |
-static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) |
-{ |
+static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) { |
SkScalar a = src[2] - src[0]; |
SkScalar b = src[4] - 2 * src[2] + src[0]; |
SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
@@ -891,10 +818,6 @@ static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) |
coeff[3] = a * b; |
} |
-// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1 |
-//#define kMinTValueForChopping (SK_Scalar1 / 256) |
-#define kMinTValueForChopping 0 |
- |
/* Looking for F' dot F'' == 0 |
A = b - a |
@@ -906,51 +829,54 @@ static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) |
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
*/ |
-int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) |
-{ |
+int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) { |
SkScalar coeffX[4], coeffY[4]; |
int i; |
formulate_F1DotF2(&src[0].fX, coeffX); |
formulate_F1DotF2(&src[0].fY, coeffY); |
- for (i = 0; i < 4; i++) |
+ for (i = 0; i < 4; i++) { |
coeffX[i] += coeffY[i]; |
+ } |
SkScalar t[3]; |
- int count = solve_cubic_polynomial(coeffX, t); |
+ int count = solve_cubic_poly(coeffX, t); |
int maxCount = 0; |
// now remove extrema where the curvature is zero (mins) |
// !!!! need a test for this !!!! |
- for (i = 0; i < count; i++) |
- { |
+ for (i = 0; i < count; i++) { |
// if (not_min_curvature()) |
- if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping) |
+ if (t[i] > 0 && t[i] < SK_Scalar1) { |
tValues[maxCount++] = t[i]; |
+ } |
} |
return maxCount; |
} |
-int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3]) |
-{ |
+int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
+ SkScalar tValues[3]) { |
SkScalar t_storage[3]; |
- if (tValues == NULL) |
+ if (tValues == NULL) { |
tValues = t_storage; |
+ } |
int count = SkFindCubicMaxCurvature(src, tValues); |
if (dst) { |
- if (count == 0) |
+ if (count == 0) { |
memcpy(dst, src, 4 * sizeof(SkPoint)); |
- else |
+ } else { |
SkChopCubicAt(src, dst, tValues, count); |
+ } |
} |
return count + 1; |
} |
-bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) { |
+bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], |
+ bool* ambiguous) { |
if (ambiguous) { |
*ambiguous = false; |
} |
@@ -1064,13 +990,13 @@ int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* a |
} |
return num_crossings; |
} |
-//////////////////////////////////////////////////////////////////////////////// |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
/* Find t value for quadratic [a, b, c] = d. |
Return 0 if there is no solution within [0, 1) |
*/ |
-static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) |
-{ |
+static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { |
// At^2 + Bt + C = d |
SkScalar A = a - 2 * b + c; |
SkScalar B = 2 * (b - a); |
@@ -1088,8 +1014,8 @@ static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) |
Should only return false if the computed pos is the start of the curve |
(i.e. root == 0) |
*/ |
-static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest) |
-{ |
+static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, |
+ SkPoint* dest) { |
const SkScalar* base; |
SkScalar value; |
@@ -1105,8 +1031,7 @@ static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, S |
// root might return something outside of [0, 1) |
SkScalar t = quad_solve(base[0], base[2], base[4], value); |
- if (t > 0) |
- { |
+ if (t > 0) { |
SkPoint tmp[5]; |
SkChopQuadAt(quad, tmp, t); |
dest[0] = tmp[1]; |
@@ -1167,8 +1092,7 @@ static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { |
int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, |
SkRotationDirection dir, const SkMatrix* userMatrix, |
- SkPoint quadPoints[]) |
-{ |
+ SkPoint quadPoints[]) { |
// rotate by x,y so that uStart is (1.0) |
SkScalar x = SkPoint::DotProduct(uStart, uStop); |
SkScalar y = SkPoint::CrossProduct(uStart, uStop); |
@@ -1189,45 +1113,37 @@ int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, |
quadPoints[0].set(SK_Scalar1, 0); |
pointCount = 1; |
} else { |
- if (dir == kCCW_SkRotationDirection) |
+ if (dir == kCCW_SkRotationDirection) { |
y = -y; |
- |
+ } |
// what octant (quadratic curve) is [xy] in? |
int oct = 0; |
bool sameSign = true; |
- if (0 == y) |
- { |
+ if (0 == y) { |
oct = 4; // 180 |
SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); |
- } |
- else if (0 == x) |
- { |
+ } else if (0 == x) { |
SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); |
- if (y > 0) |
- oct = 2; // 90 |
- else |
- oct = 6; // 270 |
- } |
- else |
- { |
- if (y < 0) |
+ oct = y > 0 ? 2 : 6; // 90 : 270 |
+ } else { |
+ if (y < 0) { |
oct += 4; |
- if ((x < 0) != (y < 0)) |
- { |
+ } |
+ if ((x < 0) != (y < 0)) { |
oct += 2; |
sameSign = false; |
} |
- if ((absX < absY) == sameSign) |
+ if ((absX < absY) == sameSign) { |
oct += 1; |
+ } |
} |
int wholeCount = oct << 1; |
memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); |
const SkPoint* arc = &gQuadCirclePts[wholeCount]; |
- if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) |
- { |
+ if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) { |
wholeCount += 2; |
} |
pointCount = wholeCount + 1; |